# Algebraic Geometry I (SoSe 2024)

## Lecturer:

Prof. Dr. Bruno Klingler

## Time and place:

Tue 9am-11am

Tue 11am-1pm (Exercises, Ania Otwinowska)

Thu 9am-11am

The class will start on April 16th.

## Moodle:

The Moodle page for the course is here , you can register there.
The Moodle key is AlgGeo.
## Content:

The course will be an introduction to complex algebraic and analytic
geometry. Material might include:
affine and projective schemes, coherent sheaves, subschemes; complex
and Kaehler manifolds, Hodge theory, GAGA; De Rham cohomology, Serre
duality, Chern classes; deformation theory and flatness. I will not
follow a particular book.

The following references are relevant:

- P. Griffiths, J. Harris: Principles of algebraic geometry. Wiley
- J.De Jong and collaborators: The Stacks project
- D. Eisenbud and J. Harris, The Geometry of Schemes, GTM 197,
Springer.
- U. Goertz, T. Wedhorn: Algebraic Geometry I. Vieweg.
- A. Grothendieck, J. Dieudonné: Éléments de géométrie algébrique.
- R. Hartshorne: Algebraic Geometry GTM 52. Springer.
- D. Mumford: The Red book of varieties and schemes. Springer LN 1358.
- R. Vakil: Foundations of algebraic geometry. Online lectures
- C. Voisin: Hodge theory and complex algebraic geometry I,
II. Cambridge Univ.Press