

Exercise Sheet 4

Exercise 1.

- (a) For $n \ge 3$, the space $\mathbb{R}^n \setminus \{0\}$ is simply connected.
- (b) Every path-connected space is connected.
- (c) Deduce once again that \mathbb{R} is not homeomorphic to \mathbb{R}^n for $n \geq 2$.
- (d) Describe a space that is connected but not path-connected.

Exercise 2.

- (a) Every continuous map $f: X \to S^n$ that is not surjective is **null-homotopic**, i.e. homotopic to a constant map.
- (b) Any two continuous maps $f, g: X \to CY$ are homotopic, where CY denotes the cone over Y.
- (c) A continuous map $f: X \to Y$ is null-homotopic if and only if it extends to a continuous map $CX \to Y$.

Exercise 3.

Let u and v be loops in a topological group (G, \circ) based at the identity element e. Define the loop $u \circ v$ by $(u \circ v)(s) := u(s) \circ v(s)$. Show that

$$uv \simeq u \circ v \simeq vu \quad \text{rel} \{0, 1\}$$

and deduce that $\pi_1(G, e)$ is abelian.

Exercise 4.

(a) Let $f: (X, x_0) \to (X, x_0)$ be a continuous map that is homotopic to the identity (not necessarily rel $\{x_0\}$). Show that the induced map $f_*: \pi_1(X, x_0) \to \pi_1(X, x_0)$ is an inner automorphism, i.e. it has the form

$$f_{\star}[u] = [v]^{-1}[u][v]$$

for a suitable loop v based at x_0 .

(b) Let $f, g: X \to Y$ be homotopic maps via a homotopy F. Let x_0 be a base point in X and define the path $u(t) = F(x_0, t)$ from $f(x_0)$ to $g(x_0)$. Then

$$f_{\star} = u_{\#}^{-1} g_{\star} \colon \pi_1(X, x_0) \to \pi_1(Y, f(x_0)).$$

Bonus Exercise 1.

Fill in the missing details in the proofs of Theorem 4.4 and Theorem 4.6 from the lecture.

Bonus Exercise 2.

The **complex projective space** $\mathbb{C}P^n$ is defined as the quotient of $\mathbb{C}^{n+1} \setminus \{(0,\ldots,0)\}$ (or of $S^{2n+1} \subset \mathbb{C}^{n+1}$) under the equivalence relation

 $(z_0,\ldots,z_n) \sim (w_0,\ldots,w_n) \quad \Leftrightarrow \quad \exists \lambda \in \mathbb{C} \setminus \{0\} : (z_0,\ldots,z_n) = (\lambda w_0,\ldots,\lambda w_n).$

The equivalence class of a point (z_0, \ldots, z_n) is denoted by its so-called **homogeneous coordi**nates $[z_0 : \ldots : z_n]$. One can also view $\mathbb{C}P^n$ as the space of complex lines through the origin in \mathbb{C}^{n+1} .

The **one-point compactification** $\widehat{\mathbb{C}}^n$ of \mathbb{C}^n is defined as the set $\widehat{\mathbb{C}}^n = \mathbb{C}^n \cup \{\infty\}$ (i.e. the disjoint union of \mathbb{C}^n and a point denoted ∞), equipped with the following topology: The open sets of $\widehat{\mathbb{C}}^n$ are precisely the open subsets of $\mathbb{C}^n \subset \widehat{\mathbb{C}}^n$ together with the sets of the form $\widehat{\mathbb{C}}^n \setminus K$ where $K \subset \mathbb{C}^n$ is compact. Show that:

- (a) $\widehat{\mathbb{C}}^n$ is indeed a compact topological space.
- (b) $\widehat{\mathbb{C}}^n$ is homeomorphic to S^{2n} . Hint: Use the stereographic projection from Exercise 1(b) of Sheet 1.
- (c) The map

$$\mathbb{C}P^1 \longrightarrow \widehat{\mathbb{C}}, \quad [z_0:z_1] \longmapsto \begin{cases} z_1/z_0, & \text{if } z_0 \neq 0, \\ \infty, & \text{if } z_0 = 0 \end{cases}$$

is a homeomorphism.

These exercises will be discussed in the session on Thursday, May 15.