Universal covers of complex algebraic varieties

Y. Brunebarbe with B. Bakker and J. Tsimerman

Cetraro-70th birthday of Thomas Peternell July 2, 2024

Y. Brunebarbe

Universal covers of complex algebraic varieties 1/16

Universal covers of complex algebraic varieties

Y. Brunebarbe

Universal covers of complex algebraic varieties 2/16

ヨトィヨト

What complex manifolds can be obtained as the universal cover \tilde{X} of a smooth complex algebraic variety X?

What complex manifolds can be obtained as the universal cover \tilde{X} of a smooth complex algebraic variety X?

• In dimension 1: \mathbb{P}^1 , \mathbb{C} , \mathbb{D} .

What complex manifolds can be obtained as the universal cover \tilde{X} of a smooth complex algebraic variety X?

- In dimension 1: \mathbb{P}^1 , \mathbb{C} , \mathbb{D} .
- In higher dimension: rather mysterious!

Universal covers of complex algebraic varieties

Y. Brunebarbe

Universal covers of complex algebraic varieties 3 / 16

ヨトィヨト

Let X be a smooth algebraic variety.

Let X be a smooth algebraic variety. Assume that $\pi_1(X)$ is infinite.

- E - - E -

Let X be a smooth algebraic variety. Assume that $\pi_1(X)$ is infinite. Does there exist a non-constant holomorphic function on \tilde{X} ?

Let X be a smooth algebraic variety. Assume that $\pi_1(X)$ is infinite. Does there exist a non-constant holomorphic function on \tilde{X} ?

Question (Shafarevich)

Let X be a smooth algebraic variety. Assume that $\pi_1(X)$ is infinite. Does there exist a non-constant holomorphic function on \tilde{X} ?

Question (Shafarevich)

Let X be a smooth projective variety.

Let X be a smooth algebraic variety. Assume that $\pi_1(X)$ is infinite. Does there exist a non-constant holomorphic function on \tilde{X} ?

Question (Shafarevich)

Let X be a smooth projective variety. Is \tilde{X} holomorphically convex?

Let X be a smooth algebraic variety. Assume that $\pi_1(X)$ is infinite. Does there exist a non-constant holomorphic function on \tilde{X} ?

Question (Shafarevich)

Let X be a smooth projective variety. Is \tilde{X} holomorphically convex? i.e., does there exist a proper holomorphic map $\tilde{X} \to \tilde{Y}$ to a Stein analytic space \tilde{Y} ?

Y. Brunebarbe

Universal covers of complex algebraic varieties 4 / 16

(E) < (E) </p>

Works of Campana, Kollár, Napier, Gurjar, Shastri, Zuo, Mok, Katzarkov, Jost, Lasell, Ramachandran, etc.

Theorem (Eyssidieux-Katzarkov-Pantev-Ramachandran)

X smooth projective variety

Works of Campana, Kollár, Napier, Gurjar, Shastri, Zuo, Mok, Katzarkov, Jost, Lasell, Ramachandran, etc.

Theorem (Eyssidieux-Katzarkov-Pantev-Ramachandran)

X smooth projective variety, such that $\pi_1(X) \subset GL(n, \mathbb{C})$ for some $n \ge 1$.

Works of Campana, Kollár, Napier, Gurjar, Shastri, Zuo, Mok, Katzarkov, Jost, Lasell, Ramachandran, etc.

Theorem (Eyssidieux-Katzarkov-Pantev-Ramachandran)

X smooth projective variety, such that $\pi_1(X) \subset GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

Works of Campana, Kollár, Napier, Gurjar, Shastri, Zuo, Mok, Katzarkov, Jost, Lasell, Ramachandran, etc.

Theorem (Eyssidieux-Katzarkov-Pantev-Ramachandran)

X smooth projective variety, such that $\pi_1(X) \subset GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

Does this generalize to quasi-projective varieties?

Works of Campana, Kollár, Napier, Gurjar, Shastri, Zuo, Mok, Katzarkov, Jost, Lasell, Ramachandran, etc.

Theorem (Eyssidieux-Katzarkov-Pantev-Ramachandran)

X smooth projective variety, such that $\pi_1(X) \subset GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

Does this generalize to quasi-projective varieties?

Remark

 $\mathbb{C}^2 \setminus \{0\}$ is simply-connected but not holomorphically convex.

Works of Campana, Kollár, Napier, Gurjar, Shastri, Zuo, Mok, Katzarkov, Jost, Lasell, Ramachandran, etc.

Theorem (Eyssidieux-Katzarkov-Pantev-Ramachandran)

X smooth projective variety, such that $\pi_1(X) \subset GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

Does this generalize to quasi-projective varieties?

Remark

 $\mathbb{C}^2 \setminus \{0\}$ is simply-connected but not holomorphically convex.

Theorem A (BBT)

X normal algebraic variety

・ロット 御マ キョマ キョン

э

Works of Campana, Kollár, Napier, Gurjar, Shastri, Zuo, Mok, Katzarkov, Jost, Lasell, Ramachandran, etc.

Theorem (Eyssidieux-Katzarkov-Pantev-Ramachandran)

X smooth projective variety, such that $\pi_1(X) \subset GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

Does this generalize to quasi-projective varieties?

Remark

 $\mathbb{C}^2 \setminus \{0\}$ is simply-connected but not holomorphically convex.

Theorem A (BBT)

X normal algebraic variety, such that $\pi_1(X) \subset GL(n,\mathbb{C})$ for some $n \ge 1$.

・ロット 空下 ・ 日マ ・ 日マ

э

Works of Campana, Kollár, Napier, Gurjar, Shastri, Zuo, Mok, Katzarkov, Jost, Lasell, Ramachandran, etc.

Theorem (Eyssidieux-Katzarkov-Pantev-Ramachandran)

X smooth projective variety, such that $\pi_1(X) \subset GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

Does this generalize to quasi-projective varieties?

Remark

 $\mathbb{C}^2 \setminus \{0\}$ is simply-connected but not holomorphically convex.

Theorem A (BBT)

X normal algebraic variety, such that $\pi_1(X) \subset GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is dense Zariski-open in a holomorphically convex space.

・ロット 御 とう ほう く ほ とう

3

Y. Brunebarbe

X normal algebraic variety

Universal covers of complex algebraic varieties 5 / 16

X normal algebraic variety, such that there exists a **nonextendable** faithfull representation $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ for some $n \ge 1$.

X normal algebraic variety, such that there exists a **nonextendable** faithfull representation $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

X normal algebraic variety, such that there exists a **nonextendable** faithfull representation $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

The nonextendability hypothesis says that ρ does not extend to any partial compactification $X \subsetneq X'$

X normal algebraic variety, such that there exists a **nonextendable** faithfull representation $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

The nonextendability hypothesis says that ρ does not extend to any partial compactification $X \subsetneq X'$ by a connected normal Deligne–Mumford stack.

X normal algebraic variety, such that there exists a **nonextendable** faithfull representation $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

The nonextendability hypothesis says that ρ does not extend to any partial compactification $X \subsetneq X'$ by a connected normal Deligne–Mumford stack.

Fact: Every representation $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ with torsion-free image is the restriction of a nonextendable representation.

X normal algebraic variety, such that there exists a **nonextendable** faithfull representation $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ for some $n \ge 1$. Then \tilde{X} is holomorphically convex.

The nonextendability hypothesis says that ρ does not extend to any partial compactification $X \subsetneq X'$ by a connected normal Deligne–Mumford stack.

Fact: Every representation $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ with torsion-free image is the restriction of a nonextendable representation.

More generally, we give a sufficient condition on $\rho \colon \pi_1(X) \to GL(n, \mathbb{C})$ implying that $\tilde{X}^{\ker \rho}$ is holomorphically convex.

◆白 > ◆聞 > ◆思 > ◆思 > … 思

Y. Brunebarbe

Universal covers of complex algebraic varieties 6 / 16

▲目と▲聞と▲通と▲通と

Assume that $\rho: \pi_1(X) \to GL(n, \mathbb{Z})$ is the monodromy of a pure polarized variation of \mathbb{Z} -Hodge structures (\mathbb{Z} -VHS)

K 4 B K 4 B K

э

Assume that $\rho: \pi_1(X) \to GL(n, \mathbb{Z})$ is the monodromy of a pure polarized variation of \mathbb{Z} -Hodge structures (\mathbb{Z} -VHS), with $Im(\rho)$ torsion-free.

э

イヨト イヨト

Assume that $\rho: \pi_1(X) \to GL(n, \mathbb{Z})$ is the monodromy of a pure polarized variation of \mathbb{Z} -Hodge structures (\mathbb{Z} -VHS), with $Im(\rho)$ torsion-free. Consider the associated period map:

K 4 B K 4 B K

э

Assume that $\rho: \pi_1(X) \to GL(n, \mathbb{Z})$ is the monodromy of a pure polarized variation of \mathbb{Z} -Hodge structures (\mathbb{Z} -VHS), with $Im(\rho)$ torsion-free. Consider the associated period map:

Proposition(Griffiths): ρ nonextendable \iff p proper $\iff \tilde{p}$ proper.

(日本) (日本) (日本) 日

Universal covers of complex algebraic varieties 7/16

▲御 と ▲ 思 と ▲ 思 と … 思

Claim: \tilde{Y} is Stein (hence $\tilde{X}^{\ker \rho}$ is holomorphically convex).

K 4 E K 4 E K

3

Claim: \tilde{Y} is Stein (hence $\tilde{X}^{\ker \rho}$ is holomorphically convex). **Problem**: In general, \mathcal{D} has no non-constant holomorphic function.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Claim: \tilde{Y} is Stein (hence $\tilde{X}^{\ker \rho}$ is holomorphically convex). **Problem**: In general, \mathcal{D} has no non-constant holomorphic function.

Theorem (Grauert, Narasimhan)

A complex space is Stein \iff it admits a strictly psh exhaustion function.

くぼう くほう くほう しゅ

Claim: \tilde{Y} is Stein (hence $\tilde{X}^{\ker \rho}$ is holomorphically convex). **Problem**: In general, \mathcal{D} has no non-constant holomorphic function.

Theorem (Grauert, Narasimhan)

A complex space is Stein \iff it admits a strictly psh exhaustion function.

Theorem (Griffiths-Schmid)

There exists $\mathcal{D} \to \mathbb{R}_{\geq 0}$ which is strictly psh in the horizontal directions.

・ロット 御 とう ほう く ほうしょ

Y. Brunebarbe

Universal covers of complex algebraic varieties 8 / 16

A B K A B K

General strategy to prove Theorem A

X normal algebraic variety,

ヨトィヨト

X normal algebraic variety, $\rho \colon \pi_1(X) \to \mathsf{GL}(n,\mathbb{C})$ nonextendable.

A B K A B K

X normal algebraic variety, $\rho \colon \pi_1(X) \to \mathsf{GL}(n,\mathbb{C})$ nonextendable.

Goal: Construct $ilde{X}^{\ker
ho} o ilde{Y}$ proper holomorphic map, with $ilde{Y}$ Stein.

X normal algebraic variety, $ho \colon \pi_1(X) o \mathsf{GL}(n,\mathbb{C})$ nonextendable.

Goal: Construct $ilde{X}^{\ker
ho} o ilde{Y}$ proper holomorphic map, with $ilde{Y}$ Stein.

Remark: If such a map exists, then one may assume in addition that it is surjective with connected fibres, and then it is unique:

X normal algebraic variety, $\rho \colon \pi_1(X) \to \mathsf{GL}(n,\mathbb{C})$ nonextendable.

Goal: Construct $ilde{X}^{\ker
ho} o ilde{Y}$ proper holomorphic map, with $ilde{Y}$ Stein.

Remark: If such a map exists, then one may assume in addition that it is surjective with connected fibres, and then it is unique: its fibers are the maximal connected compact analytic subspaces of $\tilde{X}^{\ker\rho}$.

X normal algebraic variety, $ho \colon \pi_1(X) \to \mathsf{GL}(n,\mathbb{C})$ nonextendable.

Goal: Construct $ilde{X}^{\ker
ho} o ilde{Y}$ proper holomorphic map, with $ilde{Y}$ Stein.

Remark: If such a map exists, then one may assume in addition that it is surjective with connected fibres, and then it is unique: its fibers are the maximal connected compact analytic subspaces of $\tilde{X}^{\ker\rho}$.

2 main steps:

X normal algebraic variety, $ho \colon \pi_1(X) \to \mathsf{GL}(n,\mathbb{C})$ nonextendable.

Goal: Construct $ilde{X}^{\ker
ho} o ilde{Y}$ proper holomorphic map, with $ilde{Y}$ Stein.

Remark: If such a map exists, then one may assume in addition that it is surjective with connected fibres, and then it is unique: its fibers are the maximal connected compact analytic subspaces of $\tilde{X}^{\ker\rho}$.

2 main steps:

- Construct the Cartan-Remmert reduction $\tilde{X}^{\ker \rho} \to \tilde{Y}$ a priori (\iff the Shafarevich morphism).
- **2** Construct a strictly psh exhaustion function on \tilde{Y} .

Y. Brunebarbe

Universal covers of complex algebraic varieties 9 / 16

(E)

The Shafarevich morphism

Theorem B (BBT)

X normal algebraic variety

Y. Brunebarbe

Universal covers of complex algebraic varieties 9 / 16

X normal algebraic variety, $\rho \colon \pi_1(X) \to \operatorname{GL}(n,\mathbb{C})$ nonextendable.

X normal algebraic variety, $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ nonextendable. Then there exists a unique fibration $f: X \to Y$ such that, for every connected algebraic variety Z equipped with an algebraic morphism $g: Z \to X$,

X normal algebraic variety, $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ nonextendable. Then there exists a unique fibration $f: X \to Y$ such that, for every connected algebraic variety Z equipped with an algebraic morphism $g: Z \to X$,

$$f \circ g(Z) = \{pt\} \iff g^{-1}\rho \colon \pi_1(Z) \to \mathsf{GL}(n,\mathbb{C}) \text{ has finite image.}$$

X normal algebraic variety, $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ nonextendable. Then there exists a unique fibration $f: X \to Y$ such that, for every connected algebraic variety Z equipped with an algebraic morphism $g: Z \to X$,

$$f \circ g(Z) = \{pt\} \iff g^{-1}\rho \colon \pi_1(Z) \to \mathsf{GL}(n,\mathbb{C}) \text{ has finite image.}$$

If moreover ρ has torsion-free image, then ρ factorizes through f.

X normal algebraic variety, $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ nonextendable. Then there exists a unique fibration $f: X \to Y$ such that, for every connected algebraic variety Z equipped with an algebraic morphism $g: Z \to X$,

$$f \circ g(Z) = \{pt\} \iff g^{-1}
ho \colon \pi_1(Z) o \mathsf{GL}(n,\mathbb{C}) ext{ has finite image.}$$

If moreover ρ has torsion-free image, then ρ factorizes through f.

Remarks:

X normal algebraic variety, $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ nonextendable. Then there exists a unique fibration $f: X \to Y$ such that, for every connected algebraic variety Z equipped with an algebraic morphism $g: Z \to X$,

$$f \circ g(Z) = \{pt\} \iff g^{-1}
ho \colon \pi_1(Z) o \mathsf{GL}(n,\mathbb{C})$$
 has finite image.

If moreover ρ has torsion-free image, then ρ factorizes through f.

Remarks:

• A birational version due to Campana and Kollár. Then works of Katzarkov, Zuo, Mok, Eyssidieux, etc., in the projective case.

X normal algebraic variety, $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ nonextendable. Then there exists a unique fibration $f: X \to Y$ such that, for every connected algebraic variety Z equipped with an algebraic morphism $g: Z \to X$,

$$f \circ g(Z) = \{pt\} \iff g^{-1}\rho \colon \pi_1(Z) \to \mathsf{GL}(n,\mathbb{C}) \text{ has finite image.}$$

If moreover ρ has torsion-free image, then ρ factorizes through f.

Remarks:

- A birational version due to Campana and Kollár. Then works of Katzarkov, Zuo, Mok, Eyssidieux, etc., in the projective case.
- When ρ is semisimple, f^{an} was constructed independently by Deng-Yamanoi and myself.

X normal algebraic variety, $\rho: \pi_1(X) \to GL(n, \mathbb{C})$ nonextendable. Then there exists a unique fibration $f: X \to Y$ such that, for every connected algebraic variety Z equipped with an algebraic morphism $g: Z \to X$,

$$f \circ g(Z) = \{pt\} \iff g^{-1}
ho \colon \pi_1(Z) o \mathsf{GL}(n,\mathbb{C})$$
 has finite image.

If moreover ρ has torsion-free image, then ρ factorizes through f.

Remarks:

- A birational version due to Campana and Kollár. Then works of Katzarkov, Zuo, Mok, Eyssidieux, etc., in the projective case.
- When ρ is semisimple, f^{an} was constructed independently by Deng-Yamanoi and myself.
- When ρ is the monodromy of a Z-VHS, f is the Stein factorization of the period map. It is algebraic by o-minimal GAGA (BBT) and definability of period maps (Bakker–Klingler–Tsimerman).

Y. Brunebarbe

When ρ has torsion-free image, there is a cartesian diagram

K 4 E K 4 E K

э

When ρ has torsion-free image, there is a cartesian diagram

Then: Theorem A $\iff \tilde{Y}^{\ker \rho}$ is Stein.

通 とう ゆう く ひょう

3

When ρ has torsion-free image, there is a cartesian diagram

Then: Theorem A $\iff \tilde{Y}^{\ker \rho}$ is Stein.

 \rightsquigarrow Reduction to the 'maximal case'.

通 とう ゆう く ひょう

3

Y. Brunebarbe

Universal covers of complex algebraic varieties 11 / 16

э

3 1 4 3 1

Let $\Sigma \subset \mathcal{M}_B(X, n)(\mathbb{C})$ be a collection of isomorphism classes of semisimple representations.

4 E M 4 E M

Let $\Sigma \subset \mathcal{M}_B(X, n)(\mathbb{C})$ be a collection of isomorphism classes of semisimple representations.

Every $g: Z \to X$ induces $g^{-1}: \mathcal{M}_B(X, n)(\mathbb{C}) \to \mathcal{M}_B(Z, n)(\mathbb{C})$.

• • = • • = •

Let $\Sigma \subset \mathcal{M}_B(X, n)(\mathbb{C})$ be a collection of isomorphism classes of semisimple representations.

Every $g: Z \to X$ induces $g^{-1}: \mathcal{M}_B(X, n)(\mathbb{C}) \to \mathcal{M}_B(Z, n)(\mathbb{C})$.

Key observation:

$$\Sigma^{\mathrm{Shaf}} := igcap_{\substack{g \colon Z o X \ g^{-1}(\Sigma) = \{\mathbb{I}_n\}}} g^{-1}(\mathbb{I}_n) \supset \Sigma$$

K 4 B K 4 B K

Let $\Sigma \subset \mathcal{M}_B(X, n)(\mathbb{C})$ be a collection of isomorphism classes of semisimple representations.

Every $g: Z \to X$ induces $g^{-1}: \mathcal{M}_B(X, n)(\mathbb{C}) \to \mathcal{M}_B(Z, n)(\mathbb{C})$.

Key observation:

$$\Sigma^{\mathrm{Shaf}} := igcap_{\substack{g \, : \, Z o X \ g^{-1}(\Sigma) = \{\mathbb{I}_n\}}} g^{-1}(\mathbb{I}_n) \supset \Sigma$$

Then Σ and $\Sigma^{\rm Shaf}$ have the same Shafarevich morphism.

Let $\Sigma \subset \mathcal{M}_B(X, n)(\mathbb{C})$ be a collection of isomorphism classes of semisimple representations.

Every $g: Z \to X$ induces $g^{-1}: \mathcal{M}_B(X, n)(\mathbb{C}) \to \mathcal{M}_B(Z, n)(\mathbb{C})$.

Key observation:

$$\Sigma^{\mathrm{Shaf}} := igcap_{\substack{g \,:\, Z o X \ g^{-1}(\Sigma) = \{\mathbb{I}_n\}}} g^{-1}(\mathbb{I}_n) \supset \Sigma$$

Then Σ and $\Sigma^{\rm Shaf}$ have the same Shafarevich morphism.

This is good: Σ is random, $\Sigma^{\rm Shaf}$ has structure.

Let $\Sigma \subset \mathcal{M}_B(X, n)(\mathbb{C})$ be a collection of isomorphism classes of semisimple representations.

Every $g: Z \to X$ induces $g^{-1}: \mathcal{M}_B(X, n)(\mathbb{C}) \to \mathcal{M}_B(Z, n)(\mathbb{C})$.

Key observation:

$$\Sigma^{\mathrm{Shaf}} := igcap_{\substack{g \, : \, Z o X \ g^{-1}(\Sigma) = \{\mathbb{I}_n\}}} g^{-1}(\mathbb{I}_n) \supset \Sigma$$

Then Σ and $\Sigma^{\rm Shaf}$ have the same Shafarevich morphism.

This is good: Σ is random, Σ^{Shaf} has structure.

In particular, it follows from non-abelian Hodge theory (Simpson, Mochizuki, etc.) that Σ^{Shaf} contains points underlying complex variations of Hodge structures.

Let $\Sigma \subset \mathcal{M}_B(X, n)(\mathbb{C})$ be a collection of isomorphism classes of semisimple representations.

Every $g: Z \to X$ induces $g^{-1}: \mathcal{M}_B(X, n)(\mathbb{C}) \to \mathcal{M}_B(Z, n)(\mathbb{C})$.

Key observation:

$$\Sigma^{\mathrm{Shaf}} := igcap_{\substack{g \, : \, Z o X \ g^{-1}(\Sigma) = \{\mathbb{I}_n\}}} g^{-1}(\mathbb{I}_n) \supset \Sigma$$

Then Σ and $\Sigma^{\rm Shaf}$ have the same Shafarevich morphism.

This is good: Σ is random, $\Sigma^{\rm Shaf}$ has structure.

In particular, it follows from non-abelian Hodge theory (Simpson, Mochizuki, etc.) that Σ^{Shaf} contains points underlying complex variations of Hodge structures. However, their period maps **do not** descend to X.

Y. Brunebarbe

Y. Brunebarbe

Universal covers of complex algebraic varieties 12 / 16

4 E M 4 E M

By work of Gromov–Schoen, Korevaar–Schoen, Katzarkov, Zuo, Jost, Eyssidieux, Brotbek, Daskalopoulos, Deng, Mese, etc., on (pluri-)harmonic maps towards Euclidean buildings, there is a non-archimedean reduction:

Theorem

X normal algebraic variety, $\Sigma \subset \mathcal{M}_B(X, n)(\overline{\mathbb{Q}}_p)$ collection of semisimple representations.

By work of Gromov–Schoen, Korevaar–Schoen, Katzarkov, Zuo, Jost, Eyssidieux, Brotbek, Daskalopoulos, Deng, Mese, etc., on (pluri-)harmonic maps towards Euclidean buildings, there is a non-archimedean reduction:

Theorem

X normal algebraic variety, $\Sigma \subset \mathcal{M}_B(X, n)(\overline{\mathbb{Q}}_p)$ collection of semisimple representations. Then there exists $f : X \to S$ such that, for every connected algebraic Z equipped with an algebraic morphism $g : Z \to X$,

By work of Gromov–Schoen, Korevaar–Schoen, Katzarkov, Zuo, Jost, Eyssidieux, Brotbek, Daskalopoulos, Deng, Mese, etc., on (pluri-)harmonic maps towards Euclidean buildings, there is a non-archimedean reduction:

Theorem

X normal algebraic variety, $\Sigma \subset \mathcal{M}_B(X, n)(\overline{\mathbb{Q}}_p)$ collection of semisimple representations. Then there exists $f : X \to S$ such that, for every connected algebraic Z equipped with an algebraic morphism $g : Z \to X$,

$$f \circ g(Z) = \{pt\} \iff \forall \rho \in \Sigma, g^{-1}\rho \colon \pi_1(Z) \to \mathsf{GL}(n, \bar{\mathbb{Q}}_p) \text{ is bounded.}$$
Y. Brunebarbe

Universal covers of complex algebraic varieties 13 / 16

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$\phi \colon \tilde{X}^{\Sigma^{\mathrm{Shaf}}} o \mathcal{D} imes S$$

$$\phi \colon \tilde{X}^{\Sigma^{\mathrm{Shaf}}} o \mathcal{D} imes S$$

Proposition

Assume that Σ is nonextendable (hence Σ^{Shaf} too). Then:

$$\phi \colon \tilde{X}^{\Sigma^{\mathrm{Shaf}}} o \mathcal{D} imes S$$

Proposition

Assume that Σ is nonextendable (hence Σ^{Shaf} too). Then:

• Every connected compact analytic subspace of $\tilde{X}^{\Sigma^{Shaf}}$ is contained in a fibre of ϕ .

$$\phi \colon \tilde{X}^{\Sigma^{\mathrm{Shaf}}} o \mathcal{D} imes S$$

Proposition

Assume that Σ is nonextendable (hence Σ^{Shaf} too). Then:

- Every connected compact analytic subspace of $\tilde{X}^{\Sigma^{Shaf}}$ is contained in a fibre of ϕ .
- The connected components of the fibres of ϕ are compact.

Therefore, ϕ has a Stein factorization

4 E N 4 E N

Therefore, ϕ has a Stein factorization

which descends to a proper analytic map

4 E M 4 E M

Therefore, ϕ has a Stein factorization

which descends to a proper analytic map

which is the Σ -Shafarevich morphism.

o-minimal GAGA

Y. Brunebarbe

Universal covers of complex algebraic varieties 15/16

ヘロン 人間 とくほ とくほとう

o-minimal GAGA: To algebraize $s: X \to Y$, enough to give it the structure of a morphism of definable analytic varieties.

4 E M 4 E M

o-minimal GAGA: To algebraize $s: X \to Y$, enough to give it the structure of a morphism of definable analytic varieties.

Local behavior of \mathbb{C} -VHS: The map $\tilde{X}^{\Sigma^{\text{Shaf}}} \to \mathcal{D} \times S$ is locally definable.

o-minimal GAGA: To algebraize $s: X \to Y$, enough to give it the structure of a morphism of definable analytic varieties.

Local behavior of \mathbb{C} -VHS: The map $\tilde{X}^{\Sigma^{\text{Shaf}}} \to \mathcal{D} \times S$ is locally definable.

Thus, the algebraization of s is a consequence of:

Theorem (BBT)

Let $f : X \to Z$ be a proper morphism of definable analytic **normal** spaces. Then the Stein factorization exists in the definable analytic category.

• • = • • = •

Thanks!

Universal covers of complex algebraic varieties 16 / 16

・ロン ・聞 と ・ 思 と ・ 思 と