Marc Kegel Theo Müller

Exercise Sheet 12

Exercise 1.

Calculate the homology using the Mayer–Vietoris sequence

- (a) of the projective plane $\mathbb{R}P^2$, considered as the space obtained by gluing a Möbius band to a 2-disk;
- (b) of the 2-torus, obtained by gluing two cylinders;
- (c) of the Klein bottle, also obtained by gluing two cylinders;
- (d) Further describe the homology of a connected sum $M_1 \# M_2$ of two *n*-manifolds M_1 and M_2 in terms of the homology of the summands.

Exercise 2.

(a) Show that

$$S^{m+n+1} \cong (S^m \times D^{n+1}) \cup (D^{m+1} \times S^n)$$

with

$$(S^m \times D^{n+1}) \cap (D^{m+1} \times S^n) = S^m \times S^n.$$

Hint: Consider the boundary of $D^{m+n+2} \cong D^{m+1} \times D^{n+1}$.

(b) Use the Mayer–Vietoris sequence to show that for $m \neq n$:

$$H_q(S^m \times S^n) \cong \begin{cases} \mathbb{Z} & \text{for } q = 0, m, n, m + n \\ 0 & \text{otherwise.} \end{cases}$$

(c) What is $H_q(S^m \times S^m)$?

Exercise 3.

- (a) Complete the proof of Theorem 7.18 from the lecture by verifying that $\text{Im}(j_*) = \text{ker}(\Delta)$ and $\text{Im}(\Delta) = \text{ker}(i_*)$.
- (b) Provide a geometric description of the homomorphism Δ in the Mayer–Vietoris sequence (Theorem 7.19) for the decomposition of a complex K into two subcomplexes L and M. In other words: Given a q-cycle x in $K = L \cup M$, how can one geometrically find a (q-1)-cycle z in $L \cap M$ such that $\Delta[x] = [z]$?

 $\mathrm{SS}~2025$

Exercise 4.

Given a commutative diagram of groups and homomorphisms with exact rows:

Determine the minimal assumptions on f_1 , f_2 , f_4 , and f_5 (regarding injectivity and surjectivity) that guarantee that f_3 is

- (i) injective,
- (ii) surjective,
- (iii) bijective.

Show by examples that these assumptions cannot be further weakened.

Bonus Exercise.

Let L, M be subcomplexes of the simplicial complex $K = L \cup M$ with |K|, |L|, and |M| pathconnected. Derive from the Mayer–Vietoris sequence a description of the first homology group $H_1(L \cup M)$ as a quotient group of $H_1(L) \oplus H_1(M)$ under certain additional relations, analogous to the Seifert–van Kampen theorem.

These exercises will be discussed in the session on Thursday, July 10.