Contact Geometry

Exercise sheet 2

Exercise 1.

On $S^{3} \subset \mathbb{R}^{4}$ consider the 1-form

$$
\begin{equation*}
\alpha=x_{1} d y_{1}-y_{1} d x_{1}+\sqrt{2}\left(x_{2} d y_{2}-y_{2} d x_{2}\right) \tag{1}
\end{equation*}
$$

(a) Show that α is a contact form.
(b) Compute the Reeb flow of α. How many closed orbits has it?
(c) Show that $\left(S^{3}, \operatorname{ker} \alpha\right)$ is contactomorphic to $\left(S^{3}, \xi_{s t}\right)$. Hint: Use Gray stability.
(d) A strict contactomorphism preserves the Reeb flow.
(e) Deduce that $\left(S^{3}, \alpha\right)$ and $\left(S^{3}, \alpha_{s t}\right)$ are not strictly contactomorphic, that a contactomorphism does in general not preserve the Reeb flow, and that Gray stability does not hold true for contact forms.

Exercise 2.

Two contact structures ξ_{0} and ξ_{1} on a manifold M are called isotopic if there exist a family of diffeomorphisms $\psi_{t}: M \rightarrow M$ such that $\psi_{0}=\mathrm{Id}$ and ψ_{1} is a contactomorphism from $\left(M, \xi_{0}\right)$ to $\left(M, \xi_{1}\right)$.
(a) Consider on $\mathbb{R}^{2 n+1}$ the contact forms

$$
\alpha_{0}=d z+\sum_{j=1}^{n} x_{j} d y_{j} \text { and } \alpha_{0}=2 d z+\sum_{j=1}^{n} x_{j} d y_{j}-y_{j} d x_{j}
$$

Show that the induced contact structures are isotopic.
(b) Can the isotopy be chosen such that ψ_{1} is a strict contactomorphism?

Exercise 3.

Prove Theorem 2.4 from the lecture.
Hint: Use the stereographic projection.

Exercise 4.

(a) Describe a contact structure on $\mathbb{R} P^{3}$.

Hint: Write $\mathbb{R} P^{3}$ as the unit cotangent bundle of a surface and use the canonical contact structure.
(b) Let M and N be diffeomorphic manifolds. Show that their unit cotangent bundles (with their canonical contact structures) are contactomorphic.

Exercise 5.

Let p and q be coprime integers and consider S^{3} as the unit sphere in \mathbb{C}^{2}. Consider the \mathbb{Z}_{p} action on S^{3} generated by the diffeomorphism

$$
(z, w) \longmapsto\left(e^{2 \pi i / p} z, e^{2 \pi i q / p} w\right)
$$

(a) Show that this group action is free and thus the quotient is a smooth 3-manifold. We call that manifold the lens space $L(p, q)$.
(b) Show that $L(p, q)$ admits a contact structure.
(c) Let (M, ξ) be a contact manifold and let M^{\prime} be a cover of M. Then M^{\prime} admits a contact structure.

Bonus exercise.

Prove Lemma 2.8 from the lecture.

