Marc Kegel Theo Müller

Problem Sheet 3

Exercise 1.

The quaternions are defined as the 4-dimensional real vector space

$$\mathbb{H} := \{ a = a_0 + a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} : a_0, a_1, a_2, a_3 \in \mathbb{R} \},\$$

equipped with an associative multiplication given by the rules

$$i^2 = j^2 = k^2 = ijk = -1$$

and distributivity. The topology on \mathbb{H} is given via the identification with \mathbb{R}^4 . The Euclidean norm is $|a| = \sqrt{a_0^2 + a_1^2 + a_2^2 + a_3^2}$, and the **conjugate** of $a \in \mathbb{H}$ is defined as

$$\overline{a} = a_0 - a_1 \mathbf{i} - a_2 \mathbf{j} - a_3 \mathbf{k}.$$

Show:

- (a) $\mathbf{ij} = \mathbf{k}$ and $\mathbf{ji} = -\mathbf{k}$.
- (b) $\overline{ab} = \overline{b}\overline{a}$.
- (c) For $a \neq 0$, the element $\overline{a}/|a|^2$ is the inverse of a with respect to multiplication in \mathbb{H} .
- (d) |ab| = |a||b|.
- (e) The unit sphere $S^3 \subset \mathbb{H}$, with the topology and multiplication induced from \mathbb{H} , is a topological group.

Exercise 2.

Identify \mathbb{R}^3 with the space of purely imaginary quaternions, i.e., quaternions of the form $a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ with $a_1, a_2, a_3 \in \mathbb{R}$, and S^3 with the space of quaternions of length 1. Show:

(a) Conjugation of $\mathbb{R}^3 \subset \mathbb{H}$ by an element of $S^3 \subset \mathbb{H}$ defines an element of SO(3), i.e. the map

$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3 \\ a \longmapsto uau^{-1}$$

is, for each $u \in S^3$, a special orthogonal transformation (thus a rotation of \mathbb{R}^3 about a suitable axis).

(b) The map

$$S^3 \longrightarrow SO(3)$$
$$u \longmapsto \{a \mapsto uau^{-1}\}$$

defined in this way is a continuous, surjective homomorphism of topological groups with $Ker = \{\pm 1\}.$

(c) Deduce that SO(3) is homeomorphic to $\mathbb{R}P^3$.

Exercise 3.

- (a) The set of real $(n \times n)$ matrices $\mathcal{M}(n \times n, \mathbb{R})$ can canonically be identified with \mathbb{R}^{n^2} . This induces a topology on the group of invertible $(n \times n)$ matrices $GL_n(\mathbb{R}) \subset \mathcal{M}(n \times n, \mathbb{R})$. Show that $GL_n(\mathbb{R})$ with this topology is a topological group.
- (b) Show that the group of orthogonal $(n \times n)$ matrices O(n), equipped with the topology induced by the inclusion $O(n) \subset GL(n)$, is a compact topological group.

An **isomorphism** between topological groups G_1 and G_2 is a homeomorphism $G_1 \to G_2$ which is also a group isomorphism. Let SO(n) denote the special orthogonal group, i.e. the group of orthogonal $(n \times n)$ matrices with determinant 1. Show:

- (c) The multiplicative group $S^1 \subset \mathbb{C}$ is isomorphic to SO(2) (as topological groups).
- (d) O(n) is homeomorphic to $SO(n) \times \mathbb{Z}_2$. Are these two topological groups isomorphic?

Exercise 4.

- (a) Describe an action of \mathbb{Z} on $\mathbb{R} \times [0,1]$ that has the Möbius strip as its orbit space.
- (b) Describe three different actions of $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ on the torus with orbit spaces the cylinder, the 2-sphere, and the Klein bottle, respectively.