
1 Embeddings of manifolds

Last time we’ve seen 1 that the every compact manifold Mn can be embedded in RN for N sufficiently large.
From now on all manifolds assumed to be topological. We are going to prove that N must be bigger than 2n+1
for compact manifolds and then extend this result to non-compact case. One common example is the Klein
bottle which one becomes by attaching ends of cylinder, reversing its orientations. Another example of surface
that one becomes in this way, but keeping the orientations is a torus. Such a surface can be easily constructed
in R4 but cannot be embedded in R3, actually it can only be immersed in R3 with self-intersections. This
can be proved for example using cohomology theory, the detailed proof can be found in [1] corollary 3.46.

Figure 1: Klein bottle immersed in R3.2

2 Tangent bundle

To be able to prove the theorem for the compact case we need to introduce the notion of the tangent bundle
of a manifold. For manifold Mn we define a tangent bundle as the set TMn =

⋃
x∈U TxM

n. On this set
one can define a topological space structure as follows. Let (U,ϕ) be the local coordinate system on Mn.
Associate to tangent vector in a point x ∈ Mn the tuple (ϕ(x), v, where v = (v1, . . . , vn) - coordinates of
this vector. So we have a proper map: TMn =

⋃
x∈U TxM

n → ϕ(U) × Rn ⊂ R2n. Sets TU cover TMn.
Declaring all maps Tϕ to be homomorphisms, we endow TMn with the structure of topological space. The
charts (TU, Tϕ) determine the structure of a manifold on that space.

1See the talk of Elif Selcen Ündar, https://www.mathematik.hu-berlin.de/~kegemarc/WS1819SeminarDiffTopo.html
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Figure 2: Fundamental polygon of a) - torus and b) - Klein bottle

3 Compact case

Theorem: Every k-dim. compact manifold Mk can be embedded in R2k+1.
Proof : Suppose we have an embedding f : Mk → R

M for M ≤ 2k + 1. We will show that we can produce
an embedding in RM−1. Let us introduce space Ha := {b ∈ RM : b ⊥ a}, consisting of vectors orthogonal to
a, where a is a unit vector in Rn. Actually Ha is TaS

M−1. Let π be the the projection of RM to H. Define
two maps:

h : M ×M ×R→ R
M by h(x, y, t)→ t[f(x)− f(y)]

g : TxM → R
M by g(x, v)→ dfx(v)

First note, that if f is injective immersion, Sard’s theorem implies that we can choose a point, say a in RM s.t.
it’s belong to neither image of g and h.
Claim: π ◦ f is injective for our choice of a .
Proof:Choose two another distinct points x and y as some scalar t, for which f(x) − f(y) = ta. Since
f is injective, t must be not equal to zero. But then h(x, y, 1t ) = a which is a contradiction with our choice of a.

Claim: π ◦ f is an immersion for our choice of a .
Proof:Let v be a nonzero vector in TxM s.t. d(π ◦ f)x(v) = 0. Because π is linear, apllying the chain rule
we become d(π ◦ f)x = π ◦ dfx. Thus π ◦ dfx = 0, so dfx(v) = ta. We already know that f is an immersion,
hence t 6= 0, thus g(x, 1t ) = a, again a contradiction with choice of a, so the composition as an embedding.
For compact manifolds injective immersions are embeddings, so the theorem is proved.

�

4 Partitions of unity

Before moving to non-compact manifolds we have to prove a corollary with aim of this theorem:
Theorem: For any subset X of Rn and open covering of X {Uα} there exist a sequence of smooth
functions {φi} on X, called a a partition of unity with the following properties:

(i) 0 ≤ φi(x) ≤ 1 for all x ∈ X and all i.

(ii) Each x ∈ X has a neighborhood on which all but finitely many functions φi are identical to zero.

(iii) Each function φi is identically zero except for some closed set contained in one of the Uα.



(iv) For each x ∈ X Σiφi(x) = 1.

Proof: Each set Uα in covering can be written as M ∩Wα for some open set Wα in Rn. Then W is ∪αWα,
and let {Kj} be any nested sequence of compact sets s.t. the union of all K is W and Kj ⊂ Int(Kj+1). For
instance let Kj = {z ∈W : |z| < j}. The collection of open balls in Rn whose closures belongs to at least
one Wα forms an open cover of W . For each such ball V we select a smooth function η on Rn, that takes one
on that ball and zero outside a cIosed set contained in one of the Wα. We build a sequence of that functions
as follows. For each j ≥ 3 the compact set Kj − Int(Kj−1) is contained in the open set W − (Kj−2). The
collection of all open balls that their closures belongs to W − (Kj−2) and some Wα forms an open cover of
Kj − Int(Kj−1). Choose a finite subcover and then add for our sequence dηi} one function for each ball.
Since we taked finitely subcover, for each j only finitely many functions ηi fail to vanish on Kj . The sum∑inf

j=1 ηj is finite in a neighborhood of every point of W and at least one term is nonzero at any point W .
Therefore ηi∑inf

j=1 ηj
is a well-defined smooth function. Thus for every X we can define φi as a restriction of

such function to X.

�

Corrolary:On any manifold M exist a proper map ρ : M → R.
Proof: Let {Uα} be the collection of open subsets of M with compact closure, and let {φi} be a sub-
ordinate partition of unity. Then ρ =

∑∞
i=1 iφi is well-defined smooth function. Now observe if ρ(x) ≤ j,

then one of first j functions must be nonzero at x. Then:

ρ−1([−j, j]) ⊂
j⋃
i=1

{x : φi(x) 6= 0}

�

5 Non-compact case

Theorem: Every smooth k-dimensional manifold Mk can be embedded in R2k+1. Proof: Define a func-
tion f : M → R

2k+1 by x → x
|x|2+1

, note that |f(x)| < 1 for all x. Let ρ : M → R
2k+1 be a proper

function. Define F : M → R
2k+1 by x→ (f(x), ρ(x)). This is an injective immersion because f is. Now de-

fine a space H as in previous proof: H := {b ∈ RM : b ⊥ a} and project R2k+2 to H by π : R2k+2 → H.
Claim:The composition π ◦ F is proper.
The composition is an injective immersion for a.e. a ∈ S2k+1, so we may choose an a that is neither
of the sphere’s two points. Given number c we assume that there exist a number d s.t. the set of points
x ∈M where |π ◦ f(x)| ≤ c is contained in the set |ρ(x)| ≤ d. Since ρ is proper the last set is compact. If
our assumption is true, then preimage of every closed ball in H under π ◦ F is a compact subset of M , that
is implies that π ◦ F is proper. If the assumption is false then there exist a sequence {xi} in M for which
|π ◦ F (xi)| < c but ρ(xi)→∞. Consider now the vector:

wi =
1

ρ(xi)
[F (xi)− π ◦ F (xi)]

This is a vector that takes off the projection of F (xi) onto H, so its projective component on H is zero, and
so it is a multiple of a. As i→ inf:

F (xi)

ρ(xi
→ (0, . . . , 0, 1)

because |f(xi) < 1| for all i. The norm of quotient∥∥∥∥π ◦ F ((xi)

ρ(xi)

∥∥∥∥ ≤ c

ρ(xi)



so it’s converges to zero. Thus wi → (0, . . . , 0, 1). But each wi is a multiple of a, therefore so is the limit, so
a is on either of the poles, a contradiction.
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