Weak Specialness and Potential Density. Peternell/Cetraro 1/7/24

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg

Université de Lorraine

1er juillet 2024

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

• X_n , an *n*-dimensional connected complex projective manifold.

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

- X_n, an *n*-dimensional connected complex projective manifold.
- X is Weakly Special if no finite étale cover X' → X admits a fibration f : X' --→ Z with Z of general type (dimZ > 0).
 Example : RC, Abelian varieties, K3, Enriques, are WS.

- X_n , an *n*-dimensional connected complex projective manifold.
- X is Weakly Special if no finite étale cover X' → X admits a fibration f : X' --→ Z with Z of general type (dimZ > 0).
 Example : RC, Abelian varieties, K3, Enriques, are WS.

- X_n , an *n*-dimensional connected complex projective manifold.
- X is Weakly Special if no finite étale cover X' → X admits a fibration f : X' --→ Z with Z of general type (dimZ > 0).
 Example : RC, Abelian varieties, K3, Enriques, are WS.
- Chevalley-Weil+Lang imply : PD implies WS.

- X_n , an *n*-dimensional connected complex projective manifold.
- X is Weakly Special if no finite étale cover X' → X admits a fibration f : X' --→ Z with Z of general type (dimZ > 0).
 Example : RC, Abelian varieties, K3, Enriques, are WS.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.

- X_n , an *n*-dimensional connected complex projective manifold.
- X is Weakly Special if no finite étale cover X' → X admits a fibration f : X' --→ Z with Z of general type (dimZ > 0).
 Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over Q
 and if X(k) is

 Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k-rational points.

- X_n , an *n*-dimensional connected complex projective manifold.
- X is Weakly Special if no finite étale cover X' → X admits a fibration f : X' --→ Z with Z of general type (dimZ > 0).
 Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over Q
 and if X(k) is

 Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k-rational points.
- Aim : WS-conjecture conflicts with **OMC**, and so with abc.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- X_n , an *n*-dimensional connected complex projective manifold.
- X is Weakly Special if no finite étale cover X' → X admits a fibration f : X' --→ Z with Z of general type (dimZ > 0).
 Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over Q
 and if X(k) is

 Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k-rational points.
- Aim : WS-conjecture conflicts with **OMC**, and so with abc.
- Main Input : a threefold constructed by G. Lafon ([L 2007]).

- X_n , an *n*-dimensional connected complex projective manifold.
- X is Weakly Special if no finite étale cover X' → X admits a fibration f : X' --→ Z with Z of general type (dimZ > 0).
 Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over Q
 and if X(k) is

 Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k-rational points.
- Aim : WS-conjecture conflicts with **OMC**, and so with abc.
- Main Input : a threefold constructed by G. Lafon ([L 2007]).
- Lafon threefold : f : X → B = P₁ has smooth fibres Enriques surfaces, Δ^{*}_f = 0 ≠ Δ_f = (1 − ¹/₂).{0}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- X_n , an *n*-dimensional connected complex projective manifold.
- X is Weakly Special if no finite étale cover X' → X admits a fibration f : X' --→ Z with Z of general type (dimZ > 0).
 Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over Q
 and if X(k) is

 Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k-rational points.
- Aim : WS-conjecture conflicts with **OMC**, and so with abc.
- Main Input : a threefold constructed by G. Lafon ([L 2007]).
- Lafon threefold : f : X → B = P₁ has smooth fibres Enriques surfaces, Δ^{*}_f = 0 ≠ Δ_f = (1 − ¹/₂).{0}.
- Suitably base-changing we get $f_d : X_d \to B_d = \mathbb{P}_1$ with the orbifold base (B_d, Δ_{f_d}) of general type, X_d WS : OMC applies.

Lang equivalences translate WSC to WSC :
 X is WS ⇐⇒ X contains a Zariski-dense entire curve.

白をくぼとくほとう

э

- Lang equivalences translate WSC to WSC :
 X is WS ⇐→ X contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.

- Lang equivalences translate WSC to WSC :
 X is WS ⇐→ X contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map h: C → (B, Δ), Δ := Σ_i(1 1/m_i).{t_i}, B a curve, is an orbifold morphism if h^{*}(t_i) ≥ m_i.h⁻¹(t_i), ∀i.

- Lang equivalences translate WSC to WSC :
 X is WS ⇐⇒ X contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map h: C → (B, Δ), Δ := Σ_i(1 1/m_i).{t_i}, B a curve, is an orbifold morphism if h^{*}(t_i) ≥ m_i.h⁻¹(t_i), ∀i.
- If f: X → B is a fibration, and h: C → X an entire curve, then f ∘ h: C → (B, Δ_f) is an orbifold morphism.

.

- Lang equivalences translate WSC to WSC :
 X is WS ⇐⇒ X contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map h: C → (B, Δ), Δ := Σ_i(1 1/m_i).{t_i}, B a curve, is an orbifold morphism if h^{*}(t_i) ≥ m_i.h⁻¹(t_i), ∀i.
- If f : X → B is a fibration, and h : C → X an entire curve, then f ∘ h : C → (B, Δ_f) is an orbifold morphism.
- Proposition ([C-W]) : If (B, Δ) is of general type, all such orbifold morphisms are constant.

伺 と く き と く き と … き

- Lang equivalences translate WSC to WSC :
 X is WS ⇐→ X contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map h: C → (B, Δ), Δ := Σ_i(1 1/m_i).{t_i}, B a curve, is an orbifold morphism if h^{*}(t_i) ≥ m_i.h⁻¹(t_i), ∀i.
- If f: X → B is a fibration, and h: C → X an entire curve, then f ∘ h: C → (B, Δ_f) is an orbifold morphism.
- Proposition ([C-W]) : If (B, Δ) is of general type, all such orbifold morphisms are constant.
- Corollary : f : X → B is a fibration with (B, Δ_f) of general type. Each entire curve in X is then contained in a fibre of f, and no entire curve is Zariski dense in X.

▲御▶ ▲ 国▶ ▲ 国▶ - 国 - 釣Q(や

- Lang equivalences translate WSC to WSC :
 X is WS ⇐⇒ X contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map h: C → (B, Δ), Δ := Σ_i(1 1/m_i).{t_i}, B a curve, is an orbifold morphism if h^{*}(t_i) ≥ m_i.h⁻¹(t_i), ∀i.
- If f : X → B is a fibration, and h : C → X an entire curve, then f ∘ h : C → (B, Δ_f) is an orbifold morphism.
- Proposition ([C-W]) : If (B, Δ) is of general type, all such orbifold morphisms are constant.
- Corollary : f : X → B is a fibration with (B, Δ_f) of general type. Each entire curve in X is then contained in a fibre of f, and no entire curve is Zariski dense in X.
- The corollary applies to the (WS) threefolds fibered over P₁ deduced by base-change from the Lafon threefold.

★ ∃ ► ★ ∃ ►

 WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].

- WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f: X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.

- WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f: X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.
- Degeneratedness of orbifold entire curves h : C → (S, Δ_f) was much more involved than in the curve case.

- WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f: X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have $: \Delta_f = \Delta_f^*$.
- Degeneratedness of orbifold entire curves $h : \mathbb{C} \to (S, \Delta_f)$ was much more involved than in the curve case.
- Independently of WSC, another conjectural equivalence was formulated in [C 2001] :

X **special** \iff X is PD \iff X has a Z-dense entire curve.

伺 と く ヨ と く ヨ と 二 ヨ

- WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations
 f : X → S over surfaces with κ(S) = 1, but orbifold bases
 (S, Δ_f) of general type. These threefolds have : Δ_f = Δ^{*}_f.
- Degeneratedness of orbifold entire curves h : C → (S, Δ_f) was much more involved than in the curve case.
- Independently of WSC, another conjectural equivalence was formulated in [C 2001] :

X special \iff X is PD \iff X has a Z-dense entire curve.

Definition 1 : X is special if κ(X, L) < p, ∀p > 0, ∀L ⊂ Ω^p_X of rank 1.

同 ト イヨ ト イヨ ト ニヨ

- WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f: X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.
- Degeneratedness of orbifold entire curves h : C → (S, Δ_f) was much more involved than in the curve case.
- Independently of WSC, another conjectural equivalence was formulated in [C 2001] :

X special \iff X is PD \iff X has a Z-dense entire curve.

- Definition 1 : X is special if κ(X, L) < p, ∀p > 0, ∀L ⊂ Ω^p_X of rank 1.
- **Definition 2**: X is special if no fibration $f : X \rightarrow Z$ has a 'neat' birational model $f' : X' \rightarrow Z'$ with an orbifold base $(Z', \Delta_{f'})$ of general type.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f: X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.
- Degeneratedness of orbifold entire curves $h : \mathbb{C} \to (S, \Delta_f)$ was much more involved than in the curve case.
- Independently of WSC, another conjectural equivalence was formulated in [C 2001] :

X special \iff X is PD \iff X has a Z-dense entire curve.

- Definition 1 : X is special if κ(X, L) < p, ∀p > 0, ∀L ⊂ Ω^p_X of rank 1.
- **Definition 2**: X is special if no fibration $f : X \rightarrow Z$ has a 'neat' birational model $f' : X' \rightarrow Z'$ with an orbifold base $(Z', \Delta_{f'})$ of general type.
- Special implies WS. Reverse true for n ≤ 2 only, by Lafon, [B-T] threefolds.

• Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

.

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}$.(Caution !).

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}$.(Caution !).
- $\Delta_f^* := \sum_{t \in B} (1 \frac{1}{d_f(t)}) . \{t\}$

同 ト イ ヨ ト イ ヨ ト う へ ()

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}.$ (Caution !).

•
$$\Delta_f^* := \sum_{t \in B} (1 - \frac{1}{d_f(t)}) . \{t\}$$

• $\Delta_f := \sum_{t \in B} (1 - \frac{1}{m_f(t)}) \cdot \{t\}$. (These sums are finite)

同 ト イ ヨ ト イ ヨ ト う へ ()

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}.$ (Caution !).

•
$$\Delta_f^* := \sum_{t \in B} (1 - \frac{1}{d_f(t)}) . \{t\}$$

- $\Delta_f := \sum_{t \in B} (1 \frac{1}{m_f(t)}) \cdot \{t\}$. (These sums are finite)
- Divisible orbifold base of f : (B, Δ^{*}_f)

同 ト イ ヨ ト イ ヨ ト う へ ()

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}.$ (Caution !).

•
$$\Delta_f^* := \sum_{t \in B} (1 - \frac{1}{d_f(t)}) . \{t\}$$

- $\Delta_f := \sum_{t \in B} (1 \frac{1}{m_f(t)}) \cdot \{t\}$. (These sums are finite)
- Divisible orbifold base of f : (B, Δ^{*}_f)
- Orbifold base of $f : (B, \Delta_f)$.

▲母 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}.$ (Caution!).

•
$$\Delta_f^* := \sum_{t \in B} (1 - \frac{1}{d_f(t)}) . \{t\}$$

- $\Delta_f := \sum_{t \in B} (1 \frac{1}{m_f(t)}) \cdot \{t\}$. (These sums are finite)
- Divisible orbifold base of f : (B, Δ^{*}_f)
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of (B, Δ) : $K_B + \Delta$.

▲母 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}.$ (Caution!).

•
$$\Delta_f^* := \sum_{t \in B} (1 - \frac{1}{d_f(t)}) . \{t\}$$

- $\Delta_f := \sum_{t \in B} (1 \frac{1}{m_f(t)}) \{t\}$. (These sums are finite)
- Divisible orbifold base of f : (B, Δ^{*}_f)
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of (B, Δ) : $K_B + \Delta$.
- (B, Δ) of general type iff $deg(K_B + \Delta) > 0$.

▲母 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}.$ (Caution!).

•
$$\Delta_f^* := \sum_{t \in B} (1 - \frac{1}{d_f(t)}) . \{t\}$$

- $\Delta_f := \sum_{t \in B} (1 \frac{1}{m_f(t)}) \{t\}$. (These sums are finite)
- Divisible orbifold base of f : (B, Δ^{*}_f)
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of (B, Δ) : $K_B + \Delta$.
- (B, Δ) of general type iff $deg(K_B + \Delta) > 0$.
- $\Delta_f^* = \Delta_f$ if the smooth fibres of f are RC, Abelian.

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}.$ (Caution !).

•
$$\Delta_f^* := \sum_{t \in B} (1 - \frac{1}{d_f(t)}) . \{t\}$$

- $\Delta_f := \sum_{t \in B} (1 \frac{1}{m_f(t)}) \cdot \{t\}$. (These sums are finite)
- Divisible orbifold base of f : (B, Δ^{*}_f)
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of (B, Δ) : $K_B + \Delta$.
- (B, Δ) of general type iff $deg(K_B + \Delta) > 0$.
- $\Delta_f^* = \Delta_f$ if the smooth fibres of f are RC, Abelian.
- Examples with $\Delta_f^* \neq \Delta_f$ previously known for smooth fibres curves of genus 2, 13.

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ● ● ●
Fibre Divisibility and Multiplicity; Δ_f^* and Δ_f .

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k . F_k$.
- The divisibility of X_t is $d_f(t) := gcd_k\{m_k\}$.
- The multiplicity of X_t is $m_f(t) := inf_k\{m_k\}.$ (Caution !).

•
$$\Delta_f^* := \sum_{t \in B} (1 - \frac{1}{d_f(t)}) . \{t\}$$

- $\Delta_f := \sum_{t \in B} (1 \frac{1}{m_f(t)}) \cdot \{t\}$. (These sums are finite)
- Divisible orbifold base of f : (B, Δ^{*}_f)
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of (B, Δ) : $K_B + \Delta$.
- (B, Δ) of general type iff $deg(K_B + \Delta) > 0$.
- $\Delta_f^* = \Delta_f$ if the smooth fibres of f are RC, Abelian.
- Examples with $\Delta_f^* \neq \Delta_f$ previously known for smooth fibres curves of genus 2, 13.
- Lafon threefold : Δ^{*}_f ≠ Δ_f happens too with Enriques surfaces (which are WS). Question raised for K3's in [C2005].

It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. x² - tu² + t = t(tu² - 1).y² 2. x² - 2tu² + ¹/_t = t²(tu² - 1).z²

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, t \neq 0$ reduced.

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k . F_k.$ **Then** : $m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$

伺 と く き と く き と … き

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k F_k.$ **Then** $:m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m \ge 2$.

同 ト イヨ ト イヨ ト ニヨ

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k \cdot F_k$. **Then** $:m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1$.
- X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m \ge 2$.
- X_0 has 2-sections : $x = u = 0, y^2 = -1, z^2 = -t^{-3}, m = 2$.

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. x² - tu² + t = t(tu² - 1).y² 2. x² - 2tu² + ¹/_t = t²(tu² - 1).z²
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k \cdot F_k$. **Then** $:m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1$.
- X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m \ge 2$.
- X_0 has 2-sections : $x = u = 0, y^2 = -1, z^2 = -t^{-3}, m = 2$.
- X_0 has a local 3-section; for $s^3 = t$: $x(s) = \frac{1}{s}, u(s) = \frac{1}{s^2}, y(s) = \frac{1}{s^2}.u_1, z(s) = \frac{1}{s^4}.u_2, u_1, u_2$ units,

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k . F_k.$ **Then** $:m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m \ge 2$.
- X_0 has 2-sections : $x = u = 0, y^2 = -1, z^2 = -t^{-3}, m = 2$.
- X_0 has a local 3-section; for $s^3 = t$: $x(s) = \frac{1}{s}, u(s) = \frac{1}{s^2}, y(s) = \frac{1}{s^2}.u_1, z(s) = \frac{1}{s^4}.u_2, u_1, u_2$ units,
- Thus : $m_i = 3$ for some *i*, and $gcd\{m_k\} = gcd\{2,3\} = 1$.

- 4 同 6 4 日 6 - 日 5 - 日

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k F_k.$ **Then** $:m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m \ge 2$.
- X_0 has 2-sections : $x = u = 0, y^2 = -1, z^2 = -t^{-3}, m = 2$.
- X_0 has a local 3-section; for $s^3 = t$: $x(s) = \frac{1}{s}, u(s) = \frac{1}{s^2}, y(s) = \frac{1}{s^2}.u_1, z(s) = \frac{1}{s^4}.u_2, u_1, u_2$ units,
- Thus : $m_i = 3$ for some *i*, and $gcd\{m_k\} = gcd\{2,3\} = 1$.
- Hence : $\Delta_f^* = 0, \Delta_f = (1 \frac{1}{2}) \cdot \{0\}.$

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k F_k.$ **Then** $:m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m \ge 2$.

•
$$X_0$$
 has 2-sections : $x = u = 0, y^2 = -1, z^2 = -t^{-3}, m = 2$.

- X_0 has a local 3-section; for $s^3 = t$: $x(s) = \frac{1}{s}, u(s) = \frac{1}{s^2}, y(s) = \frac{1}{s^2}.u_1, z(s) = \frac{1}{s^4}.u_2, u_1, u_2$ units,
- Thus : $m_i = 3$ for some *i*, and $gcd\{m_k\} = gcd\{2,3\} = 1$.
- Hence : $\Delta_f^* = 0, \Delta_f = (1 \frac{1}{2}).\{0\}.$
- $\Delta_f^* = 0$ if the smooth fibres X_b have $|\chi(X_b)| = 1$ ([ELW 2007]).

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

- **Proposition :** $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f'$, $f' : X' \to B'$, $u' : B' \to B$ be the Stein factorisation of $f \circ u$.
 - 1. Then $u': B' \to B$ is étale.
 - 2. If the smooth fibres and base are WS, then X is WS.

• **Proposition :** $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f'$, $f' : X' \to B'$, $u' : B' \to B$ be the Stein factorisation of $f \circ u$.

1. Then $u': B' \to B$ is étale.

2. If the smooth fibres and base are WS, then X is WS.

Proof (of Proposition) : 1 : d_{f'}(X'_{t'}) = d_f(X_t) = 1 if t = u'(t') ∈ B since u is étale; (u' ∘ f')*(t) = (f ∘ u)*(t) = r.X'_{t'} if u' ramifies at order r at t'. Thus r = 1.
2. X' does not map onto any Z of general type (the fibres would go to points, and B', still WS, does not fibre onto Z.)

同 ト イヨ ト イヨ ト ニヨ

• **Proposition :** $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f'$, $f' : X' \to B'$, $u' : B' \to B$ be the Stein factorisation of $f \circ u$.

1. Then $u': B' \to B$ is étale.

2. If the smooth fibres and base are WS, then X is WS.

Proof (of Proposition) : 1 : d_{f'}(X'_{t'}) = d_f(X_t) = 1 if t = u'(t') ∈ B since u is étale; (u' ∘ f')*(t) = (f ∘ u)*(t) = r.X'_{t'} if u' ramifies at order r at t'. Thus r = 1.
2. X' does not map onto any Z of general type (the fibres would go to points, and B', still WS, does not fibre onto Z.)
Δ^{*}_t = 0 if X_b's are e.g Enriques surfaces, or genus-2 curves.

• **Proposition :** $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f'$, $f' : X' \to B'$, $u' : B' \to B$ be the Stein factorisation of $f \circ u$.

1. Then $u': B' \to B$ is étale.

2. If the smooth fibres and base are WS, then X is WS.

- Proof (of Proposition): 1 : d_{f'}(X'_{t'}) = d_f(X_t) = 1 if t = u'(t') ∈ B since u is étale; (u' ∘ f')*(t) = (f ∘ u)*(t) = r.X'_{t'} if u' ramifies at order r at t'. Thus r = 1.
 2. X' does not map onto any Z of general type (the fibres would go to points, and B', still WS, does not fibre onto Z.)
- $\Delta_f^* = 0$ if X_b 's are e.g Enriques surfaces, or genus-2 curves.
- Corollary : If f : X → B is a fibration in Enriques surfaces over B = P₁ or elliptic, X is WS.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• **Proposition :** $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f'$, $f' : X' \to B'$, $u' : B' \to B$ be the Stein factorisation of $f \circ u$.

1. Then $u': B' \to B$ is étale.

2. If the smooth fibres and base are WS, then X is WS.

- Proof (of Proposition) : $1 : d_{f'}(X'_{t'}) = d_f(X_t) = 1$ if $t = u'(t') \in B$ since u is étale; $(u' \circ f')^*(t) = (f \circ u)^*(t) = r.X'_{t'}$ if u' ramifies at order r at t'. Thus r = 1. 2. X' does not map onto any Z of general type (the fibres
- would go to points, and B', still WS, does not fibre onto Z.) • $\Delta_{f}^{*} = 0$ if X_{b} 's are e.g Enriques surfaces, or genus-2 curves.
- Corollary : If f : X → B is a fibration in Enriques surfaces over B = P₁ or elliptic, X is WS.
- Let f_d: X_d → B_d = ℙ₁ be deduced from the Lafon fibration f: X → B = ℙ₁ by a generic base-change g: B_d = ℙ₁ → B of degree d (ramified over the smooth fibres of f only).
 Then X_d is WS.

• $f_d: X_d \to B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 - \frac{1}{2}).g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.

- $f_d: X_d \to B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2}).g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff d ≥ 5.
 X_d is thus WS, but it is not special.

- $f_d: X_d \to B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2}).g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff $d \ge 5$. X_d is thus WS, but **it is not special**.
- Choose g : B_d → B to be defined over Q (for example). Thus so are X_d and f_d : X_d → B_d.

伺 とう きょう とう うう

- $f_d: X_d \to B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2}).g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff d ≥ 5.
 X_d is thus WS, but it is not special.
- Choose g : B_d → B to be defined over Q (for example). Thus so are X_d and f_d : X_d → B_d.
- For any number field k : f_d((X_d)(k)) ⊂ (B_d, Δ_{f_d})(k), the set of k-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).

- $f_d: X_d \to B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2}).g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff d ≥ 5.
 X_d is thus WS, but it is not special.
- Choose g : B_d → B to be defined over Q (for example). Thus so are X_d and f_d : X_d → B_d.
- For any number field k : f_d((X_d)(k)) ⊂ (B_d, Δ_{f_d})(k), the set of k-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).
- **OMC** : $(B_d, \Delta_{f_d})(k)$ is finite, for any k, if $d \ge 5$.

- $f_d: X_d \to B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2}).g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff d ≥ 5.
 X_d is thus WS, but it is not special.
- Choose g : B_d → B to be defined over Q (for example). Thus so are X_d and f_d : X_d → B_d.
- For any number field k : f_d((X_d)(k)) ⊂ (B_d, Δ_{f_d})(k), the set of k-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).
- **OMC** : $(B_d, \Delta_{f_d})(k)$ is finite, for any k, if $d \ge 5$.
- Thus $X_d(k)$ is contained in finitely many fibres of f_d , and not Zariski dense (although X_d is WS).

- 4 同 ト 4 三 ト - 三 - の Q ()

- $f_d: X_d \to B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2}).g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff d ≥ 5.
 X_d is thus WS, but it is not special.
- Choose g : B_d → B to be defined over Q (for example). Thus so are X_d and f_d : X_d → B_d.
- For any number field k : f_d((X_d)(k)) ⊂ (B_d, Δ_{f_d})(k), the set of k-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).
- **OMC** : $(B_d, \Delta_{f_d})(k)$ is finite, for any k, if $d \ge 5$.
- Thus $X_d(k)$ is contained in finitely many fibres of f_d , and not Zariski dense (although X_d is WS).
- OMC thus contradicts WS.

- $f_d: X_d \to B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2}).g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff d ≥ 5.
 X_d is thus WS, but it is not special.
- Choose g : B_d → B to be defined over Q (for example). Thus so are X_d and f_d : X_d → B_d.
- For any number field k : f_d((X_d)(k)) ⊂ (B_d, Δ_{f_d})(k), the set of k-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).
- **OMC** : $(B_d, \Delta_{f_d})(k)$ is finite, for any k, if $d \ge 5$.
- Thus $X_d(k)$ is contained in finitely many fibres of f_d , and not Zariski dense (although X_d is WS).
- OMC thus contradicts WS.
- $abc \Longrightarrow$ OMC, and thus also contradicts WS.

Main case : B = P₁, Δ supported on 0, 1, ∞, multiplicities m₀, m₁, m_∞. Assume k = Q. (General case : replace Z by O_k, and prime numbers by prime ideals.)

- Main case : B = P₁, Δ supported on 0, 1, ∞, multiplicities m₀, m₁, m_∞. Assume k = Q. (General case : replace Z by O_k, and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to Spec(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.

伺 と く ヨ と く ヨ と 二 ヨ

- Main case : B = P₁, Δ supported on 0, 1, ∞, multiplicities m₀, m₁, m_∞. Assume k = Q. (General case : replace Z by O_k, and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to Spec(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any 0 ≠ x = ^u/_v ∈ Q defines a section (x) of π by (x)(p) := x_p, the reduction of x mod p.(u, v coprime integers).

- Main case : B = P₁, Δ supported on 0, 1, ∞, multiplicities m₀, m₁, m_∞. Assume k = Q. (General case : replace Z by O_k, and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to Spec(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any 0 ≠ x = ^u/_v ∈ Q defines a section (x) of π by (x)(p) := x_p, the reduction of x mod p.(u, v coprime integers).
- (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' (x, 0)_p (resp. (x, ∞)_p) the exponent of p in the decomposition of u (resp. v) in product of primes.

- Main case : B = P₁, Δ supported on 0, 1, ∞, multiplicities m₀, m₁, m_∞. Assume k = Q. (General case : replace Z by O_k, and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to Spec(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any 0 ≠ x = ^u/_v ∈ Q defines a section (x) of π by (x)(p) := x_p, the reduction of x mod p.(u, v coprime integers).
- (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' (x, 0)_p (resp. (x, ∞)_p) the exponent of p in the decomposition of u (resp. v) in product of primes.
- The order of contact $(x, 1)_p$ of (x) with (1) over p|(u v) is : $(\frac{u-v}{v}, 0)_p = (u v, 0)_p$ (since u, v are coprime).

- Main case : B = P₁, Δ supported on 0, 1, ∞, multiplicities m₀, m₁, m_∞. Assume k = Q. (General case : replace Z by O_k, and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to Spec(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any 0 ≠ x = ^u/_v ∈ Q defines a section (x) of π by (x)(p) := x_p, the reduction of x mod p.(u, v coprime integers).
- (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' (x, 0)_p (resp. (x, ∞)_p) the exponent of p in the decomposition of u (resp. v) in product of primes.
- The order of contact $(x, 1)_p$ of (x) with (1) over p|(u v) is : $(\frac{u-v}{v}, 0)_p = (u v, 0)_p$ (since u, v are coprime).
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) := \{x \in \mathbb{Q} | (x, t)_p \ge m_t, \forall p \ s.t : (x, t)_p > 0, t = 0, 1, \infty\}.$ The divisible version is :

- Main case : B = P₁, Δ supported on 0, 1, ∞, multiplicities m₀, m₁, m_∞. Assume k = Q. (General case : replace Z by O_k, and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to Spec(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any 0 ≠ x = ^u/_v ∈ Q defines a section (x) of π by (x)(p) := x_p, the reduction of x mod p.(u, v coprime integers).
- (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' (x, 0)_p (resp. (x, ∞)_p) the exponent of p in the decomposition of u (resp. v) in product of primes.
- The order of contact $(x, 1)_p$ of (x) with (1) over p|(u v) is : $(\frac{u-v}{v}, 0)_p = (u v, 0)_p$ (since u, v are coprime).
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) := \{x \in \mathbb{Q} | (x, t)_p \ge m_t, \forall p \ s.t : (x, t)_p > 0, t = 0, 1, \infty\}$. The divisible version is :
- $(\mathbb{P}_1,\Delta)^{Div}(\mathbb{Q}) := \{x \in \mathbb{Q} | (x,t)_p \equiv 0[m_t], \forall p,t=0,1,\infty\}.$

- Main case : $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, multiplicities m_0, m_1, m_∞ . Assume $k = \mathbb{Q}$. (General case : replace \mathbb{Z} by \mathcal{O}_k , and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to Spec(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any 0 ≠ x = ^u/_v ∈ Q defines a section (x) of π by (x)(p) := x_p, the reduction of x mod p.(u, v coprime integers).
- (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' (x, 0)_p (resp. (x, ∞)_p) the exponent of p in the decomposition of u (resp. v) in product of primes.
- The order of contact $(x, 1)_p$ of (x) with (1) over p|(u v) is : $(\frac{u-v}{v}, 0)_p = (u v, 0)_p$ (since u, v are coprime).
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) := \{x \in \mathbb{Q} | (x, t)_p \ge m_t, \forall p \ s.t : (x, t)_p > 0, t = 0, 1, \infty\}$. The divisible version is :
- $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) := \{x \in \mathbb{Q} | (x, t)_p \equiv 0[m_t], \forall p, t = 0, 1, \infty\}.$ • $(\mathbb{P}_1, \Delta)^{Div}(k) \subset (\mathbb{P}_1, \Delta)(k).$

• **Proposition :** $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k).$ (Easy, similar to entire curves case).

- **Proposition :** $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$.(Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.

伺 と く き と く き と … き

- **Proposition :** $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$.(Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_{\infty}}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}$. Similarly :

▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ → 의 ● → ○ ○ ○

- **Proposition :** $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$.(Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_{\infty}}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}$. Similarly :
- $(\mathbb{P}_1,\Delta)(\mathbb{Q}) = \{a,b,c\in\mathbb{Z}|a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}$ (u.t. signs).

- **Proposition :** $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$.(Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_{\infty}}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}$. Similarly :
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}$ (u.t. signs).
- a^[m] denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : Rad(a)^m divides a, where Rad(a) := Π_{p|a}p.
- **Proposition :** $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$.(Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_{\infty}}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}$. Similarly :
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}$ (u.t. signs).
- a^[m] denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : Rad(a)^m divides a, where Rad(a) := Π_{p|a}p.

- **Proposition :** $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$.(Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_{\infty}}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}$. Similarly :
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}$ (u.t. signs).
- a^[m] denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : Rad(a)^m divides a, where Rad(a) := Π_{p|a}p.
- (\mathbb{P}_1, Δ) is of general type iff $m_0^{-1} + m_1^{-1} + m_{\infty}^{-1} < 1$. For example : $m_0 = m_1 = m_{\infty} \ge 4$: the Fermat equation.

- **Proposition :** $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$.(Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_{\infty}}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}$. Similarly :
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}$ (u.t. signs).
- a^[m] denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : Rad(a)^m divides a, where Rad(a) := Π_{p|a}p.
- (\mathbb{P}_1, Δ) is of general type iff $m_0^{-1} + m_1^{-1} + m_{\infty}^{-1} < 1$. For example : $m_0 = m_1 = m_{\infty} \ge 4$: the Fermat equation.
- (P₁, Δ)^{Div}(k) is then finite, ∀k. ([DG97], 'Falting's plus epsilon'). But the finiteness of (P₁, Δ)(Q) is open, ∀Δ.

- **Proposition :** $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$.(Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_{\infty}}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}$. Similarly :

•
$$(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}$$
 (u.t. signs).

- a^[m] denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : Rad(a)^m divides a, where Rad(a) := Π_{p|a}p.
- (\mathbb{P}_1, Δ) is of general type iff $m_0^{-1} + m_1^{-1} + m_{\infty}^{-1} < 1$. For example : $m_0 = m_1 = m_{\infty} \ge 4$: the Fermat equation.
- $(\mathbb{P}_1, \Delta)^{Div}(k)$ is then finite, $\forall k$. ([DG97], 'Falting's plus epsilon'). But the finiteness of $(\mathbb{P}_1, \Delta)(\mathbb{Q})$ is open, $\forall \Delta$.
- $Card(\{0 < a^{[m]} \le B\}) \sim C(m) \cdot B^{\frac{1}{m}}$ as $B \to +\infty$ ([E-S,1935]). $C(2) = \frac{\zeta(3/2)}{\zeta(3)}$, for example.

• We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_{\infty}^{-1} = 1 - \varepsilon'$. Worst case : $(2, 3, 7), \varepsilon' = 42^{-1}$.

- We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_\infty^{-1} = 1 \varepsilon'$. Worst case : $(2, 3, 7), \varepsilon' = 42^{-1}$.
- *abc* claims that, for any $\varepsilon > 0, \exists C_{\varepsilon} > 0$ s.t : $Rad(\alpha.\beta.\gamma) \ge C_{\varepsilon}.M^{1-\varepsilon}, \forall (\alpha, \beta, \gamma \in \mathbb{Z})$ s.t : $\alpha + \beta = \gamma$, where $M := Max(\{|\alpha|, |\beta|, |\gamma|\}).$

- We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_\infty^{-1} = 1 \varepsilon'$. Worst case : $(2, 3, 7), \varepsilon' = 42^{-1}$.
- *abc* claims that, for any $\varepsilon > 0, \exists C_{\varepsilon} > 0$ s.t : $Rad(\alpha.\beta.\gamma) \ge C_{\varepsilon}.M^{1-\varepsilon}, \forall (\alpha, \beta, \gamma \in \mathbb{Z})$ s.t : $\alpha + \beta = \gamma$, where $M := Max(\{|\alpha|, |\beta|, |\gamma|\}).$

•
$$abc \Longrightarrow OM : If x = \frac{u}{v} \in (\mathbb{P}_1, \Delta),$$

 $u = a^{[m_0]}, v = b^{[m_\infty]}, u - v = c^{[m_1]},$
 $M \ge |\alpha = a^{[m_0]}| = |u| \ge (Rad(u))^{m_0},$
 $M \ge |\beta = b^{[m_\infty]}| = |v| \ge (Rad(v))^{m_\infty},$
 $M \ge |\gamma = c^{[m_1]}| = |u - v| \ge (Rad(u - v))^{m_1}$

- We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_{\infty}^{-1} = 1 \varepsilon'$. Worst case : $(2, 3, 7), \varepsilon' = 42^{-1}$.
- *abc* claims that, for any $\varepsilon > 0, \exists C_{\varepsilon} > 0$ s.t : $Rad(\alpha.\beta.\gamma) \ge C_{\varepsilon}.M^{1-\varepsilon}, \forall (\alpha, \beta, \gamma \in \mathbb{Z})$ s.t : $\alpha + \beta = \gamma$, where $M := Max(\{|\alpha|, |\beta|, |\gamma|\}).$

•
$$abc \Longrightarrow OM : If x = \frac{u}{v} \in (\mathbb{P}_{1}, \Delta),$$

 $u = a^{[m_{0}]}, v = b^{[m_{\infty}]}, u - v = c^{[m_{1}]},$
 $M \ge |\alpha = a^{[m_{0}]}| = |u| \ge (Rad(u))^{m_{0}},$
 $M \ge |\beta = b^{[m_{\infty}]}| = |v| \ge (Rad(v))^{m_{\infty}},$
 $M \ge |\gamma = c^{[m_{1}]}| = |u - v| \ge (Rad(u - v))^{m_{1}}.$
• Thus : $M^{(m_{0}^{-1} + m_{1}^{-1} + m_{\infty}^{-1})} = M^{1 - \varepsilon'} \ge Rad(uv(u - v)) \ge C_{0}M^{1 - \varepsilon} \forall \varepsilon > 0$

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

- We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_\infty^{-1} = 1 \varepsilon'$. Worst case : $(2, 3, 7), \varepsilon' = 42^{-1}$.
- *abc* claims that, for any $\varepsilon > 0, \exists C_{\varepsilon} > 0$ s.t : $Rad(\alpha.\beta.\gamma) \ge C_{\varepsilon}.M^{1-\varepsilon}, \forall (\alpha, \beta, \gamma \in \mathbb{Z})$ s.t : $\alpha + \beta = \gamma$, where $M := Max(\{|\alpha|, |\beta|, |\gamma|\}).$

•
$$abc \Longrightarrow OM$$
: If $x = \frac{u}{v} \in (\mathbb{P}_1, \Delta)$,
 $u = a^{[m_0]}, v = b^{[m_\infty]}, u - v = c^{[m_1]},$
 $M \ge |\alpha = a^{[m_0]}| = |u| \ge (Rad(u))^{m_0},$
 $M \ge |\beta = b^{[m_\infty]}| = |v| \ge (Rad(v))^{m_\infty},$
 $M \ge |\gamma = c^{[m_1]}| = |u - v| \ge (Rad(u - v))^{m_1}.$

- Thus : $M^{(m_0^{-1}+m_1^{-1}+m_\infty^{-1})} = M^{1-\varepsilon'} \ge Rad(uv(u-v)) \ge C_{\varepsilon}.M^{1-\varepsilon}, \forall \varepsilon > 0.$
- Choose $\varepsilon < \varepsilon'$ (e.g : $\varepsilon := 43^{-1}$), divide by $M^{1-\varepsilon'}$, we get : $1 \ge C_{\varepsilon}.M^{\varepsilon'-\varepsilon}$ implies the claimed finiteness, since : $M \le C_{\varepsilon}^{-(\varepsilon'-\varepsilon)^{-1}}$.

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2