WS 2023/24

Marc Kegel

Contact Geometry

Exercise sheet 9

Exercise 1.

Let K be an isolating simple closed curve on a convex surface S then there is no isotopy of S through convex surfaces such that K lies in the characteristic foliation.

Exercise 2.

Let S be a closed oriented surface. We write S^z for $S \times z$ in $S \times [-1, 1]$.

- (a) Let ξ_0 and ξ_1 be two contact structures on $S \times [-1, 1]$ such that their characteristic foliations $S_{\xi_0}^z$ and $S_{\xi_1}^z$, coincide for all $z \in [-1, 1]$. Then ξ_0 and ξ_1 are isotopic rel boundary.
- (b) Let ξ_0 and ξ_1 be two contact structures on $S \times [-1, 1]$ with the following properties:
 - The characteristic foliations $S_{\ell_i}^{\pm 1}$ coincide on the boundary of $S \times [-1, 1]$ for i = 0, 1.
 - Each surface S^z , $z \in [-1,1]$, is convex for both contact structures, and there is a smoothly varying family of multi-curves Γ_z dividing both $S^z_{\xi_0}$ and $S^z_{\xi_1}$.

Then ξ_0 and ξ_1 are isotopic rel boundary.

Exercise 3.

For this and the next exercise we assume Bennequin's theorem, i.e. that the standard contact structure on S^3 is tight.

- (a) The standard contact structure on \mathbb{R}^3 is tight.
- (b) Let $f: (M', \xi') \to (M, \xi)$ be a contact covering (i.e. a covering that is a local contactomorphism). If ξ' is tight then ξ is tight.
- (c) (T^3, ξ_n) and $(S^1 \times \mathbb{R}^2, \xi_n)$ are tight for all n.

Exercise 4.

Let (M,ξ) be a contact manifold. We write \widetilde{M} for the universal covering of M and $\widetilde{\xi}$ for the lift of ξ to \widetilde{M} . We call $(\widetilde{M}, \widetilde{\xi} \to (M, \xi)$ the universal contact covering of (M, ξ) . We say that a tight contact structure ξ on M is universally tight if its universal contact covering is tight. A tight contact structure ξ on M is virtually overtwisted if there exists a finite contact covering $(M', \xi') \to (M, \xi)$ such that ξ' is overtwisted.

- (a) A virtually overtwisted contact structure is not universally tight.
- (b) A tight contact structure is either universally tight or virtually overtwisted. *Hint:* The geometrization theorem for 3-manifolds implies that the fundamental group of every compact 3-manifold M is *residually finite*, i.e. for every non-trivial element $g \in \pi_1(M)$ there exist a normal subgroup N in $\pi_1(M)$ of finite index that does not contain g. Use this result without proof.
- (c) Show that the standard contact structures on \mathbb{R}^3 , S^3 , T^3 , and $S^1 \times \mathbb{R}^2$ are universally tight.
- (d) Construct a virtually overtwisted contact structure on S¹ × D². *Hint:* See [V. COLIN, *Recollement de variétés de contact tendues*, Bull. Soc. Math. France 127] or Example 2.27(2) [M. Kegel, Symplektisches Füllen von Torusbündeln, https://www. mathematik.hu-berlin.de/~kegemarc/Publications/Masterarbeit.pdf] for a exposition of that result in German.