Henri Guenancia (CNRS & Univ. Toulouse 3) Joint work with Mihai Păun

Transcendental methods in algebraic geometry July 1-5, 2024 – Cetraro, Italy Conference in honor of T. Peternell's 70th birthday

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Table of contents

1 Bogomolov-Gieseker inequality : classical setting

2 Orbifold Chern numbers on log terminal varieties

3 Main theorem : statement and proof

Bogomolov-Gieseker inequality : classical setting

Bogomolov-Gieseker inequality

 (X, ω) compact Kähler manifold of dimension *n*, *E* vector bundle of rank *r*.

Bogomolov-Gieseker discriminant

$$\Delta(E) := c_2(\operatorname{End}(E)) = 2rc_2(E) - (r-1)c_1^2(E) \in H^4(X, \mathbb{C}).$$

Theorem (Bogomolov '78, Gieseker '79, Miyaoka '87, Uhlenbeck-Yau '86-'89)

If *E* is $[\omega]$ -stable, then

$$\Delta(E) \cdot [\omega]^{n-2} \ge 0,$$

equality if and only if E is projectively flat.

Bogomolov-Gieseker inequality : classical setting

Reduction to the surface case when $[\omega]$ is rational

Assume X projective, $[\omega] = c_1(H)$, H ample Cartier divisor

• Choose $H_i \in |mH|$, $m \gg 1$, $S := H_1 \cap \ldots \cap H_{n-2}$

•
$$\Delta(E) \cdot H^{n-2} = \frac{1}{m^{n-2}} \Delta(E|_S)$$

• H_i very general $\Rightarrow E|_S$ stable (Mehta-Ramanathan)

 \downarrow Reduce to 2-dimensional case of $(S, E|_S)$

Bogomolov-Gieseker inequality : classical setting

Short intermission : Hermite-Einstein metrics

ω Kähler form, *h* hermitian metric on *E* $Θ_h(E) := iD_h^2 ∈ C^∞(X, Ω_X^{1,1} ⊗ End(E))$ Chern curvature form

Hermite-Einstein metric

h is Hermite-Einstein wrt $\omega \iff_{def} \operatorname{tr}_{\omega}(\Theta_h(E)) = \lambda \operatorname{Id}_E, \ \lambda \in \mathbb{R}.$

If h is HE, then

$$\Delta(E,h) \wedge \omega^{n-2} := (2rc_2(E,h) - (r-1)c_1^2(E,h)) \wedge \omega^{n-2}$$

= $a_n \|\mathring{\Theta}_h(E)\|^2 \omega^n$

Bogomolov-Gieseker inequality : classical setting

Proof of Bogomolov-Gieseker inequality

Donaldson-Uhlenbeck-Yau Theorem

If E is $[\omega]$ -stable, it admits a HE metric h

→ Bogomolov-Gieseker inequality

Remarks

• $\Delta(E) \cdot [\omega]^{n-2} = 0 \Leftrightarrow E$ is projectively flat.

• Generalizes to orbifolds

Orbifold Chern numbers on log terminal varieties

Log terminal varieties I

X normal analytic space

Log terminal singularities

(X, x) is log terminal if

• $\exists m \ge 1, \exists U \text{ nbd of } x, \exists \sigma \in H^0(U_{reg}, mK_{U_{reg}}) \text{ non-vanishing}$

•
$$\int_{U_{\rm reg}} (\sigma \wedge \bar{\sigma})^{\frac{1}{m}} < +\infty$$

Examples

- Quotient singularities (i.e. locally \mathbb{C}^n/G , G finite)
- Log terminal surface singularities are quotient singularities
- $(z_0^2 + \cdots + z_n^2 = 0) \subset \mathbb{C}^{n+1}$ is log terminal but not quotient for $n \ge 3$.

-Orbifold Chern numbers on log terminal varieties

Log terminal varieties II

X variety with log terminal singularities

Theorem (Greb-Kebekus-Kovács-Peternell '11)

X has quotient singularities in codimension two, i.e. $\exists Z \subsetneq X$ analytic subset with $\operatorname{codim} Z \ge 3$ such that $X \setminus Z$ is an orbifold.

Threefolds

A log terminal threefold X is an orbifold away from finitely many points.

Orbifold Chern numbers on log terminal varieties

Metrics on singular spaces

X normal analytic space

Kähler metric ω_X

It is a Kähler metric on X_{reg} which extends to a smooth Kähler metric under local embeddings $X \underset{loc}{\hookrightarrow} \mathbb{C}^N$.

Orbifold metric $\omega_{\rm orb}$

If X is an orbifold, an orbifold metric is a Kähler metric on X_{reg} such that $p^*(\omega_{\text{orb}}|_{U_{\text{reg}}})$ extends to a smooth Kähler metric on V for any local uniformizing chart $p: V \to U$.

▲ At a singular point, an orbifold metric is *never* Kähler ▲

Orbifold Chern numbers on log terminal varieties

\mathbb{Q} -sheaves

- X log terminal variety, E coherent reflexive sheaf on X.
- ▲ E need not be locally free in codimension two ▲

\mathbb{Q} -sheaf

E is a \mathbb{Q} -sheaf if it is an orbifold bundle in codimension two, i.e. $\exists Z \subsetneq X$ analytic subset with $\operatorname{codim} Z \ge 3$ such that

- $X \setminus Z$ is an orbifold, covered by local uniformizing charts $p: V \rightarrow U$.
- For any such chart, $p^*(E|_{U_{reg}})$ is the restriction of a locally free sheaf on V.

Example

The tangent sheaf T_X is a \mathbb{Q} -sheaf.

-Orbifold Chern numbers on log terminal varieties

Chern numbers

 (X, ω_X) log terminal compact Kähler threefold, E Q-sheaf on X. $X_0 = X \setminus \{p_1, \dots, p_r\}$ orbifold locus h_0 orbifold metric on $E|_{X_0}$ $\omega_X = \omega_0 + i\partial \overline{\partial} \phi$, with ω_0 compactly supported on X_0 .

Orbifold BG discriminant

 $\Delta(E) \cdot [\omega_X] := \int_{X_0} \Delta(E, h_0) \wedge \omega_0$

It is well-defined, i.e. independent of the choice of h_0, ω_0 and ϕ .

└─ Main theorem : statement and proof

Statement of the main theorem

Theorem (G-Păun '24)

 (X, ω_X) log terminal compact Kähler threefold, E Q-sheaf on X. If E is $[\omega_X]$ -stable, then

$$\Delta(E) \cdot [\omega_X] \ge 0,$$

equality $\Rightarrow E|_{X_{reg}}$ is locally free and projectively flat.

Remarks

Application to the abundance conjecture, cf

Campana-Höring-Peternell '16

- If $[\omega_X] = c_1(H) \rightsquigarrow$ usual BG inequality for orbifold surfaces
- Alternative proof by W. Ou '24.

└─ Main theorem : statement and proof

Main steps of the proof

- 1 Construct a suitable metric ω_{θ} on X, which is orbifold away from $\{p_i\}$ and Kähler at those points.
- 2 Appeal to [CGNPPW] to get a metric h on $E|_{X_{reg}}$ which is Hermite-Einstein wrt ω_{θ} .

3 Compute $\Delta(E) \cdot [\omega_X]$ using *h* and ω_{θ} .

└─ Main theorem : statement and proof

Construction of a interpolating metric

One constructs a "metric" $\omega_{\theta} = \omega_X + dd^c \varphi$ on X such that

$$\omega_{\theta} = \begin{cases} \omega_{X} & \text{near } p_{1}, \dots, p_{r} \\ \omega_{\text{orb}} & \text{away from } p_{1}, \dots, p_{r} \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

└─ Main theorem : statement and proof

The associated Hermite-Einstein metric

Thanks to [CGNPPW], there exists a HE metric h on $E|_{X_{reg}}$ such that

- $\operatorname{tr}_{\omega_{\theta}}(\Theta_{h}(E)) = \lambda \operatorname{Id}_{E}$ on X_{reg} , for some $\lambda \in \mathbb{R}$.
- *h* extends to a smooth orbifold metric on $X \setminus U'$.

•
$$\int_{X_{\text{reg}}} |\Theta_h(E)|^2_{h,\omega_\theta} \omega_\theta^3 < +\infty.$$

└─ Main theorem : statement and proof

The remaining assignment

Write $\omega_{\theta} = \omega_0 + i\partial \bar{\partial} \phi$ with ω_0 supported on $X \setminus U'$. Then

$$\Delta(E) \cdot [\omega_X] = \int_{X_{\text{reg}}} \Delta(E, h) \wedge \omega_0$$

=
$$\underbrace{\int_{X_{\text{reg}}} \Delta(E, h) \wedge \omega_{\theta}}_{\geqslant 0} - \int_{X_{\text{reg}}} \Delta(E, h) \wedge i\partial\bar{\partial}\phi$$

If $\chi_{\varepsilon} \to \mathbf{1}_{X \setminus \{p_i\}}$ is a cut-off, it is enough to show

$$\int_{X} \Delta(E,h) \wedge \overline{\partial} \chi_{\varepsilon} \wedge \partial \phi \to 0, \quad \int_{X} \Delta(E,h) \wedge \overline{\partial} (\chi_{\varepsilon} \wedge \partial \phi) = 0.$$

└─ Main theorem : statement and proof

The blue integral

Near
$$p_i \in X \subset_{\mathrm{loc}} \mathbb{C}^N$$
, $\phi \approx |z|^2$ hence $ar{\partial} \chi_arepsilon \wedge \partial \phi = O(1)$

and

$$\int_X \Delta(E,h) \wedge \overline{\partial}\chi_{\varepsilon} \wedge \partial\phi \longrightarrow 0$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

since $\Delta(E, h) \in L^1$ and $\operatorname{Supp}(\overline{\partial}\chi_{\varepsilon}) \to \{p_i\}.$

└─ Main theorem : statement and proof

The red integral

Key proposition : integration by parts

If α is a (0, 1)-form with compact support on $X \setminus \{p_i\}$ such that $\alpha, \overline{\partial} \alpha$ are bounded wrt to ω_{θ} , then

$$\int_X \Delta(E,h) \wedge \overline{\partial} \alpha = 0.$$

Apply this to $lpha=\chi_{arepsilon}\wedge\partial\phi$ to get

$$\int_{X} \Delta(E,h) \wedge \overline{\partial}(\chi_{\varepsilon} \wedge \partial \phi) = 0.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

└─ Main theorem : statement and proof

Some elements for the key proposition

Difficulty concentrated on the annulus ∂U .

Key ingredients :

- $(X_{reg}, \omega_{\theta})$ admits a Green's function with $W^{1,1+\delta}$ bounds \rightsquigarrow [Guo-Phong-Song-Sturm '22] + some work
- A Harnack inequality : $\exists p \gg 1$ s.t.

$$f \geqslant 0$$
 and $f + (\Delta_{\omega_{\theta}} f)_{-} \in L^{p}(X_{\operatorname{reg}}) \Longrightarrow f \in L^{\infty}(X_{\operatorname{reg}}).$

└─ Main theorem : statement and proof

Some elements for the key proposition

Difficulty concentrated on the annulus ∂U .

Key ingredients :

- $(X_{reg}, \omega_{\theta})$ admits a Green's function with $W^{1,1+\delta}$ bounds \rightsquigarrow [Guo-Phong-Song-Sturm '22] + some work
- A Harnack inequality : $\exists p \gg 1$ s.t.

$$f \geqslant 0$$
 and $f + (\Delta_{\omega_{\theta}} f)_{-} \in L^{p}(X_{\operatorname{reg}}) \Longrightarrow f \in L^{\infty}(X_{\operatorname{reg}}).$

• Fine integrability properties wrt ω_{θ} for high order derivatives of cut-off functions for the orbifold singularities