Weak Specialness and Potential Density. Peternell/Cetraro 1/7/24

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg

Université de Lorraine

1 er juillet 2024

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

 QQ

 \bullet X_n , an *n*-dimensional connected complex projective manifold.

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

 QQ

- \bullet X_n , an *n*-dimensional connected complex projective manifold.
- X is $\boldsymbol{\mathsf{Weakly}}$ Special if no finite étale cover $X'\to X$ admits a fibration $f : X' \dashrightarrow Z$ with Z of general type $(dimZ > 0)$. Example : RC, Abelian varieties, K3, Enriques, are WS.

- \bullet X_n , an *n*-dimensional connected complex projective manifold.
- X is $\boldsymbol{\mathsf{Weakly}}$ Special if no finite étale cover $X'\to X$ admits a fibration $f : X' \dashrightarrow Z$ with Z of general type $(dimZ > 0)$. Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over \overline{Q} and if $X(k)$ is Zariski dense for some number field k over which it is defined.

- \bullet X_n , an *n*-dimensional connected complex projective manifold.
- X is $\boldsymbol{\mathsf{Weakly}}$ Special if no finite étale cover $X'\to X$ admits a fibration $f : X' \dashrightarrow Z$ with Z of general type $(dimZ > 0)$. Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over \overline{Q} and if $X(k)$ is Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.

- \bullet X_n , an *n*-dimensional connected complex projective manifold.
- X is $\boldsymbol{\mathsf{Weakly}}$ Special if no finite étale cover $X'\to X$ admits a fibration $f : X' \dashrightarrow Z$ with Z of general type $(dimZ > 0)$. Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over \overline{Q} and if $X(k)$ is Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.

桐 トラ ミトラ ミュート

- \bullet X_n , an *n*-dimensional connected complex projective manifold.
- X is $\boldsymbol{\mathsf{Weakly}}$ Special if no finite étale cover $X'\to X$ admits a fibration $f : X' \dashrightarrow Z$ with Z of general type $(dimZ > 0)$. Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over \overline{Q} and if $X(k)$ is Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- \bullet Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k -rational points.

- \bullet X_n , an *n*-dimensional connected complex projective manifold.
- X is $\boldsymbol{\mathsf{Weakly}}$ Special if no finite étale cover $X'\to X$ admits a fibration $f : X' \dashrightarrow Z$ with Z of general type $(dimZ > 0)$. Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over \overline{Q} and if $X(k)$ is Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k -rational points.
- Aim : WS-conjecture conflicts with **OMC**, and so with abc.

- \bullet X_n , an *n*-dimensional connected complex projective manifold.
- X is $\boldsymbol{\mathsf{Weakly}}$ Special if no finite étale cover $X'\to X$ admits a fibration $f : X' \dashrightarrow Z$ with Z of general type $(dimZ > 0)$. Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over \overline{Q} and if $X(k)$ is Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k -rational points.
- \bullet Aim : WS-conjecture conflicts with **OMC**, and so with abc.
- Main Input : a threefold constructed by G. Lafon ([L 2007]).

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B}$

 2990

- \bullet X_n , an *n*-dimensional connected complex projective manifold.
- X is $\boldsymbol{\mathsf{Weakly}}$ Special if no finite étale cover $X'\to X$ admits a fibration $f : X' \dashrightarrow Z$ with Z of general type $(dimZ > 0)$. Example : RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over \overline{Q} and if $X(k)$ is Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k -rational points.
- \bullet Aim : WS-conjecture conflicts with **OMC**, and so with abc.
- Main Input : a threefold constructed by G. Lafon ([L 2007]).
- Lafon threefold : $f : X \to B = \mathbb{P}_1$ has smooth fibres Enriques surfaces, $\Delta_{f}^{*}=0\neq\Delta_{f}=(1-\frac{1}{2})$ $(\frac{1}{2}).\{0\}.$

イロン イ何ン イヨン イヨン・ヨー

 2990

- \bullet X_n , an *n*-dimensional connected complex projective manifold.
- X is $\boldsymbol{\mathsf{Weakly}}$ Special if no finite étale cover $X'\to X$ admits a fibration $f : X' \dashrightarrow Z$ with Z of general type $(dimZ > 0)$. **Example :** RC, Abelian varieties, K3, Enriques, are WS.
- X is Potentially Dense if defined over \overline{Q} and if $X(k)$ is Zariski dense for some number field k over which it is defined.
- Chevalley-Weil+Lang imply : PD implies WS.
- WS-Conjecture (2000) : WS implies PD.
- Orbifold Mordell Conjecture : an orbifold curve (B, Δ) of general type (over k) has only finitely many k -rational points.
- \bullet Aim : WS-conjecture conflicts with **OMC**, and so with abc.
- Main Input : a threefold constructed by G. Lafon ([L 2007]).
- Lafon threefold : $f : X \to B = \mathbb{P}_1$ has smooth fibres Enriques surfaces, $\Delta_{f}^{*}=0\neq\Delta_{f}=(1-\frac{1}{2})$ $(\frac{1}{2}).\{0\}.$
- Suitably base-changing we get $f_d : X_d \to B_d = \mathbb{P}_1$ with the orbifoldbase (B_d,Δ_{f_d}) of general type, X_d X_d [W](#page-11-0)[S](#page-1-0) [:](#page-10-0) [OM](#page-0-0)[C](#page-80-0) [a](#page-0-0)[pp](#page-80-0)[lie](#page-0-0)[s.](#page-80-0)

• Lang equivalences translate WSC to WSC : X is $WS \iff X$ contains a Zariski-dense entire curve.

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

御 トメ 君 ト メ 君 トー

 QQ

∍

- Lang equivalences translate WSC to WSC : X is $WS \leftrightarrow X$ contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.

 $2Q$

- Lang equivalences translate WSC to WSC : X is $WS \iff X$ contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map $h:\mathbb{C} \to (B,\Delta)$, $\Delta := \sum_i (1-\frac{1}{m})$ $(\frac{1}{m_i})$. { t_i }, B a curve, is an orbifold morphism if $h^*(t_i) \geq m_i.h^{-1}(t_i), \forall i.$

 QQ

- Lang equivalences translate WSC to WSC : X is $WS \iff X$ contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map $h:\mathbb{C} \to (B,\Delta)$, $\Delta := \sum_i (1-\frac{1}{m})$ $(\frac{1}{m_i})$. { t_i }, B a curve, is an orbifold morphism if $h^*(t_i) \geq m_i.h^{-1}(t_i), \forall i.$
- If $f : X \to B$ is a fibration, and $h : \mathbb{C} \to X$ an entire curve, then $f \circ h : \mathbb{C} \to (B, \Delta_f)$ is an orbifold morphism.

御 ト イヨ ト イヨ トー

 2990

- Lang equivalences translate WSC to WSC : X is $WS \iff X$ contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map $h:\mathbb{C} \to (B,\Delta)$, $\Delta := \sum_i (1-\frac{1}{m})$ $(\frac{1}{m_i})$. { t_i }, B a curve, is an orbifold morphism if $h^*(t_i) \geq m_i.h^{-1}(t_i), \forall i.$
- If $f : X \to B$ is a fibration, and $h : \mathbb{C} \to X$ an entire curve, then $f \circ h : \mathbb{C} \to (B, \Delta_f)$ is an orbifold morphism.
- Proposition ($[C-W]$) : If (B, Δ) is of general type, all such orbifold morphisms are constant.

 2990

押 ▶ イヨ ▶ イヨ ▶ │ ヨ

- Lang equivalences translate WSC to WSC : X is $WS \leftrightarrow X$ contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map $h:\mathbb{C} \to (B,\Delta)$, $\Delta := \sum_i (1-\frac{1}{m})$ $(\frac{1}{m_i})$. { t_i }, B a curve, is an orbifold morphism if $h^*(t_i) \geq m_i.h^{-1}(t_i), \forall i.$
- If $f : X \to B$ is a fibration, and $h : \mathbb{C} \to X$ an entire curve, then $f \circ h : \mathbb{C} \to (B, \Delta_f)$ is an orbifold morphism.
- Proposition ($[C-W]$) : If (B, Δ) is of general type, all such orbifold morphisms are constant.
- Corollary : $f : X \to B$ is a fibration with (B, Δ_f) of general type. Each entire curve in X is then contained in a fibre of f, and no entire curve is Zariski dense in X.

 $AB + AB + AB + AB$

- Lang equivalences translate WSC to WSC : X is $WS \leftrightarrow X$ contains a Zariski-dense entire curve.
- This version can be unconditionally contradicted, the analog of the OMC being known, as a consequence of Nevanlinna SMT.
- A holomorphic map $h:\mathbb{C} \to (B,\Delta)$, $\Delta := \sum_i (1-\frac{1}{m})$ $(\frac{1}{m_i})$. { t_i }, B a curve, is an orbifold morphism if $h^*(t_i) \geq m_i.h^{-1}(t_i), \forall i.$
- If $f : X \to B$ is a fibration, and $h : \mathbb{C} \to X$ an entire curve, then $f \circ h : \mathbb{C} \to (B, \Delta_f)$ is an orbifold morphism.
- Proposition ($[C-W]$) : If (B, Δ) is of general type, all such orbifold morphisms are constant.
- Corollary : $f : X \to B$ is a fibration with (B, Δ_f) of general type. Each entire curve in X is then contained in a fibre of f, and no entire curve is Zariski dense in X.
- \bullet The corollary applies to the (WS) threefolds fibered over \mathbb{P}_1 deduced by base-change from the Lafon threefold.

AD YEAR EN EL YOU

• WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].

 QQ

- WSC had been previously contradicted ([C-P2007]) using variants of **non-special** WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f : X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.

- WSC had been previously contradicted ([C-P2007]) using variants of **non-special** WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f: X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.
- \bullet Degeneratedness of orbifold entire curves $h : \mathbb{C} \to (S, \Delta_f)$ was much more involved than in the curve case.

押す メミメメミメン 手

- WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f : X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.
- \bullet Degeneratedness of orbifold entire curves $h : \mathbb{C} \to (S, \Delta_f)$ was much more involved than in the curve case.
- Independently of WSC, another conjectural equivalence was formulated in [C 2001] :

X special $\Longleftrightarrow X$ is PD $\Longleftrightarrow X$ has a Z-dense entire curve.

押 ▶ イヨ ▶ イヨ ▶ │ ヨ

 200

- WSC had been previously contradicted ([C-P2007]) using variants of **non-special** WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f: X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.
- \bullet Degeneratedness of orbifold entire curves $h : \mathbb{C} \to (S, \Delta_f)$ was much more involved than in the curve case.
- Independently of WSC, another conjectural equivalence was formulated in [C 2001] :

X special $\Longleftrightarrow X$ is PD $\Longleftrightarrow X$ has a Z-dense entire curve.

Definition 1 : X is special if $\kappa(X, L) < p, \forall p > 0, \forall L \subset \Omega_X^p$ X of rank 1.

 2990

∢ 伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

- WSC had been previously contradicted ([C-P2007]) using variants of **non-special** WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f: X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.
- \bullet Degeneratedness of orbifold entire curves $h : \mathbb{C} \to (S, \Delta_f)$ was much more involved than in the curve case.
- Independently of WSC, another conjectural equivalence was formulated in [C 2001] :

X special $\Longleftrightarrow X$ is PD $\Longleftrightarrow X$ has a Z-dense entire curve.

- **Definition 1** : X is special if $\kappa(X, L) < p, \forall p > 0, \forall L \subset \Omega_X^p$ X of rank 1.
- Definition 2 : X is special if no fibration $f : X \dashrightarrow Z$ has a 'neat' birational model $f': X' \to Z'$ with an orbifold base $(Z', \Delta_{f'})$ of general type.

モー マモトマミナ マ野

 2990

- WSC had been previously contradicted ([C-P2007]) using variants of non-special WS threefolds constructed by [B-T].
- These threefolds are simply-connected elliptic fibrations $f : X \to S$ over surfaces with $\kappa(S) = 1$, but orbifold bases (S, Δ_f) of general type. These threefolds have : $\Delta_f = \Delta_f^*$.
- \bullet Degeneratedness of orbifold entire curves $h : \mathbb{C} \to (S, \Delta_f)$ was much more involved than in the curve case.
- Independently of WSC, another conjectural equivalence was formulated in [C 2001] :

X special $\Longleftrightarrow X$ is PD $\Longleftrightarrow X$ has a Z-dense entire curve.

- **Definition 1** : X is special if $\kappa(X, L) < p, \forall p > 0, \forall L \subset \Omega_X^p$ X of rank 1.
- Definition 2 : X is special if no fibration $f : X \dashrightarrow Z$ has a 'neat' birational model $f': X' \to Z'$ with an orbifold base $(Z', \Delta_{f'})$ of general type.
- Special implies WS. Reverse true for $n \leq 2$ only, by Lafon, [B-T] threefolds. イ何 ト イヨ ト イヨ ト

 2990

 \equiv

• Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.

 QQ

伊 ▶ イヨ ▶ イヨ ▶ │

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.

 2990

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).

 200

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).
- $\Delta_{f}^{*} \vcentcolon= \sum_{t\in B} (1 \frac{1}{d_{f}(t)})$ $\frac{1}{d_f(t)}$). { t }

何→ ∢ ヨ → ィヨ → ニヨー つ Q (^

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).
- $\Delta_{f}^{*} \vcentcolon= \sum_{t\in B} (1 \frac{1}{d_{f}(t)})$ $\frac{1}{d_f(t)}$). { t }
- $\Delta_f := \sum_{t\in B} (1-\frac{1}{m_f($ $\frac{1}{m_f(t)}$). $\{t\}$. (These sums are finite)

何 ▶ ◀ ∃ ▶ ◀ ∃ ▶ │ ∃ │ ◆) Q (∿

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).

$$
\bullet \ \Delta_f^* := \sum_{t \in B} \left(1 - \frac{1}{d_f(t)}\right) \cdot \{t\}
$$

- $\Delta_f := \sum_{t\in B} (1-\frac{1}{m_f($ $\frac{1}{m_f(t)}$). $\{t\}$. (These sums are finite)
- Divisible orbifold base of $f : (B, \Delta_f^*)$

何 ▶ ◀ ∃ ▶ ◀ ∃ ▶ │ ∃ │ ◆) Q (∿

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).
- $\Delta_{f}^{*} \vcentcolon= \sum_{t\in B} (1 \frac{1}{d_{f}(t)})$ $\frac{1}{d_f(t)}$). { t }
- $\Delta_f := \sum_{t\in B} (1-\frac{1}{m_f($ $\frac{1}{m_f(t)}$). $\{t\}$. (These sums are finite)
- Divisible orbifold base of $f : (B, \Delta_f^*)$
- Orbifold base of $f : (B, \Delta_f)$.

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).

$$
\bullet \ \Delta_f^* := \sum_{t \in B} \left(1 - \frac{1}{d_f(t)}\right) \cdot \{t\}
$$

- $\Delta_f := \sum_{t\in B} (1-\frac{1}{m_f($ $\frac{1}{m_f(t)}$). $\{t\}$. (These sums are finite)
- Divisible orbifold base of $f : (B, \Delta_f^*)$
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of (B, Δ) : $K_B + \Delta$.

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}) \overline{BC}

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).

$$
\bullet \ \Delta_f^* := \sum_{t \in B} \left(1 - \frac{1}{d_f(t)}\right) \cdot \{t\}
$$

- $\Delta_f := \sum_{t\in B} (1-\frac{1}{m_f($ $\frac{1}{m_f(t)}$). $\{t\}$. (These sums are finite)
- Divisible orbifold base of $f : (B, \Delta_f^*)$
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of (B, Δ) : $K_B + \Delta$.
- \bullet (B, Δ) of general type iff deg(K_B + Δ) > 0.

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}) \overline{BC}

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).

$$
\bullet \ \Delta_f^* := \sum_{t \in B} \left(1 - \frac{1}{d_f(t)}\right) \cdot \{t\}
$$

- $\Delta_f := \sum_{t\in B} (1-\frac{1}{m_f($ $\frac{1}{m_f(t)}$). $\{t\}$. (These sums are finite)
- Divisible orbifold base of $f : (B, \Delta_f^*)$
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of (B, Δ) : $K_B + \Delta$.
- \bullet (B, Δ) of general type iff $deg(K_B + \Delta) > 0$.
- $\Delta_f^* = \Delta_f$ if the smooth fibres of f are RC, Abelian.

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}) \overline{BC}

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).

$$
\bullet \ \Delta_f^* := \sum_{t \in B} \left(1 - \frac{1}{d_f(t)}\right) \cdot \{t\}
$$

- $\Delta_f := \sum_{t\in B} (1-\frac{1}{m_f($ $\frac{1}{m_f(t)}$). $\{t\}$. (These sums are finite)
- Divisible orbifold base of $f : (B, \Delta_f^*)$
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of (B, Δ) : $K_B + \Delta$.
- \bullet (B, Δ) of general type iff $deg(K_B + \Delta) > 0$.
- $\Delta_f^* = \Delta_f$ if the smooth fibres of f are RC, Abelian.
- Examples with $\Delta_f^* \neq \Delta_f$ previously known for smooth fibres curves of genus 2, 13.

KEL KALK KELKEL KARK
Fibre Divisibility and Multiplicity; Δ_f^* and Δ_f .

- Let $f : X \to B$ be a fibration onto a curve, X, B smooth projective, and $t \in B$. Let $X_t := f^*(t) := \sum_k m_k \cdot F_k$.
- The **divisibility** of X_t is $d_f(t) := \gcd_k\{m_k\}$.
- The **multiplicity** of X_t is $m_f(t) := inf_k\{m_k\}$. (**Caution** !).

$$
\bullet \ \Delta_f^* := \sum_{t \in B} \left(1 - \frac{1}{d_f(t)}\right) \cdot \{t\}
$$

- $\Delta_f := \sum_{t\in B} (1-\frac{1}{m_f($ $\frac{1}{m_f(t)}$). $\{t\}$. (These sums are finite)
- Divisible orbifold base of $f : (B, \Delta_f^*)$
- Orbifold base of $f : (B, \Delta_f)$.
- Canonical bundle of $(B, Δ)$: $K_B + Δ$.
- \bullet (B, Δ) of general type iff deg(K_B + Δ) > 0.
- $\Delta_f^* = \Delta_f$ if the smooth fibres of f are RC, Abelian.
- Examples with $\Delta_f^* \neq \Delta_f$ previously known for smooth fibres curves of genus 2, 13.
- Lafon threefold : $\Delta_f^* \neq \Delta_f$ happens too with Enriques surfaces (which are WS). Question rais[ed](#page-35-0) f[or](#page-37-0)[K](#page-25-0)[3](#page-36-0)['](#page-37-0)[s i](#page-0-0)[n \[](#page-80-0)[C2](#page-0-0)[00](#page-80-0)[5\]](#page-0-0)[.](#page-80-0)

• It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$

 QQ

化重 网络重 网

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, \, t \neq 0$ reduced.

つくへ

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, \, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k.F_k$. **Then** : $m_f(0) := \inf\{m_k\} = 2$, $d_f(0) := \text{gcd}\{m_k\} = 1$.

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, \, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k.F_k$. **Then** : $m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- \bullet X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m > 2$.

押 ▶ イヨ ▶ イヨ ▶ │ ヨ

 Ω

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, \, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k.F_k$. **Then** : $m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- \bullet X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m > 2$.
- X_0 has 2-sections : $x = u = 0, y^2 = -1, z^2 = -t^{-3}, m = 2$.

∢ 伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

- \bullet It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, \, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k.F_k$. **Then** : $m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- \bullet X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m > 2$.
- X_0 has 2-sections : $x = u = 0, y^2 = -1, z^2 = -t^{-3}, m = 2$.
- X_0 has a local 3-section ; for $s^3 = t$: $x(s) = \frac{1}{s}, u(s) = \frac{1}{s^2}, y(s) = \frac{1}{s^2}.u_1, z(s) = \frac{1}{s^4}.u_2, u_1, u_2$ units,

イ押 トメミ トメミ トーヨー

- It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, \, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k.F_k$. **Then** : $m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- \bullet X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m > 2$.
- X_0 has 2-sections : $x = u = 0, y^2 = -1, z^2 = -t^{-3}, m = 2$.
- X_0 has a local 3-section ; for $s^3 = t$: $x(s) = \frac{1}{s}, u(s) = \frac{1}{s^2}, y(s) = \frac{1}{s^2}.u_1, z(s) = \frac{1}{s^4}.u_2, u_1, u_2$ units,
- Thus : $m_i = 3$ for some *i*, and $gcd{m_k} = gcd{2, 3} = 1$.

モー マモトマミナ マ野

- \bullet It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, \, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k.F_k$. **Then** : $m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- \bullet X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m > 2$.

•
$$
X_0
$$
 has 2-sections : $x = u = 0$, $y^2 = -1$, $z^2 = -t^{-3}$, $m = 2$.

- X_0 has a local 3-section ; for $s^3 = t$: $x(s) = \frac{1}{s}, u(s) = \frac{1}{s^2}, y(s) = \frac{1}{s^2}.u_1, z(s) = \frac{1}{s^4}.u_2, u_1, u_2$ units,
- Thus : $m_i = 3$ for some *i*, and $gcd{m_k} = gcd{2, 3} = 1$.
- Hence : $\Delta_{f}^{*}=0, \Delta_{f}=(1-\frac{1}{2})$ $\frac{1}{2}$). {0}.

 \exists (\exists) (\exists) (\exists) (\exists)

- \bullet It is Y, defined in affine coordinates (x, y, z, u, t) by : 1. $x^2 - tu^2 + t = t(tu^2 - 1).y^2$ 2. $x^2 - 2tu^2 + \frac{1}{t} = t^2(tu^2 - 1).z^2$
- The fibration $f_Y : Y \to \mathbb{P}_1$ is induced by the projection to t. Smooth fibres : Enriques surfaces, fibres $X_t, \, t \neq 0$ reduced.
- $f: X \to \mathbb{P}_1$ defined on a smooth model X of Y. $X_0 = f^*(0) = \sum_k m_k.F_k$. **Then** : $m_f(0) := inf\{m_k\} = 2, d_f(0) := gcd\{m_k\} = 1.$
- \bullet X_0 has no local (or even formal) section (answering negatively a question of JP. Serre, Lafon's motivation), and so $m > 2$.

•
$$
X_0
$$
 has 2-sections : $x = u = 0$, $y^2 = -1$, $z^2 = -t^{-3}$, $m = 2$.

- X_0 has a local 3-section ; for $s^3 = t$: $x(s) = \frac{1}{s}, u(s) = \frac{1}{s^2}, y(s) = \frac{1}{s^2}.u_1, z(s) = \frac{1}{s^4}.u_2, u_1, u_2$ units,
- Thus : $m_i = 3$ for some *i*, and $gcd\{m_k\} = gcd\{2, 3\} = 1$.
- Hence : $\Delta_{f}^{*}=0, \Delta_{f}=(1-\frac{1}{2})$ $\frac{1}{2}$). {0}.
- $\Delta_{f}^{*}=0$ if the smooth fibres X_{b} have $|\chi(X_{b}|=1$ ([ELW 2007]). $AB + AB + AB + AB$

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

- **Proposition** : $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f', f' : X' \to B', u' : B' \to B$ be the Stein factorisation of $f \circ u$.
	- 1. Then $u' : B' \rightarrow B$ is étale.
	- 2. If the smooth fibres and base are WS, then X is WS.

つくへ

Proposition : $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f', f' : X' \to B', u' : B' \to B$ be the Stein factorisation of $f \circ u$.

1. Then $u' : B' \rightarrow B$ is étale.

- 2. If the smooth fibres and base are WS, then X is WS.
- **Proof (of Proposition)** : $1 : d_{f'}(X'_{t'}) = d_f(X_t) = 1$ if $t = u'(t') \in B$ since u is étale; $(u' \circ f')^*(t) = (f \circ u)^*(t) =$ r. $X'_{t'}$ if u' ramifies at order r at t' . Thus $r = 1$. 2. X' does not map onto any Z of general type (the fibres would go to points, and B' , still WS, does not fibre onto Z.)

∢ 伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

Proposition : $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f', f' : X' \to B', u' : B' \to B$ be the Stein factorisation of $f \circ u$.

1. Then $u' : B' \rightarrow B$ is étale.

2. If the smooth fibres and base are WS, then X is WS.

Proof (of Proposition) : $1 : d_{f'}(X'_{t'}) = d_f(X_t) = 1$ if $t = u'(t') \in B$ since u is étale; $(u' \circ f')^*(t) = (f \circ u)^*(t) =$ r. $X'_{t'}$ if u' ramifies at order r at t' . Thus $r = 1$. 2. X' does not map onto any Z of general type (the fibres would go to points, and B' , still WS, does not fibre onto Z.) $\Delta_f^*=0$ if X_b 's are e.g Enriques surfaces, or genus-2 curves.

- モーマモトマキュー (円)

- **Proposition** : $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f', f' : X' \to B', u' : B' \to B$ be the Stein factorisation of $f \circ u$.
	- 1. Then $u' : B' \rightarrow B$ is étale.
	- 2. If the smooth fibres and base are WS, then X is WS.
- **Proof (of Proposition)** : $1 : d_{f'}(X'_{t'}) = d_f(X_t) = 1$ if $t = u'(t') \in B$ since u is étale; $(u' \circ f')^*(t) = (f \circ u)^*(t) =$ r. $X'_{t'}$ if u' ramifies at order r at t' . Thus $r = 1$. 2. X' does not map onto any Z of general type (the fibres would go to points, and B' , still WS, does not fibre onto Z.)
- $\Delta_f^*=0$ if X_b 's are e.g Enriques surfaces, or genus-2 curves.
- Corollary : If $f : X \rightarrow B$ is a fibration in Enriques surfaces over $B = \mathbb{P}_1$ or elliptic, X is WS.

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B}$

- **Proposition** : $f : X \to B$ a fibration s.t $\Delta_f^* = 0$, $u : X' \to X$ étale. Let $f \circ u = u' \circ f', f' : X' \to B', u' : B' \to B$ be the Stein factorisation of $f \circ u$.
	- 1. Then $u' : B' \rightarrow B$ is étale.
	- 2. If the smooth fibres and base are WS, then X is WS.
- **Proof (of Proposition)** : $1 : d_{f'}(X'_{t'}) = d_f(X_t) = 1$ if $t = u'(t') \in B$ since u is étale; $(u' \circ f')^*(t) = (f \circ u)^*(t) =$ r. $X'_{t'}$ if u' ramifies at order r at t' . Thus $r = 1$. 2. X' does not map onto any Z of general type (the fibres would go to points, and B' , still WS, does not fibre onto Z.)
- $\Delta_f^*=0$ if X_b 's are e.g Enriques surfaces, or genus-2 curves.
- Corollary : If $f : X \rightarrow B$ is a fibration in Enriques surfaces over $B = \mathbb{P}_1$ or elliptic, X is WS.
- Let $f_d : X_d \to B_d = \mathbb{P}_1$ be deduced from the Lafon fibration $f: X \to B = \mathbb{P}_1$ by a generic base-change $g: B_d = \mathbb{P}_1 \to B$ of degree d (ramified over the smooth fibres of f only). Then X_d is WS. \overline{z} (\overline{z}) (\overline{z}) (\overline{z}) (\overline{z})

 $f_d: X_d \rightarrow B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 - \frac{1}{2})$ $(\frac{1}{2})$. $g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.

つくへ

- $f_d: X_d \rightarrow B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2})$ $(\frac{1}{2})$. $g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff $d \geq 5$. X_d is thus WS, but it is not special.

 Ω

- $f_d: X_d \rightarrow B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2})$ $(\frac{1}{2})$. $g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff $d \geq 5$. X_d is thus WS, but it is not special.
- Choose $g : B_d \to B$ to be defined over Q (for example). Thus so are X_d and $f_d : X_d \rightarrow B_d$.

何 ▶ ◀ ≣ ▶ ◀ ≣ ▶ │ ≣ │ ◆) Q (^

- $f_d: X_d \rightarrow B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2})$ $(\frac{1}{2})$. $g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff $d \geq 5$. X_d is thus WS, but it is not special.
- Choose $g : B_d \to B$ to be defined over Q (for example). Thus so are X_d and $f_d : X_d \rightarrow B_d$.
- For any number field k : $f_d((X_d)(k)) \subset (B_d, \Delta_{f_d})(k)$, the set of *k*-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

- $f_d: X_d \rightarrow B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2})$ $(\frac{1}{2})$. $g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff $d \geq 5$. X_d is thus WS, but it is not special.
- Choose $g : B_d \to B$ to be defined over Q (for example). Thus so are X_d and $f_d : X_d \rightarrow B_d$.
- For any number field k : $f_d((X_d)(k)) \subset (B_d, \Delta_{f_d})(k)$, the set of *k*-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).
- **OMC** : $(B_d, \Delta_{f_d})(k)$ is finite, for any k, if $d \geq 5$.

K 何 ▶ K 三 K <三 K 三] 9 Q (2

- $f_d: X_d \rightarrow B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2})$ $(\frac{1}{2})$. $g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff $d \geq 5$. X_d is thus WS, but it is not special.
- Choose $g : B_d \to B$ to be defined over Q (for example). Thus so are X_d and $f_d : X_d \rightarrow B_d$.
- For any number field k : $f_d((X_d)(k)) \subset (B_d, \Delta_{f_d})(k)$, the set of *k*-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).
- **OMC** : $(B_d, \Delta_{f_d})(k)$ is finite, for any k, if $d \geq 5$.
- Thus $X_d(k)$ is contained in finitely many fibres of f_d , and not Zariski dense (although X_d is WS).

- $f_d: X_d \rightarrow B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2})$ $(\frac{1}{2})$. $g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff $d \geq 5$. X_d is thus WS, but it is not special.
- Choose $g : B_d \to B$ to be defined over Q (for example). Thus so are X_d and $f_d : X_d \rightarrow B_d$.
- For any number field k : $f_d((X_d)(k)) \subset (B_d, \Delta_{f_d})(k)$, the set of *k*-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).
- **OMC** : $(B_d, \Delta_{f_d})(k)$ is finite, for any k, if $d \geq 5$.
- Thus $X_d(k)$ is contained in finitely many fibres of f_d , and not Zariski dense (although X_d is WS).
- OMC thus contradicts WS.

- $f_d: X_d \rightarrow B_d$ be as before : $\Delta_{f_d} = g^{-1}(\Delta_f) = (1 \frac{1}{2})$ $(\frac{1}{2})$. $g^{-1}(0)$ consists of d distinct points of B_d , each with multiplicity 2.
- Thus (B_d, Δ_{f_d}) is of general type iff $d \geq 5$. X_d is thus WS, but it is not special.
- Choose $g : B_d \to B$ to be defined over Q (for example). Thus so are X_d and $f_d : X_d \rightarrow B_d$.
- For any number field k : $f_d((X_d)(k)) \subset (B_d, \Delta_{f_d})(k)$, the set of *k*-rational points of the orbifold (B_d, Δ_{f_d}) (defined below).
- **OMC** : $(B_d, \Delta_{f_d})(k)$ is finite, for any k, if $d \geq 5$.
- Thus $X_d(k)$ is contained in finitely many fibres of f_d , and not Zariski dense (although X_d is WS).
- OMC thus contradicts WS.
- abc \Rightarrow OMC, and thus also contradicts WS.

• Main case : $B = \mathbb{P}_1$, Δ supported on 0, 1, ∞ , multiplicities m_0, m_1, m_∞ . Assume $k = \mathbb{Q}$. (General case : replace \mathbb{Z} by \mathcal{O}_k , and prime numbers by prime ideals.)

 $2Q$

- Main case : $B = \mathbb{P}_1$, Δ supported on 0, 1, ∞ , multiplicities m_0, m_1, m_∞ . Assume $k = \mathbb{O}$. (General case : replace $\mathbb Z$ by \mathcal{O}_k , and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to \text{Spec}(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.

 2990

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

- Main case : $B = \mathbb{P}_1$, Δ supported on 0, 1, ∞ , multiplicities m_0, m_1, m_∞ . Assume $k = \mathbb{O}$. (General case : replace $\mathbb Z$ by \mathcal{O}_k , and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to \text{Spec}(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any $0 \neq x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}$ defines a section (x) of π by $(x)(p) := x_p$, the reduction of x mod $p.(u, v)$ coprime integers).

- Main case : $B = \mathbb{P}_1$, Δ supported on 0, 1, ∞ , multiplicities m_0, m_1, m_∞ . Assume $k = \mathbb{O}$. (General case : replace $\mathbb Z$ by \mathcal{O}_k , and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to \text{Spec}(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any $0 \neq x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}$ defines a section (x) of π by $(x)(p) := x_p$, the reduction of x mod $p.(u, v)$ coprime integers).
- \bullet (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' $(x, 0)_p$ (resp. $(x, \infty)_p$) the exponent of p in the decomposition of u (resp. v) in product of primes.

- Main case : $B = \mathbb{P}_1$, Δ supported on 0, 1, ∞ , multiplicities m_0, m_1, m_∞ . Assume $k = \mathbb{O}$. (General case : replace $\mathbb Z$ by \mathcal{O}_k , and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to \text{Spec}(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any $0 \neq x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}$ defines a section (x) of π by $(x)(p) := x_p$, the reduction of x mod $p.(u, v)$ coprime integers).
- \bullet (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' $(x, 0)_p$ (resp. $(x, \infty)_p$) the exponent of p in the decomposition of u (resp. v) in product of primes.
- The order of contact $(x, 1)_p$ of (x) with (1) over $p|(u v)$ is : $\left(\frac{u-v}{v}\right)$ $\frac{(-\nu}{\nu},0)_p=(u-\nu,0)_p$ (since u,v are coprime).

- Main case : $B = \mathbb{P}_1$, Δ supported on 0, 1, ∞ , multiplicities m_0, m_1, m_∞ . Assume $k = \mathbb{O}$. (General case : replace $\mathbb Z$ by \mathcal{O}_k , and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to \text{Spec}(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any $0 \neq x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}$ defines a section (x) of π by $(x)(p) := x_p$, the reduction of x mod $p.(u, v)$ coprime integers).
- \bullet (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' $(x, 0)_p$ (resp. $(x, \infty)_p$) the exponent of p in the decomposition of u (resp. v) in product of primes.
- The order of contact $(x, 1)_p$ of (x) with (1) over $p|(u v)$ is : $\left(\frac{u-v}{v}\right)$ $\frac{(-\nu}{\nu},0)_p=(u-\nu,0)_p$ (since u,v are coprime).
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) := \{x \in \mathbb{Q} | (x, t)_p \geq m_t, \forall p \text{ s.t } : (x, t)_p > 0,$ $t = 0, 1, \infty$. The **divisible version** is :

- Main case : $B = \mathbb{P}_1$, Δ supported on 0, 1, ∞ , multiplicities m_0, m_1, m_∞ . Assume $k = \mathbb{O}$. (General case : replace $\mathbb Z$ by \mathcal{O}_k , and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to \text{Spec}(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any $0 \neq x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}$ defines a section (x) of π by $(x)(p) := x_p$, the reduction of x mod $p.(u, v)$ coprime integers).
- \bullet (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' $(x, 0)_p$ (resp. $(x, \infty)_p$) the exponent of p in the decomposition of u (resp. v) in product of primes.
- The order of contact $(x, 1)$ _n of (x) with (1) over $p|(u v)$ is : $\left(\frac{u-v}{v}\right)$ $\frac{(-\nu}{\nu},0)_p=(u-\nu,0)_p$ (since u,v are coprime).
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) := \{x \in \mathbb{Q} | (x, t)_p \geq m_t, \forall p \text{ s.t } : (x, t)_p > 0,$ $t = 0, 1, \infty$. The **divisible version** is :
- $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) := \{x \in \mathbb{Q} | (x, t)_p \equiv 0[m_t], \forall p, t = 0, 1, \infty \}.$

- Main case : $B = \mathbb{P}_1$, Δ supported on 0, 1, ∞ , multiplicities m_0, m_1, m_∞ . Assume $k = \mathbb{O}$. (General case : replace $\mathbb Z$ by \mathcal{O}_k , and prime numbers by prime ideals.)
- Let the 'arithmetic surface' $\pi : \mathbb{P}_{1,\mathbb{Z}} \to \text{Spec}(\mathbb{Z})$ have fibre $\mathbb{P}_1(F_p)$ over each $p \in Spec(\mathbb{Z})$.
- Any $0 \neq x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}$ defines a section (x) of π by $(x)(p) := x_p$, the reduction of x mod $p.(u, v)$ coprime integers).
- \bullet (x) meets (0) (resp. (∞)) over each p dividing u (resp.v) with 'order of contact' $(x, 0)_p$ (resp. $(x, \infty)_p$) the exponent of p in the decomposition of u (resp. v) in product of primes.
- The order of contact $(x, 1)_p$ of (x) with (1) over $p|(u v)$ is : $\left(\frac{u-v}{v}\right)$ $\frac{(-\nu}{\nu},0)_p=(u-\nu,0)_p$ (since u,v are coprime).
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) := \{x \in \mathbb{Q} | (x, t)_p \geq m_t, \forall p \text{ s.t } : (x, t)_p > 0,$ $t = 0, 1, \infty$. The **divisible version** is :
- $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) := \{x \in \mathbb{Q} | (x, t)_p \equiv 0[m_t], \forall p, t = 0, 1, \infty \}.$ $(\mathbb{P}_1, \Delta)^{Div}(k) \subset (\mathbb{P}_1, \Delta)(k).$ **YO A HE YEAR A BY YOUR**

• Proposition : $f : X \rightarrow B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$. (Easy, similar to entire curves case).

 $2Q$

メイラメイラメー

- Proposition : $f : X \rightarrow B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$. (Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.

御 ▶ イヨ ▶ イヨ ▶ │ ヨ

 QQ

- Proposition : $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$. (Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_\infty}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}.$ Similarly :

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ │ ヨ │ め&企

- Proposition : $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$. (Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_\infty}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}.$ Similarly :
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}\$ (u.t. signs).

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}) \overline{BC}

- Proposition : $f : X \rightarrow B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$. (Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_\infty}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}.$ Similarly :
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}\$ (u.t. signs).
- $a^{[m]}$ denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : $Rad(a)^{m}$ divides a, where $Rad(a):=\Pi_{p|a}p$.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}
- Proposition : $f : X \rightarrow B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$. (Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_\infty}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}.$ Similarly :
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}\$ (u.t. signs).
- $a^{[m]}$ denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : $Rad(a)^{m}$ divides a, where $Rad(a):=\Pi_{p|a}p$.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

- Proposition : $f : X \rightarrow B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$. (Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_\infty}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}.$ Similarly :
- $(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}\$ (u.t. signs).
- $a^{[m]}$ denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : $Rad(a)^{m}$ divides a, where $Rad(a):=\Pi_{p|a}p$.
- (\mathbb{P}_1, Δ) is of general type iff $m_0^{-1} + m_1^{-1} + m_\infty^{-1} < 1$. For example : $m_0 = m_1 = m_\infty \geq 4$: the Fermat equation.

 $\mathcal{A}(\overline{\mathcal{P}}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathbb{B} \rightarrow \mathcal{A}(\mathcal{P}) \rightarrow \mathcal{A}(\mathcal{P})$

- Proposition : $f : X \to B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$. (Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_\infty}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}.$ Similarly :

•
$$
(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}
$$
 (u.t. signs).

- $a^{[m]}$ denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : $Rad(a)^{m}$ divides a, where $Rad(a):=\Pi_{p|a}p$.
- (\mathbb{P}_1, Δ) is of general type iff $m_0^{-1} + m_1^{-1} + m_\infty^{-1} < 1$. For example : $m_0 = m_1 = m_\infty > 4$: the Fermat equation.
- $(\mathbb{P}_1, \Delta)^{Div}(k)$ is then finite, $\forall k$. ([DG97], 'Falting's plus epsilon'). But the finiteness of $(\mathbb{P}_1, \Delta)(\mathbb{Q})$ is open, $\forall \Delta$.

KEL KALK KELKEL KARK

- Proposition : $f : X \rightarrow B$ a fibration (over k). Then : $f(X(k)) \subset (B, \Delta_f)(k)$. (Easy, similar to entire curves case).
- $f(X(k)) \subset (B, \Delta_f)^{div}(k)$ false in general if $\Delta_f \neq \Delta_f^*$.
- Let $x = \frac{u}{v}$ $\frac{u}{v} \in \mathbb{Q}^*$. Then $x \in (\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q})$ iff (up to signs) : $u = a^{m_0}, v = b^{m_\infty}, u - v = c^{m_1}$ for $a, b, c \in \mathbb{Z}$. Thus : $(\mathbb{P}_1, \Delta)^{Div}(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{m_0} + b^{m_{\infty}} = c^{m_1}\}.$ Similarly :

•
$$
(\mathbb{P}_1, \Delta)(\mathbb{Q}) = \{a, b, c \in \mathbb{Z} | a^{[m_0]} + b^{[m_\infty]} = c^{[m_1]}\}
$$
 (u.t. signs).

- $a^{[m]}$ denotes an 'm-full' integer (ie : such that p^m divides a if p does). i.e : $Rad(a)^{m}$ divides a, where $Rad(a):=\Pi_{p|a}p$.
- (\mathbb{P}_1, Δ) is of general type iff $m_0^{-1} + m_1^{-1} + m_\infty^{-1} < 1$. For example : $m_0 = m_1 = m_\infty > 4$: the Fermat equation.
- $(\mathbb{P}_1, \Delta)^{Div}(k)$ is then finite, $\forall k$. ([DG97], 'Falting's plus epsilon'). But the finiteness of $(\mathbb{P}_1, \Delta)(\mathbb{Q})$ is open, $\forall \Delta$.
- $Card({0 < a^{[m]} \le B}) \sim C(m).B^{\frac{1}{m}}$ as $B \to +\infty$ ([E-S,1935]). $C(2) = \frac{\zeta(3/2)}{\zeta(3)}$, for example. KEL KALK KELKEL KARK

• We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_\infty^{-1} = 1 - \varepsilon'$. Worst case : $(2,3,7), \varepsilon' = 42^{-1}.$

 QQ

э

k Erkik Erki

- We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_\infty^{-1} = 1 - \varepsilon'$. Worst case : $(2,3,7), \varepsilon' = 42^{-1}.$
- abc claims that, for any $\varepsilon > 0$, $\exists C_{\varepsilon} > 0$ s.t : $\mathit{Rad}(\alpha.\beta.\gamma)\geq \mathit{C}_{\varepsilon}.\mathit{M}^{1-\varepsilon},\forall (\alpha,\beta,\gamma\in\mathbb{Z}) \text{ s.t : } \alpha+\beta=\gamma, \text{ where }$ $M := Max({{|\alpha|}, |\beta|}, |\gamma|}).$

ねゃりきゃりきゃしき

 200

- We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_\infty^{-1} = 1 - \varepsilon'$. Worst case : $(2,3,7), \varepsilon' = 42^{-1}.$
- abc claims that, for any $\varepsilon > 0$, $\exists C_{\varepsilon} > 0$ s.t : $\mathit{Rad}(\alpha.\beta.\gamma)\geq \mathit{C}_{\varepsilon}.\mathit{M}^{1-\varepsilon},\forall (\alpha,\beta,\gamma\in\mathbb{Z}) \text{ s.t : } \alpha+\beta=\gamma, \text{ where }$ $M := Max({{|\alpha|}, |\beta|}, |\gamma|}).$

$$
\begin{aligned}\n\bullet \text{ abc} &\Longrightarrow \text{OM}: \text{ If } x = \frac{u}{v} \in (\mathbb{P}_1, \Delta), \\
u &= a^{[m_0]}, v = b^{[m_\infty]}, u - v = c^{[m_1]}, \\
M &\geq |\alpha = a^{[m_0]}| = |u| \geq (Rad(u))^{m_0}, \\
M &\geq |\beta = b^{[m_\infty]}| = |v| \geq (Rad(v))^{m_\infty}, \\
M &\geq |\gamma = c^{[m_1]}| = |u - v| \geq (Rad(u - v))^{m_1}.\n\end{aligned}
$$

ねゃりきゃりきゃしき

 200

- We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_\infty^{-1} = 1 - \varepsilon'$. Worst case : $(2,3,7), \varepsilon' = 42^{-1}.$
- abc claims that, for any $\varepsilon > 0$, $\exists C_{\varepsilon} > 0$ s.t : $\mathit{Rad}(\alpha.\beta.\gamma)\geq \mathit{C}_{\varepsilon}.\mathit{M}^{1-\varepsilon},\forall (\alpha,\beta,\gamma\in\mathbb{Z}) \text{ s.t : } \alpha+\beta=\gamma, \text{ where }$ $M := Max({{|\alpha|}, |\beta|}, |\gamma|}).$

\n- \n
$$
abc \Longrightarrow OM : \text{ If } x = \frac{u}{v} \in (\mathbb{P}_1, \Delta),
$$
\n $u = a^{[m_0]}, v = b^{[m_\infty]}, u - v = c^{[m_1]},$ \n $M \geq |\alpha = a^{[m_0]}| = |u| \geq (Rad(u))^{m_0},$ \n $M \geq |\beta = b^{[m_\infty]}| = |v| \geq (Rad(v))^{m_\infty},$ \n $M \geq |\gamma = c^{[m_1]}| = |u - v| \geq (Rad(u - v))^{m_1}.$ \n
\n- \n Thus: $M^{(m_0^{-1} + m_1^{-1} + m_\infty^{-1})} = M^{1 - \varepsilon'} \geq Rad(uv(u - v)) \geq C_{\varepsilon}.M^{1 - \varepsilon}, \forall \varepsilon > 0.$ \n
\n

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

伊 ▶ ∢ ヨ ▶ (ヨ ▶ │ ヨ│ │ つQ (^

- We restrict to $k = \mathbb{Q}$, $B = \mathbb{P}_1$, Δ supported on $0, 1, \infty$, and write : $m_0^{-1} + m_1^{-1} + m_\infty^{-1} = 1 - \varepsilon'$. Worst case : $(2,3,7), \varepsilon' = 42^{-1}.$
- abc claims that, for any $\varepsilon > 0$, $\exists C_{\varepsilon} > 0$ s.t : $\mathit{Rad}(\alpha.\beta.\gamma)\geq \mathit{C}_{\varepsilon}.\mathit{M}^{1-\varepsilon},\forall (\alpha,\beta,\gamma\in\mathbb{Z}) \text{ s.t : } \alpha+\beta=\gamma, \text{ where }$ $M := Max({{|\alpha|}, |\beta|}, |\gamma|}).$

\n- \n
$$
abc \Longrightarrow OM : \text{ If } x = \frac{u}{v} \in (\mathbb{P}_1, \Delta),
$$
\n $u = a^{[m_0]}, v = b^{[m_\infty]}, u - v = c^{[m_1]},$ \n $M \geq |\alpha = a^{[m_0]}| = |u| \geq (Rad(u))^{m_0},$ \n $M \geq |\beta = b^{[m_\infty]}| = |v| \geq (Rad(v))^{m_\infty},$ \n $M \geq |\gamma = c^{[m_1]}| = |u - v| \geq (Rad(u - v))^{m_1}.$ \n
\n- \n Thus: $M^{(m_0^{-1} + m_1^{-1} + m_\infty^{-1})} = M^{1 - \varepsilon'} \geq Rad(uv(u - v)) \geq$ \n
\n

- $C_{\varepsilon}.M^{1-\varepsilon}, \forall \varepsilon > 0.$
- Choose $\varepsilon < \varepsilon'$ (e.g : $\varepsilon := 43^{-1}$), divide by $M^{1-\varepsilon'}$, we get : $1 \geq C_{\varepsilon} M^{\varepsilon' - \varepsilon}$ implies the claimed finiteness, since : $M \leq C_{\varepsilon}^{-(\varepsilon' - \varepsilon)^{-1}}.$

Frédéric Campana, jw F.Bartsch, A. Javanpeykar, O. Wittenberg Weak Specialness and Potential Density. Peternell/Cetraro 1/7/2

 Ω