102

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
-). Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactiications
- 6. Results
- . Outlook

Ball quotients and moduli spaces

Joint work with S. Casalaina-Martin, S. Grushevsky, S. Kondō, R. Laza, Y.Maeda

Thomas Peternell 70 - Cetraro, 5 July, 2024

0. Introduction

Many moduli problems can be viewed from two perspectives, namely

- As a GIT quotient space
- Via Hodge theory.

The interplay between these two perspectives is often very interesting and can be subtle.

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

- L. Examples
- 2. Level covers
- 3. Moduli of curves
- Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

This talk is primarily concerned with moduli spaces ${\cal M}$ which are naturally isomorphic (via Hodge theory) to an open subset of a ball quotient

$$\mathcal{M} \hookrightarrow \mathbb{B}^n / \Gamma$$

Examples are:

- \blacktriangleright Deligne-Mostow varieties (moduli of weighted sets of points in $\mathbb{P}^1)$
- Certain moduli spaces of K3 surfaces (with automorphisms)
- Non-hyperelliptic curves of genus 4
- Moduli space of cubic surfaces
- Moduli space of cubic threefolds.

Many of these spaces are related to each other (e.g. as ball sub-quotients).

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

From both points of view one has natural compactifications, namely $% \left({{{\bf{n}}_{\rm{s}}}} \right)$

The GIT quotient

$$\mathcal{M} \hookrightarrow \mathcal{M}^{\mathrm{GIT}}$$

The Baily-Borel compactification

$$\mathcal{M} \subset \mathbb{B}^n/\Gamma \hookrightarrow \overline{\mathbb{B}^n/\Gamma}^{\mathrm{BB}}.$$

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

- L. Examples
- 2. Level covers
- 3. Moduli of curves
- Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

From both points of view one has natural compactifications, namely

The GIT quotient

$$\mathcal{M} \hookrightarrow \mathcal{M}^{\mathrm{GIT}}$$

The Baily-Borel compactification

$$\mathcal{M} \subset \mathbb{B}^n / \Gamma \hookrightarrow \overline{\mathbb{B}^n / \Gamma}^{\mathrm{BB}}.$$

These inclusions sometimes (but not always) extend to an isomorphism

$$\phi: \mathcal{M}^{\mathrm{GIT}} \cong \overline{\mathbb{B}^n/\Gamma}^{\mathrm{BB}}$$

Typically, these spaces can be quite singular. For GIT quotients Kirwan has introduced the *Kirwan blow-up* \mathcal{M}^{K} as a partial resolution and for ball quotients one can take the *toroidal* compactification $\overline{\mathbb{B}^n}/\Gamma^{\text{tor}}$ (which is canonical in this case).

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

0. Introduction

- . Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

5. Comparing compactiications

6. Results

7. Outlook

We thus have a diagram

where f is a birational map.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

We thus have a diagram

where f is a birational map.

Question

How are the partial resolutions $\mathcal{M}^{\rm K}$ and $\overline{\mathbb{B}^n/\Gamma}^{\rm tor}$ related? In particular:

- How does the topology of \mathcal{M}^{K} and $\overline{\mathbb{B}^n/\Gamma}^{\mathrm{tor}}$ compare?
- Is f an isomorphism?
- Are the spaces \mathcal{M}^{K} and $\overline{\mathbb{B}^n/\Gamma}^{\mathrm{tor}}$ *K*-equivalent?
- Are they derived equivalent?

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

0. Introduction

- L. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Example 1: Cubic surfaces

Let

 $\mathcal{M}_{\mathrm{surf}} = \text{Moduli space of cubic surfaces.}$

By a result of Allcock, Carlson and Toledo this also has a ball quotient model. Let

$$\mathcal{E} \subset \mathbb{Q}(\sqrt{-3}).$$

be the ring of Eisenstein integers. We equip the lattice

$$\Lambda_{\text{surf}} := 4\mathcal{E} + \mathcal{E}(-1)$$

with the standard hermitian form with signature (4, 1).

 $\Gamma_{\mathrm{surf}}:=\mathrm{U}(\Lambda_{\mathrm{surf}})$

be the integral unitary group. This group acts on the 4-dimensional ball

$$\mathbb{B}^4=\{z\in\mathbb{P}(\Lambda_{\mathrm{surf}}\otimes\mathbb{C})\mid |z_0|^2+\ldots |z_3|^2>|z_4|^2\}.$$

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

0. Introduction

- 1. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

The result of Allcock, Carlson and Toledo then says that there is an open embedding $% \left({{\left[{{{\rm{To}}} \right]}_{{\rm{To}}}} \right)_{{\rm{To}}}} \right)$

$$\mathcal{M}_{\mathrm{surf}} \hookrightarrow \mathbb{B}^4/\Gamma_{\mathrm{surf}}.$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

The result of Allcock, Carlson and Toledo then says that there is an open embedding

$$\mathcal{M}_{\mathrm{surf}} \hookrightarrow \mathbb{B}^4/\Gamma_{\mathrm{surf}}$$

The difference

$$(\mathbb{B}^4/\Gamma_{\mathrm{surf}})ackslash\mathcal{M}_{\mathrm{surf}}=D_{A_1}$$

is the *discriminant* consisting of cubic surfaces with at most A_1 -singularies. Moreover, this inclusion extends to an isomorphism

$$\mathcal{M}_{\mathrm{surf}}^{\mathrm{GIT}}\cong\overline{\mathbb{B}^4/\Gamma_{\mathrm{surf}}}^{\mathrm{BB}}$$

The Baily-Borel compactification $\overline{\mathbb{B}^4/\Gamma_{\text{surf}}}^{\text{BB}}$ has a unique cusp and under the above isomorphism this corresponds to the unique polystable point, namely the $3A_2$ -cubic:

$$S = \{x_0^3 + x_1 x_2 x_3 = 0\}.$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

Example 2: Cubic threefolds

 $\mathcal{M}_{\rm 3fold} = \text{Moduli space of cubic threefolds}.$

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

Example 2: Cubic threefolds

 $\mathcal{M}_{3\mathrm{fold}} = \mathsf{Moduli}$ space of cubic threefolds. Allcock, Carlson and Toledo constructed a ball quotient model:

 $\Lambda_{\rm 3fold}:={\cal E}_1+2{\cal E}_4+{\cal H}.$

These are hermitian lattices with underlying $\mathbb Z\text{-lattices}$

$$\Lambda_{3 \text{fold},\mathbb{Z}} = A_2(-1) + 2E_8(-1) + 2U_8(-1)$$

The group

$$\Gamma_{\rm 3fold}:={\rm U}(\Lambda_{\rm 3fold})$$

acts on the 10-dimensional ball $\mathbb{B}^{10} \subset \mathbb{P}(\Lambda_{3\mathrm{fold}}\otimes\mathbb{C})$ and

$$\mathcal{M}_{\mathrm{3fold}} \hookrightarrow \mathbb{B}^{10}/\Gamma_{\mathrm{3fold}}.$$

ł	11
10	2
100	4

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

Example 2: Cubic threefolds

 $\mathcal{M}_{3\mathrm{fold}} = \mathsf{Moduli}$ space of cubic threefolds. Allcock, Carlson and Toledo constructed a ball quotient model:

 $\Lambda_{\rm 3fold}:={\cal E}_1+2{\cal E}_4+{\cal H}.$

These are hermitian lattices with underlying $\mathbb Z\text{-lattices}$

$$\Lambda_{3 \text{fold},\mathbb{Z}} = A_2(-1) + 2E_8(-1) + 2U.$$

The group

$$\Gamma_{\rm 3fold}:={\rm U}(\Lambda_{\rm 3fold})$$

acts on the 10-dimensional ball $\mathbb{B}^{10} \subset \mathbb{P}(\Lambda_{3\mathrm{fold}}\otimes\mathbb{C})$ and

$$\mathcal{M}_{\mathrm{3fold}} \hookrightarrow \mathbb{B}^{10}/\Gamma_{\mathrm{3fold}}$$

The discriminant consists of cubic threefolds with singularities of type A_i , $i \leq 5$, D_4 and chordal cubic (i.e. the secant variety of a rational normal curve of degree 5 on \mathbb{P}^4).

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

Here the relation between the GIT compactification and the Baily-Borel compactification is more subtle (CM-L):

Here we have

- $\mathcal{\widehat{M}}_{\mathrm{3fold}}$ is the partial Kirwan blow-up in the chordal cubic
- $\mathcal{M}_{3 \mathrm{fold}}^{\mathrm{K}}$ is the full Kirwan blow-up
- ► *q* is a small semi-toric modification contracting a \mathbb{P}^1 whose image c_{2A_5} is one of the two cusps of $\overline{\mathbb{B}^{10}/\Gamma_{3fold}}^{BB}$
- The other cusp c_{3D_4} corresponds to the $3D_4$ -cubic threefold.

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

0. Introduction

- 1. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Example 3: 8 points in \mathbb{P}^1

Let

 \mathcal{M}_8 = Moduli space of 8 (unordered) points in \mathbb{P}^1 .

This is also the moduli space of hyperelliptic curves of genus 3. It is related to the *Gaussian integers*

$$\mathscr{G} = \mathbb{Z}[i] \subset \mathbb{Q}(\sqrt{-1})$$

Using this one can define a hermitian lattice

$$\Lambda_8 = \mathscr{G}_1 + 2\mathscr{G}_2$$

of rank 6 and signature (1,5) with underlying integral lattice

$$\Lambda_{8,\mathbb{Z}} = U + U(2) + 2D_4(-1).$$

11 102 1004

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

One has an open inclusion

$$\mathcal{M}_8 \hookrightarrow \mathbb{B}^5/\Gamma_8.$$

where

 $\Gamma_8={\rm U}(\Lambda_8).$

This extends to an isomorphism

$$\mathcal{M}^{\mathrm{GIT}} \cong \overline{\mathbb{B}^5/\Gamma_8}^{\mathrm{BB}}.$$

The discriminant $D = (\mathbb{B}^5/\Gamma_8) \setminus \mathcal{M}$ parameterizes non-reduced 8-tuples with at most 3 points coming together. The cusp corresponds to the unique properly polystable point with multiplicity (4, 4).

 This is the maximal Deligne-Mostow variety based on the Gaussian integers (an *ancestral space*).

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

0. Introduction

- 1. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Example 3: 12 points in \mathbb{P}^1

Let

 \mathcal{M}_{12} = Moduli space of 12 (unordered) points in \mathbb{P}^1 .

and consider the lattice

$$\Lambda_{12} = 2\mathscr{E}_4 + \mathscr{H}$$

whose underlying integral lattice is $\Lambda_{12,\mathbb{Z}}=2E_8(-1)+2U.$ Then

$$\mathcal{M}_{12} \hookrightarrow \mathbb{B}^9/\Gamma_{12}$$

where $\mathbb{B}^9\subset\mathbb{P}(\Lambda\otimes\mathbb{C})$ and $\Gamma_{12}=\mathrm{U}(\Lambda_{12}).$ Again, this inclusion extends to an isomorphism

$$\mathcal{M}_{12}^{\rm GIT}\cong\overline{\mathbb{B}^9/\Gamma_{12}}^{\rm BB}.$$

This is the maximal Deligne-Mostow variety (ancestral variety) based on the Eisenstein integer.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda

0. Introduction

- 1. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 5. Comparing compactiications
- 6. Results
- 7. Outlook

Example 4: genus 4 curves

The moduli space

 $\mathcal{M}_4^{\rm nh} =$ Moduli space of non hyperelliptic curves of genus 4.

also has a 9-dimensional ball quotient model

$$\mathcal{M}_4^{\mathrm{nh}} \hookrightarrow \mathbb{B}^9/\Gamma_4^{\mathrm{nh}}.$$

- \blacktriangleright By Kondō's work the two ball quotients \mathbb{B}^9/Γ_{12} and $\mathbb{B}^9/\Gamma_4^{\rm nh}$ are commensurable.
- Both \mathbb{B}^9/Γ_{12} and $\mathbb{B}^9/\Gamma_4^{nh}$ appear as sub-ball quotients in the ball quotient model of the moduli space of cubic threefolds as the *hyperelliptic locus* and the *nodal divisor* respectively.
- The moduli space of elliptically fibered K3 surfaces with a non-symplectic automorphism of order 3 is also an open subset of $\mathbb{B}^9/\Gamma_4^{\mathrm{nh}}$.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

Level cover 1: cubic surfaces

Many of the moduli spaces discussed above have natural level covers. In the case of cubic surfaces this is

 $\mathcal{M}_{surf}^{m}=$ Moduli space of marked cubic surfaces.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

Level cover 1: cubic surfaces

Many of the moduli spaces discussed above have natural level covers. In the case of cubic surfaces this is

 $\mathcal{M}^m_{\rm surf} =$ Moduli space of marked cubic surfaces.

This is also an open subset of a ball quotient

 $\mathcal{M}^{\mathrm{m}}_{\mathrm{surf}} \hookrightarrow \mathbb{B}^4/\Gamma^{\mathrm{m}}_{\mathrm{surf}}.$

Here $\Gamma^{\rm m}_{\rm surf} \lhd \Gamma_{\rm surf}$ is the stable unitary group and

 $\Gamma^{\rm m}_{
m surf}/\Gamma^{\rm m}_{
m surf} \cong W(E_6) \times \{\pm 1\}.$

There is a natural (smooth) compactification, namely the Naruki compactification \overline{N} and one can ask how this is related to the toroidal compactification.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

This was answered by

Theorem (Gallardo, Kerr, Schaffler (2021)) The Naruki compactification \overline{N} is isomorphic to the toroidal compactification of the ball quotient. More precisely, there is a $W(E_6)$ -equivariant commutative diagram

Remark

They also proved that $\overline{\mathcal{N}}$ is isomorphic to the KSBA compactification where the lines are given weight $1/9 + \varepsilon$.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

Level cover 2: 8 points in \mathbb{P}^1

Here we have a natural cover given by considering *ordered tuples* of points.

$$\mathcal{M}_{8,\mathrm{ord}}$$
 = Moduli space of 8 ordered points in \mathbb{P}^1 .

Clearly we have an S_8 -cover to the moduli space of unordered tuples.

$$\mathcal{M}_{8,\mathrm{ord}}
ightarrow \mathcal{M}_8 = \mathcal{M}_{8,\mathrm{ord}}/S_8$$

The cover $\mathcal{M}_{8,\mathrm{ord}}$ is also a GIT moduli space – with $\mathrm{SL}(2,\mathbb{Z})$ acting on $(\mathbb{P}^1)^8$ – and thus we have a GIT compactification $\mathcal{M}^{\mathrm{GIT}}_{8,\mathrm{ord}}$ as well as a Kirwan blow-up $\mathcal{M}^{\mathrm{K}}_{8,\mathrm{ord}}.$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- . Outlook

This moduli space is also an open set of a ball quotient:

$$\mathcal{M}_{8,\mathrm{ord}} \hookrightarrow \mathbb{B}^5/\Gamma_{8,\mathrm{ord}}$$

where $\Gamma_{8,\mathrm{ord}} \lhd \Gamma_8$ is the *stable* unitary group, i.e., the group acting trivially on the discriminant. We have $\Gamma_8/\Gamma_{8,\mathrm{ord}}\cong S_8$. There is a commutative diagram

$$\begin{array}{c} \mathcal{M}_{8,\mathrm{ord}}^{\mathrm{GIT}} & \xrightarrow{\cong} \overline{\mathbb{B}^{5}/\Gamma_{8,\mathrm{ord}}}^{\mathrm{BB}} \\ & & \downarrow \\ & & \downarrow \\ \mathcal{M}_{8}^{\mathrm{GIT}} & \xrightarrow{\cong} & \overline{\mathbb{B}^{5}/\Gamma_{8}}^{\mathrm{BB}}. \end{array}$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

As in the unordered case one can consider the Kirwan blow-up as well as the toroidal compactification.

Theorem (Gallardo-Kerr-Schaffler (2021))

There is a natural S₈-equivariant commutative diagram

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactifications
- 6. Results
- 7. Outlook

As in the unordered case one can consider the Kirwan blow-up as well as the toroidal compactification.

Theorem (Gallardo-Kerr-Schaffler (2021))

There is a natural S₈-equivariant commutative diagram

However, note that

Remark

This does not imply that we have a corresponding isomorphism in the unordered case $% \left({{{\boldsymbol{x}}_{i}}} \right)$

$$f: \mathcal{M}_8^{\mathrm{K}} \dashrightarrow \overline{\mathbb{B}^5/\Gamma_8}^{\mathrm{tor}}.$$

- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactifications
- 6. Results
- 7. Outlook

Level cover 3: 12 points in \mathbb{P}^1

Here we have again a natural cover given by considering *ordered tuples* of points.

 $\mathcal{M}_{12,\mathrm{ord}} = \mathsf{Moduli}$ space of 12 ordered points in \mathbb{P}^1 .

Question

Does $\mathcal{M}_{12,\mathrm{ord}}$ have a ball quotient model?

This case does not appear in the Deligne-Mostow list, but it could be a ball quotient via a different period map.

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- B. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- . Outlook

Moduli spaces of *n*-pointed curves

Classically, one considers

 $\mathcal{M}_{g,n,\mathrm{ord}} = \mathsf{Moduli}$ space of ordered *n*-pointed genus *g* curves

and its Deligne-Mumford compactification $\overline{\mathcal{M}}_{g,n,\mathrm{ord}}$ of stable curves.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

Moduli spaces of *n*-pointed curves

Classically, one considers

 $\mathcal{M}_{g,n,\mathrm{ord}} = \mathsf{Moduli}$ space of ordered *n*-pointed genus *g* curves

and its Deligne-Mumford compactification $\overline{\mathcal{M}}_{g,n,\mathrm{ord}}$ of stable curves.

There are also a series of other compactifications due to Hassett

 $\mathcal{M}_{g,\mathcal{A},\mathrm{ord}}$ = Hassett space of ordered weighted *n*-pointed genus.

Here \mathcal{A} is an *n*-tuple of *weights*

 $\mathcal{A} = (a_1, \ldots, a_n) \in \mathbb{Q}^n, \ 0 < a_i \leq 1.$

This has a natural compactification $\overline{\mathcal{M}}_{g,\mathcal{A},\mathrm{ord}}$.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- . Examples
- 2. Level covers
- 3. Moduli of curves
- Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

The Hassett moduli spaces represent the functor given by families $\pi: \mathcal{C} \to S$ of stable curves with *n* sections

 $s_1, \ldots s_n : S \to C$

with the following properties:

(1)
$$2g - 2 + a_1 + \ldots + a_n > 0$$

(2) If the sections s_{i_1}, \ldots, s_{i_r} are not disjoint, then $a_{i_1} + \ldots + a_{i_r} \leq 1$

(3)
$$K_{\pi} + a_1s_1 + \ldots a_ns_n$$
 is π -ample.

The Hassett spaces are of particular interest in connection with the minimal model program for $\overline{\mathcal{M}}_{g,n,\mathrm{ord}}$.

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

We shall now specialize to genus g = 0 again and, to simplify notation by dropping the genus from it:

 $\mathcal{M}_{g,n,\mathrm{ord}} \leadsto \mathcal{M}_{n,\mathrm{ord}}, \quad \mathcal{M}_{g,\mathcal{A},\mathrm{ord}} \leadsto \mathcal{M}_{\mathcal{A},\mathrm{ord}}.$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

We shall now specialize to genus g = 0 again and, to simplify notation by dropping the genus from it:

$$\mathcal{M}_{g,n,\mathrm{ord}} \leadsto \mathcal{M}_{n,\mathrm{ord}}, \quad \mathcal{M}_{g,\mathcal{A},\mathrm{ord}} \leadsto \mathcal{M}_{\mathcal{A},\mathrm{ord}}.$$

Kiem and Moon have studied log canonical models of the Deligne-Mumford compactification $\overline{\mathcal{M}}_{n,\mathrm{ord}}$ and the following sequence of maps

$$\overline{\mathcal{M}}_{n,\mathrm{ord}} \to \overline{\mathcal{M}}_{\mathcal{A}_{n,\mathrm{ord}}^{\lfloor n/2 \rfloor - 3}} \to \ldots \to \overline{\mathcal{M}}_{\mathcal{A}_{n,\mathrm{ord}}^1} \to \mathcal{M}_{n,\mathrm{ord}}^{\mathrm{GIT}}.$$

where the Hassett weights are given by the *n*-tuple

$$\mathcal{A}_n^i = (\frac{1}{\lfloor n/2 \rfloor + 1 - i} + \varepsilon)^n.$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactifications
- 6. Results
- 7. Outlook

Theorem (Kiem-Moon) If n is even, then

$$\overline{\mathcal{M}}_{\mathcal{A}^{1}_{n}, \mathrm{ord}} \cong \mathcal{M}^{\mathrm{K}}_{n, \mathrm{ord}} \to \mathcal{M}^{\mathrm{GIT}}_{n, \mathrm{ord}}$$

is the Kirwan blow-up at the $\frac{1}{2} \binom{n}{n/2}$ cusps corresponding to the polystable points.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

Theorem (Kiem-Moon) If n is even, then

$$\overline{\mathcal{M}}_{\mathcal{A}^1_n, \mathrm{ord}} \cong \mathcal{M}^{\mathrm{K}}_{n, \mathrm{ord}} \to \mathcal{M}^{\mathrm{GIT}}_{n, \mathrm{ord}}$$

is the Kirwan blow-up at the $\frac{1}{2} \binom{n}{n/2}$ cusps corresponding to the polystable points.

One can also consider the unordered case (by dividing by S_n):

$$\overline{\mathcal{M}}_n \to \overline{\mathcal{M}}_{\mathcal{A}_n^{\lfloor n/2 \rfloor - 3}} \to \ldots \to \overline{\mathcal{M}}_{\mathcal{A}_n^1} \to \mathcal{M}_n^{\mathrm{GIT}}.$$

leading to the natural question whether this also holds n the unordered case:

Question (A) Is it correct that

$$\overline{\mathcal{M}}_{\mathcal{A}_n^1} \cong \mathcal{M}_n^{\mathrm{K}} \to \mathcal{M}_n^{\mathrm{GIT}}?$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

Deligne-Mostow varieties

Question

Which configurations of weighted points in \mathbb{P}^1 can be parameterized by (open subsets of) ball quotients (via the period map of hypergeometric functions)?

Here we are only interested in the cases where

- The group is arithmetic
- The moduli space is non-compact.

According to Mostow and Thurston this happens in 42 cases.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

More precisely we are looking at

$$\mathcal{O} = \operatorname{ring} \operatorname{of} \operatorname{integers} \operatorname{in} \mathbb{Q}(\sqrt{-d}), d > 0$$

$$\Lambda = \mathcal{O}^{n+1}$$

which is equipped with a hermitian form of signature (n, 1) and

$$\mathbb{B}^n = \{ x \in \mathbb{P}(\Lambda \otimes \mathbb{C}) \mid (x, \overline{x}) > 0 \}$$

which is acted on by an arithmetic group

 $\Gamma \subset \mathrm{U}(\Lambda).$

Remark

The only rings of integers which appear in the Deligne-Mostow list are $\mathcal{O} = \mathcal{G}$ (Gaussian integers, 13 cases) and $\mathcal{O} = \mathcal{E}$ (Eisenstein integers, 29 cases).

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
-). Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 5. Comparing compactifications
- 6. Results
- 7. Outlook

Deligne-Mostow varieties come in two flavours, depending on certain numerical conditions on the weights $\underline{w} = (w_1, \ldots, w_n)$:

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Deligne-Mostow varieties come in two flavours, depending on certain numerical conditions on the weights $\underline{w} = (w_1, \ldots, w_n)$:

Condition INT: The moduli space of *n* ordered weighted points has a ball quotient model:

$$\mathcal{M}_{\underline{w},\mathrm{ord}} \subset \mathbb{B}^{n-3}/\Gamma_{\underline{w}}.$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Deligne-Mostow varieties come in two flavours, depending on certain numerical conditions on the weights $\underline{w} = (w_1, \ldots, w_n)$:

 Condition INT: The moduli space of *n* ordered weighted points has a ball quotient model:

$$\mathcal{M}_{\underline{w},\mathrm{ord}} \subset \mathbb{B}^{n-3}/\Gamma_{\underline{w}}$$

 Condition ΣINT: A non-trivial quotient of the moduli space of *n* weighted points has a ball quotient model

$$\mathcal{M}_{\underline{w},\Sigma} \subset \mathbb{B}^{n-3}/\Gamma^{\Sigma}_{\underline{w}}$$

where $\Gamma_{\underline{w}}^{\Sigma} = (S[\underline{w}] \times \Gamma_{\underline{w}})$ and $S[\underline{w}] \subset S_n$ is a subgroup defined by the weights \underline{w} .

Condition INT implies condition Σ INT.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Example

• n = 8, $w = (1/4)^8$. Here INT holds:

$$\mathcal{M}_{\underline{w},\mathrm{ord}}=\mathcal{M}_{8,\mathrm{ord}}\subset \mathbb{B}^5/\Gamma_{\underline{w}}=\mathbb{B}^5/\Gamma_{8,\mathrm{ord}}.$$

This is the Gaussian ancestral space ($\mathcal{O} = \mathcal{G}$). [$(1 - (1/4 + 1/4))^{-1} = (1/2)^{-1} = 2 \in \mathbb{Z}$]

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Example

• n = 8, $w = (1/4)^8$. Here INT holds:

$$\mathcal{M}_{\underline{w},\mathrm{ord}} = \mathcal{M}_{8,\mathrm{ord}} \subset \mathbb{B}^5/\Gamma_{\underline{w}} = \mathbb{B}^5/\Gamma_{8,\mathrm{ord}}.$$

This is the Gaussian ancestral space $(\mathcal{O} = \mathcal{G})$. $[(1 - (1/4 + 1/4))^{-1} = (1/2)^{-1} = 2 \in \mathbb{Z}]$ $\triangleright n = 12, \underline{w} = (1/6)^{12}$. Hier Σ INT holds, $S[\underline{w}] = S_{12}$:

$$\mathcal{M}_{\underline{w},\Sigma} = \mathcal{M}_{12} \subset \mathbb{B}^9/\Gamma_{\underline{w}}^{\Sigma} = \mathbb{B}^9/\Gamma_{12}.$$

This is the Eisenstein ancestral space ($\mathcal{O} = \mathcal{E}$). [$(1 - (1/6 + 1/6))^{-1} = (2/3)^{-1} = 3/2 \in 1/2\mathbb{Z}$]

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Example

▶ n = 8, $w = (1/4)^8$. Here INT holds:

$$\mathcal{M}_{\underline{w},\mathrm{ord}} = \mathcal{M}_{8,\mathrm{ord}} \subset \mathbb{B}^5/\Gamma_{\underline{w}} = \mathbb{B}^5/\Gamma_{8,\mathrm{ord}}.$$

This is the Gaussian ancestral space $(\mathcal{O} = \mathcal{G})$. $[(1 - (1/4 + 1/4))^{-1} = (1/2)^{-1} = 2 \in \mathbb{Z}]$ $n = 12, \underline{w} = (1/6)^{12}$. Hier Σ INT holds, $S[\underline{w}] = S_{12}$:

$$\mathcal{M}_{\underline{w},\Sigma} = \mathcal{M}_{12} \subset \mathbb{B}^9/\Gamma_{\underline{w}}^{\Sigma} = \mathbb{B}^9/\Gamma_{12}.$$

This is the Eisenstein ancestral space ($\mathcal{O} = \mathcal{E}$). [$(1 - (1/6 + 1/6))^{-1} = (2/3)^{-1} = 3/2 \in 1/2\mathbb{Z}$]

 There are also other cases where not all weights are even one one divides by a product of symmetric groups.

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 5. Comparing compactifications
- 6. Results
- 7. Outlook

Compairing compactifications

For the Deligne-Mostow varieties one has isomorphisms

$$\mathcal{M}_{\underline{w},\mathrm{ord}}^{\mathrm{GIT}} = (\mathbb{P}^1)^n /\!/_{\underline{w}} \mathrm{SL}_2(\mathbb{C}) \cong \overline{\mathbb{B}^{n-3} / \Gamma_{\underline{w}}}^{\mathrm{BB}} \quad (\mathrm{INT})$$

and

$$\mathcal{M}^{\mathrm{GIT}}_{\underline{w},\Sigma} = (\mathbb{P}^1)^n /\!\!/_{\underline{w}} (S[\underline{w}] \times \mathrm{SL}_2(\mathbb{C})) \cong \overline{\mathbb{B}^{n-3} / \Gamma_{\underline{w}}^{\Sigma}}^{\mathrm{BB}}(\Sigma \mathrm{INT}).$$

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Compairing compactifications

For the Deligne-Mostow varieties one has isomorphisms

$$\mathcal{M}_{\underline{w},\mathrm{ord}}^{\mathrm{GIT}} = (\mathbb{P}^1)^n /\!/_{\underline{w}} \mathrm{SL}_2(\mathbb{C}) \cong \overline{\mathbb{B}^{n-3} / \Gamma_{\underline{w}}}^{\mathrm{BB}} \quad (\mathrm{INT})$$

and

$$\mathcal{M}^{\mathrm{GIT}}_{\underline{w},\Sigma} = (\mathbb{P}^1)^n /\!\!/_{\underline{w}}(\mathcal{S}[\underline{w}] \times \mathrm{SL}_2(\mathbb{C})) \cong \overline{\mathbb{B}^{n-3} / \Gamma_{\underline{w}}^{\Sigma}}^{\mathrm{BB}}(\Sigma\mathrm{INT}).$$

At this point the question arises how this compares to the Hassett spaces.

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves

4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Theorem (Gallardo–Kerr–Scheffler 21) Assume that condition Σ INT holds. Then

$$\overline{\mathcal{M}}_{\mathcal{A}^{1}_{n,\mathrm{ord}}}/S[\underline{w}] \cong \overline{\mathbb{B}^{n-3}/\Gamma^{\Sigma}_{\underline{w}}}^{\mathrm{to}}$$

where the right hand side is the unique toroidal blow-up.

Here we recall that

$$\mathcal{A}_n^1 = (\frac{1}{\lfloor n/2 \rfloor} + \varepsilon)^n$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Theorem (Gallardo–Kerr–Scheffler 21) Assume that condition Σ INT holds. Then

$$\overline{\mathcal{M}}_{\mathcal{A}^1_{n,\mathrm{ord}}}/S[\underline{w}] \cong \overline{\mathbb{B}^{n-3}/\Gamma^{\Sigma}_{\underline{w}}}^{\mathrm{tot}}$$

where the right hand side is the unique toroidal blow-up.

Here we recall that

$$\mathcal{A}_n^1 = (\frac{1}{\lfloor n/2 \rfloor} + \varepsilon)^n$$

Now assume that INT holds and that n is even. Then comparing this with the result of Kiem and Moon we obtain:

$$\mathcal{M}_{n,\mathrm{ord}}^{\mathrm{K}}\cong\overline{\mathcal{M}}_{\mathcal{A}_{n,\mathrm{ord}}^{1}}\cong\overline{\mathbb{B}^{n-3}/\Gamma_{\underline{w}}}^{\mathrm{tor}}$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties

- 6. Results
- 7. Outlook

Question

In how far does this extend to the $\Sigma {\rm INT}$ case?

In particular, we have:

$$\mathcal{M}^{\mathrm{K}}_{8,\mathrm{ord}}\cong\overline{\mathbb{B}^{5}/\Gamma_{8,\mathrm{ord}}}^{\mathrm{tor}}$$

Question (B)

Is it true that also

$$\mathcal{M}_8^{\mathrm{K}} \cong \overline{\mathbb{B}^5/\Gamma_8}^{\mathrm{tor}}$$
?

Or in the case of 12 points where $\Sigma {\rm INT}$ holds, but not ${\rm INT}:$

$$\mathcal{M}_{12}^{\mathrm{K}}\cong\overline{\mathbb{B}^{9}/\Gamma_{12}}^{\mathrm{tor}}?$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- . Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

Results

The overall question is

Question

We know that in the level case (ordered case, marked cubic surfaces) the Kirwan compactification and the toroidal compactification agree. Does this still hold without a level structure?

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

Results

The overall question is

Question

We know that in the level case (ordered case, marked cubic surfaces) the Kirwan compactification and the toroidal compactification agree. Does this still hold without a level structure?

Here we shall discuss this exemplary for the case of 12 points (joint work with Maeda, Kondō).

Theorem The Betti numbers

$$b_i(\mathcal{M}_{12}^{\mathrm{K}}) = b_i(\overline{\mathbb{B}^9/\Gamma_{12}}^{\mathrm{tor}}), i \ge 0$$

	11
1	02
10	0 4

S. Casalaina-Martin

- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactiications
- 6. Results
- 7. Outlook

We shall now investigate how different $\mathcal{M}_{12}^{\rm K}$ and $\overline{\mathbb{B}^9/\Gamma_{12}}^{\rm tor}$ are as varieties.

Theorem Neither the rational map

$$f: \mathcal{M}_{12}^{\mathrm{K}} \dashrightarrow \overline{\mathbb{B}^9/\Gamma_{12}}^{\mathrm{tor}}$$

nor its inverse f^{-1} extend to a morphism.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

We shall now investigate how different \mathcal{M}_{12}^K and $\overline{\mathbb{B}^9/\Gamma_{12}}^{\rm tor}$ are as varieties.

Theorem Neither the rational map

$$f: \mathcal{M}_{12}^{\mathrm{K}} \dashrightarrow \overline{\mathbb{B}^9/\Gamma_{12}}^{\mathrm{tor}}$$

nor its inverse f^{-1} extend to a morphism.

Proof. We first remark that f cannot be an isomorphism:

- The intersection of the discriminant and the Kirwan exceptional divisor is generically not transversal.
- The intersection of the discriminant and the toroidal exceptional divisor is generically transversal.

The first of these claims follows from a Luna slice computation.

If f were a morphism it must be a (small) contraction (since both spaces are normal). But this contradicts the fact that both \mathcal{M}_{12}^{K} and $\overline{\mathbb{B}^{9}/\Gamma_{12}}^{\mathrm{tor}}$ are \mathbb{Q} -factorial.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

One can still ask the

Question

- Are the varieties $\mathcal{M}_{12}^{\mathrm{K}}$ and $\overline{\mathbb{B}^9/\Gamma_{12}}^{\mathrm{tor}}$ abstractly isomorphic?
- Are the varieties $\mathcal{M}_{12}^{\mathrm{K}}$ and $\overline{\mathbb{B}^{9}/\Gamma_{12}}^{\mathrm{tor}}$ *K*-equivalent?

Two projective normal \mathbb{Q} -Gorenstein varieties X and Y are called *K*-equivalent if there is a common resolution of singularities Z dominating X and Y birationally

such that $f_X^* K_X \sim_{\mathbb{Q}} f_Y^* K_Y$.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- . Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactiications
- 6. Results
- 7. Outlook

Theorem The varieties $\mathcal{M}_{12}^{\mathrm{K}}$ and $\overline{\mathbb{B}^9/\Gamma_{12}}^{\mathrm{tor}}$ are not K-equivalent and hence not isomorphic (even as abstract varieties).

Corollary

The questions (A) and (B) have a negative answer:

$$\mathcal{M}_{12}^{\mathrm{K}} \ncong \overline{\mathcal{M}}_{\mathcal{A}_{12}^1} \cong \overline{\mathbb{B}^9/\Gamma_{12}}^{\mathrm{tor}}$$

Remark

- Here the isomorphism comes from the result of Gallardo-Kerr-Scheffler.
- This is in contrast to the ordered case, where

$$\mathcal{M}_{12,\mathrm{ord}}^{\mathrm{K}}\cong\overline{\mathcal{M}}_{\mathcal{A}_{12}^{1},\mathrm{ord}}\cong\overline{\mathbb{B}^{9}/\Gamma_{12,\mathrm{ord}}}^{\mathrm{tor}}.$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

Idea of proof. It is enough to prove that

$$(\mathcal{K}_{\mathcal{M}_{12}^{\mathrm{K}}})^{9} \neq (\mathcal{K}_{\overline{\mathbb{B}^{9}/\Gamma_{12}}^{\mathrm{tor}}})^{9}.$$

Using modular forms, a Luna slice computation and geometric arguments one shows that

$${\it K}_{{\mathcal M}_{12}^{\rm K}}=-210 \mathscr{L}-9\Delta, \quad {\it K}_{\overline{\mathbb{B}^9/\Gamma_{12}}^{\rm tor}}=-210 \mathscr{L}-16 {\it T}$$

where \mathscr{L} is the Hodge line bundle, Δ is the Kirwan exceptional divisor and T is the toric boundary. It then suffices top prove that

$$(9\Delta)^9 \neq (16T)^9$$

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
-). Introduction
- . Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactiications
- 6. Results
- . Outlook

Looijenga introduced the concept of *semi-toric compactifications* which generalizes toric compactifications. Recently, Alexeev and Engel characterized these as those compactifications which lie between toric compactifications and the Baily-Borel compactification, which in the case of ball quotients means

$$\overline{\mathbb{B}^n/\Gamma}^{\mathrm{tor}} \to \overline{\mathbb{B}^n/\Gamma}^{\mathrm{semitor}} \to \overline{\mathbb{B}^n/\Gamma}^{\mathrm{BB}}$$

Oda has characterized these in terms of LMMP.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
-). Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

Looijenga introduced the concept of *semi-toric compactifications* which generalizes toric compactifications. Recently, Alexeev and Engel characterized these as those compactifications which lie between toric compactifications and the Baily-Borel compactification, which in the case of ball quotients means

$$\overline{\mathbb{B}^n/\Gamma}^{\mathrm{tor}} \to \overline{\mathbb{B}^n/\Gamma}^{\mathrm{semitor}} \to \overline{\mathbb{B}^n/\Gamma}^{\mathrm{BB}}$$

Oda has characterized these in terms of LMMP. One can prove (where H^{K} is the closure of the discriminant locus in the Kirwan blow-up):

Theorem The pair $(\overline{\mathcal{M}}_{12}^{K}, \frac{5}{6}H^{K} + \Delta)$ is not a log minimal model (of itself). Hence $\overline{\mathcal{M}}_{12}^{K}$ is not a semi-toric compactification.

(The factor5/6 comes from ramification.)

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactiications
- 6. Results
- . Outlook

For varieties with finite quotient singularities Kawamata has introduced the notion of *stacky derived equivalence* (which coincides with classical derived equivalence in the case of smooth varieties).

Theorem The varieties $\overline{\mathcal{M}}_{12}^{\mathrm{K}}$ and $\overline{\mathbb{B}^9/\Gamma_{12}}^{\mathrm{tor}}$ are not stacky derived equivalent.

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilications
- 6. Results
- 7. Outlook

For varieties with finite quotient singularities Kawamata has introduced the notion of *stacky derived equivalence* (which coincides with classical derived equivalence in the case of smooth varieties).

Theorem The varieties $\overline{\mathcal{M}}_{12}^{\mathrm{K}}$ and $\overline{\mathbb{B}^9/\Gamma_{12}}^{\mathrm{tor}}$ are not stacky derived equivalent.

This follows from a theorem of Kawamata using that the varieties are not K-equivalent and that $-K_{\mathbb{B}^9/\Gamma_{12}}^{\text{BB}}$ is big.

Question Are $\overline{\mathcal{M}}_{12}^K$ and $\overline{\mathbb{B}^9/\Gamma_{12}}^{tor}$ are derived equivalent in the classical sense?

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- L. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactiications
- 6. Results
- . Outlook

Outlook

The results which we have discussed here also hold in other situations

- Moduli of 8 points (Maeda, H.)
- Cubic surfaces (using the Naruki compactification) (Casalaina-Martin, Grushevsky, H., Laza + Maeda)
- Cubic threefolds (some results, work in progress with Grushevsky)
- All Deligne-Mostow varieties (work in progress with Maeda).

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- Deligne-Mostow varieties
- 5. Comparing compactiications
- 6. Results
- 7. Outlook

- S. Casalaina-Martin
- S. Grushevsky
- K. Hulek
- S. Kondō
- R. Laza
- Y. Maeda
- 0. Introduction
- 1. Examples
- 2. Level covers
- 3. Moduli of curves
- 4. Deligne-Mostow varieties
- 5. Comparing compactilcations
- 6. Results
- 7. Outlook

Thank you for your attention