
Mathematisch-Naturwissenschaftliche Fakultät

Institut für Mathematik

Differentialtopology

Sard’s Theorem

Tillmann Cebulla

Februray 21, 2019

Dozent: Marc Kegel



1 SARD’S THEOREM

The whole essay is based on Milnors ”Topology from the Differentiable Viewpoint” and
Guillemins and Pollacks ”Differential Topology”.

1 Sard’s Theorem

1.1 Sard’s Theorem

Let M ,N be smooth manifolds and f : U → N be a smooth map, with U ⊆M open and
let C ⊆M be the set of critical points.

Then f(C) ⊂ N has measure zero (the set of critical values).

(proof will follow at the end)

While critical points and values are probably clear (x ∈ U is critical, if and only if dfx
isn’t surjective), the measure of a set will be explained in the next subsection.
To take it easy, we will just look at sets with a measure zero. That are sets which can
be covered with measurable sets (for example rectangles), whose total measure can get
infinitely small.
Therefore we will use the following definition:

1.2 Definitions

Let I := [a1, b1)× ...× [an, bn) ⊂ Rn be a rectangle.

Then we define vol(I) := (b1 − a1) · ... · (bn − an) =
∏n
i=1(bi − ai) as the volume of I

And then for a subset A ⊂ Rn we say:

A has measure zero, if and only if, for all ε > 0 there exists countable rectangles Ik,
so that

⋃
k∈N Ik ⊃ A and [

∑∞
k=1 vol(Ik)] < ε

There are several equivalent definitions of a set with measure zero, but we will just need
this one.

(We don’t need to look at the measurability, because with our definition, the outer measure
is zero and therefore the set is measurable with the measure zero.)

1.3 Examples

i). All subsets of a set with measure zero has measure zero (obviously).

ii). All countable unions of sets with measure zero has measure zero, because we can
w.l.o.g. look at sets Ak and the countable rectangles I(k,l), so that⋃
l∈N I(k,l) ⊃ Ak and [

∑∞
l=1 vol(I(k,l)] < εk with k ∈ N.

Now choose εk := ε
2k

and [
∑∞

l,k=1 vol(I(k,l))] <
∑∞

k=1
ε
2k

= ε.

Now we have to generalize our definition for manifolds:
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1.4 Definition 2 EXAMPLES OF SARD’S THEOREM

1.4 Definition

Let M be a m-dimensional manifold and A be a subset of M

Then we say A has measure zero in M, if and only if for all parametrizations (Uk, ϕk)
the sets ϕk(Uk ∩A)−1 ⊆ Rm has measure zero.

This is well-defined, because we have at most countable parametrizations and a count-
able union of sets with measure zero has measure zero too [like we proofed in 1.3ii) ].

1.5 Remark

With Sard’s Theorem we get the often used lemma:

The set of regular values of a smooth map f : M → N (N\f(C)) is dense in N,

which we used to proof the Brouwer fixed point Theorem and which is fundamental for
the definition of the degree of a map (we needed for the definitioin at least one regular
value in every open subset).

2 Examples of Sard’s Theorem

2.1

Let f : M → N , f(x) = c.

f is obviously smooth and has only one critical value c ∈ N , while every point x ∈ M is
a critical point.
The set of critical values {f(x) | x ∈M} = {c} has obviously measure zero.

2.2

Now we look at the function: f : R→ R,

f(x) =

{
x · sin(1/x) x 6= 0

0 x = 0

The function is smooth for all x ∈ R\{0} and the critical values are the extrema of the
function. Near x = 0 are infinite maxima and minima, so there are infinite critical values.
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Figure 1: Function f

2.3

The Theorem of Sard says, that the set of regular values of a function f : M → N is dense
in N . But we showed with the last example, that there can be infinite critical values too.
Do there exists a function f : R→ R, so that the critical values are dense too? The next
example is such a function:

Let i ∈ Z, 1
2 > ε > 0 and fi : [i− 1

2 + ε, i+ 1
2 − ε]→ R be a map with:

fi(x) =

{
qi · ci · exp( 1

(x−i)2−( 1
2
−ε)2 ) x ∈ (i− 1

2 + ε, i+ 1
2 − ε)

0 x = i± (12 − ε)

and ci := exp( 1
( 1
2
−ε)2 ).

Then fi is smooth for all x ∈ (i− 1
2 + ε, i+ 1

2 − ε) (sometimes fi is named mollifier).

f ′i : (i− 1
2 + ε, i+ 1

2 − ε)→ R, f ′i(x) = −2(x−i)
((x−i)2−( 1

2
−ε)2)2 · fi is the derivative of fi, which is

zero if and only if x = 0
So, x = 0 is a critical point and fi(x) = fi(0) = qi is a critical value.

To create our function f we use a bijection π : Z → Q to create maps fi (i ∈ Z) so
that for every rational number q there exists a map fi with q as a critical value. Then we
define f :

f(x) =

{
fi(x) x ∈ (i− 1

2 + ε, i+ 1
2 − ε)

0 otherwise

According to this definition, the critical values of f are the rational numbers, which are
dense in R.
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3 PROOF OF SARD’S THEOREM
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Figure 2: Function f0 with q0 = 1 and ε = 0, 08

3 Proof of Sard’s Theorem

We will use the last section to proof Sard’s Theorem. At first we need two important
theorems:

3.1 Fubini Theorem (for measure zero)

Let k < n, c ∈ Rk, Vc := Rn−k × {c} and A be a closed subset of Rn such that A ∩ Vc has
measure zero in Vc for all c ∈ Rk. Then A has measure zero in Rn.

You can proof this theorem very easy with the real Fubini Theorem.

3.2 Second Axiom of Countability

Let τ be the set of all open sets of a manifold M . For all U ∈ τ , there exists countabile
sets Uk ∈ τ , k ∈ N, so that U =

⋃
k∈N Uk

This is an axiom for abstract manifolds. In Rn you can proof it easily.

3.3 Proof of Sard’s Theorem

While looking at a map f : M → N (with dim(M) = m > dim(N) = n) and the critical
points C of f , we can restict f on sets Ui so that Ui and f(Ui) is diffeomorphic to sets
U ′i ⊂ Rm , V ′i ⊂ Rn and

⋃
i∈N Vi is covering f(C). The sets Vi are countable so:

f(C) has measure zero if and only if for all i ∈ N f(C) ∩ Vi has measure zero.
Now, to proof the Theorem of Sard we can look at maps gi:

gi : ϕ−1i (Ui)→ Rn, gi(x) := ϕ−1i ◦ f ◦ ψi

With the parametrizations (Ui, ϕi) of M and (Vi, ψi) of N .
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And the set of crical values of f has measure zero if and only if the set of critical values
of gi has measure zero for all i ∈ N.

Now we proof, that the critical values of a map g : U → Rn (with U ⊂ Rm) has measure
zero. This is equivalent to the Theorem of Sard (for manifolds). The proof will be by
induction on m The theorem is true for m = 0, so we will assume that it is ture for m− 1
and proof it for m.

Let C be the set of critical points. We define Ck as the set of all x ∈ U such that
all derivatives of f of order 6 k vanishes at x
First we will proof:

f(C\C1) has measure zero.

Around each x ∈ (C\C1) we will find an open set V such that V ∩ (C\C1) has measure
zero. Since C\C1 is covered by countable ones, this will proof, that f(C\C1) has measure
zero. Since x /∈ C1, we say w.l.o.g. ∂1f1(x) 6= 0.

Now we can define h : U → Rm by, h(x) := (f1(x), x2, ..., xm)

dhx is nonsingular, so there exists a neighborhood V of x which is diffeomorphic onto
an open set V ′. The composition g := f ◦ h−1 has the same critical values as f with the
restriction on V .
Now we have constructed g so that g(t, x2, ..., xm) = (t, y2, ..., yn). Therefore for each t ∈ R
we can define the function gt : ({t} × Rm−1) ∩ V ′ → {t} × Rn−1, with gt(x) = g(t, x). We
can describe the derivative of g as:

dg(t,x) = ( ∂gi∂xj
) =

(
1 0
∗ (dgt)x

)
We see: det((dg)(t,x)) = det((dgt)x), so (t, x) is a critical point of g (and of f), if and

only if, x is a critical point of gt. By induction, Sard’s Theorem is true for gt and the set of
critical values has measure zero. Consequently, by Fubini’s theorem (f(C\C1) is closed)
it has measure zero for g too.

f(Ck\Ck+1) has measure zero.

This part is similar, but easier as the last one. For each x ∈ Ck\Ck+1 there is some
k + 1 derivative of f which is not zero. So we find a kth derivative of f (which we will
name ρ), that vanishes on Ck, but w.l.o.g. ∂1ρ1 doesn’t vanish. We define h : V → V ′

, h(x) = (ρ(x), x2, ..., xm) = (0, x2, ..., xm) (for x ∈ Ck\Ck+1) which is a diffeomorphism.
Let g := f ◦h−1. Then g has the same critical points as f (in the neighborhood), which are
in the hyperplane {0}×Rm−1(because of the definition of Ck and h). Let g′ : {0}×Rm−1
be the restriction of g With the same argument we know by induction, the set of critical
values of g′ has measure zero and therefore g and f . Because there are countable open
sets, which are covering Ck\Ck+1, we are done.

And now the last part:
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For k > m
n − 1, f(Ck) has measure zero

Combined with the two other parts, this will proof the Theorem of Sard.

Let S be a cube with edge s. Since Ck can be covered by countably many such cubes, we
have to show, that f(Ck ∩ S) has measure zero. From Taylor’s theorem, the compactness
of S and the definition of Ck we know that:

f(x+ h) = f(x) +R(x, h), where |R(x, h)| < a|h|k+1, for x ∈ Ck ∩ S and x+ h ∈ S

Now we can split S in in rm cubes with edges s/r. Let S1 be the new cube that contains
a point x ∈ Ck. Then any point in S1 can be written as x+ h with h <

√
n · s/r

Let b := 2a(
√
n · s)k+1 (constant). We see with the Taylor Theorem, that f(S1) is in

the cube with the edge b/rk+1 centered about f(x) We can do that for every x ∈ Ck).

f(Ck∩S) is contained in the union of at most rm cubes, so the total volume of the cubes is:

vol ≤ rm · ( b
rk+1 )n = bn · rm−(k+1)n

With r big enough the volume tends to 0, so f(Ck) hast measure zero. That completes
the proof.
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