Contact Geometry

Exercise sheet 11

Exercise 1.

Contact (+1)-surgery on a stabilized Legendrian knot K yields an overtwisted contact manifold. *Hint:* Describe a Legendrian knot J in the complement of K and show that J, seen as a knot in K(+1), violates the Bennequin bound. Can you explicitly describe an overtwisted disk in K(+1)?

Exercise 2.

- (a) We say that a surgery is an **integer** surgery, if the surgery coefficient is an integer. Show that this notion is independent of the choice of the longitude.
- (b) Any integer surgery corresponds to a 4-dimensional handle attachment.
- (c) Every closed, connecnted, oriented 3-manifold bounds a compact orientable 4-manifold. *Hint:* Use (b) together with the Lickorish–Wallace theorem.
- (d) Describe connected sums in surgery diagrams.
- (e) The lens spaces L(p,q) as defined in Exercise 5 on Sheet 2 is diffeomorphic to the result of $-p\mu + q\lambda_S$ surgery on the unknot, where λ_S denotes the Seifert longitude of the unknot. *Hint:* Show that the group action yielding the lens space preserves the splitting of S^3 into two solid tori and compute the new gluing maps.
- (f) $\mathbb{R}P^3$ is diffeomorphic to L(2,1).
- (g) For every $n \in \mathbb{Z}$, L(p,q) is diffeomorphic to L(p,q+np). Hint: Perform an n-fold twist along the Seifert disk of the unknot.

Exercise 3.

Prove Theorem 7.2 from the lecture.

Hint: Compute the surgery framing in the local model of the Weinstein 2-handle with respect to the contact framing.

Exercise 4.

Let K be a Legendrian unknot that is stabilized once positive and once negative. Show that contact (-1)-surgery on K yields a virtually overtwisted contact structure on a lens space.

Hint: Describe a Legendrian knot J in the complement of K such that J bounds an immersed overtwisted disk in K(-1) that yields an embedded overtwisted disk in the universal covering.

Bonus exercise.

Let L be a Legendrian link in (S^3, ξ_{st}) along which we perform contact (± 1) -surgery to obtain a contact manifold (M, ξ) . Let K be a Legendrian knot in the complement of L. Then K represents also a Legendrian knot in (M, ξ) . Describe an algebraic criterion (depending only on the linking numbers of the Legendrian knots, the surgery coefficients and the classical invariants) that is equivalent to the statement that K is nullhomologous in (M, ξ) . In that case, compute the Thurston–Bennequin invariant of K in (M, ξ) .

This sheet will be discussed on Wednesday 24.1. and should be solved by then.