Kirby-Kalkül

Übungsblatt 1

Aufgabe 1.

Wir betrachten die folgenden topologischen Räume.

- (1) Die 2-**Sphäre** $S^2 := \{x \in \mathbb{R}^3 : |x| = 1\} \subset \mathbb{R}^3.$
- (2) Die **reelle projektive Ebene** $\mathbb{R}P^2 := (\mathbb{R}^3 \setminus \{0\})/\mathbb{R}$, wobei $x \sim y$ genau dann, wenn es ein $\lambda \in \mathbb{R} \setminus \{0\}$ gibt, so dass $x = \lambda y$.
- (3) Der abgeschlossene 3-Ball $D^3 := \{x \in \mathbb{R}^3 : |x| \le 1\}.$
- (4) Der **offene** 3-Ball $B^3 := \{x \in \mathbb{R}^3 : |x| < 1\}.$
- (5) $S^2/_{\infty}$, wobei $x \sim y$ genau dann, wenn x = y oder x = -y.
- (6) Der Euklidische Raum \mathbb{R}^3 .
- (7) Der 3-Torus $T^3 := S^1 \times S^1 \times S^1$, wobei S^1 den Einheitskreis bezeichnet.
- (8) $\{(x,y) \in \mathbb{R}^2 : xy = 0\}.$
- (9) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}.$
- (10) Der komplexe projektive Raum $\mathbb{C}P^2 := S^5/_{\sim}$, wobei wir S^5 als die Einheitssphäre in \mathbb{C}^3 auffassen und $(z_0, z_1, z_2) \sim (w_0, w_1, w_2)$ genau dann gilt, wenn es ein $\lambda \in S^1 \subset \mathbb{C}$ gibt, so dass $(z_0, z_1, z_2) = \lambda(w_0, w_1, w_2)$ gilt.
 - (a) Skizzieren Sie die Räume (1) (9).
- (b) Ist $\mathbb{C}P^2$ eine glatte Mannigfaltigkeit?
- (c) Welche dieser Räume sind keine Mannigfaltigkeiten (mit Beweis) und welche dieser Räume sind Mannigfaltigkeiten (ohne Beweis).
- (d) Welche der obigen Mannigfaltigkeiten sind homöomorph und welche nicht?

Aufgabe 2.

Wir betrachten die Einheitssphäre S^1 in $\mathbb C$ und die reelle projektive Gerade $\mathbb RP^1$ als Quotientenraum von S^1 unter der Identifikation $z \sim -z$.

- (a) Zeigen Sie, dass $\mathbb{R}P^1$ die Struktur einer differenzierbaren Mannigfaltigkeit besitzt und beschreiben Sie diese differenzierbare Struktur, indem Sie einen expliziten Atlas angeben.
- (b) Ist die Abbildung

$$\mathbb{R}P^1 \longrightarrow S^1$$

$$[z] \longmapsto z^2$$

ein Diffeomorphismus?

Aufgabe 3.

Wir betrachten die Oberfläche W eines Einheitswürfels

$$W := \{(x_1, \dots, x_n) \in \mathbb{R}^n : \max_i (|x_i|) = 1\}.$$

- (a) Zeigen Sie, dass W keine glatte Untermannigfaltigkeit von \mathbb{R}^n ist.
- (b) Zeigen Sie, dass W eine topologische Mannigfaltigkeit ist und definieren Sie eine differenzierbare Struktur auf W.

Aufgabe 4.

- (a) Beschreiben Sie explizit eine Morse-Funktion von $\mathbb{R}P^2$, die eine Henkelzerlegung mit genau einem 0-Henkel, einem 1-Henkel und einem 2-Henkel auf $\mathbb{R}P^2$ induziert.
- (b) Skizzieren Sie eine Einbettung der Fläche Σ_2 von Geschlecht 2 in den \mathbb{R}^3 , so dass die Höhenfunktion eine Morse-Funktion auf Σ_2 ist, die eine Henkelzerlegung mit genau einem 0-Henkel und genau einem 2-Henkel auf Σ_2 induziert.
- (c) Die 2-Sphäre besitzt eine Henkelzerlegung mit einer beliebigen geraden Anzahl von Henkeln, aber keine Henkelzerlegung mit einer ungeraden Anzahl von Henkeln.

Bonusaufgabe.

Zeigen Sie, dass jede zusammenhängende, orientierbare und geschlossene Fläche F homöomorph ist zu genau einer Fläche Σ_g vom Geschlecht g.

Abgabe: Montag, 16.4.18 vor der Vorlesung.