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Kähler manifolds and isometries between them

Isometries between Riemannian manifolds

For a Riemannian manifold (M, g) given by (gαβ(x)) in local coordinates,

we have ∥ξ∥2g =
∑

α,β gαβ(x)ξ
αξβ for ξ ∈ Tx(M). If f : (M, g) → (N, h)

is an isometry, we have, for each pair (α, β) of indices,

gαβ(x) =
∑

i ,j hij
∂f i

∂xα
∂f j

∂xβ
(x).

Holomorphic isometries between Hermitian manifolds

For a holomorphic isometry f : (M, g) → (N, h) between Hermitian

manifolds, we have gαβ(z) =
∑

i ,j hi j(z)
∂f i

∂zα
∂f j

∂zβ
(z) for all (α, β).

Kähler manifolds and holomorphic isometries between them

A Hermitian manifold (M, g) is Kähler if and only if locally ∃ a potential

function φ such that gαβ := ∂2φ
∂zα∂zβ

, ωg :=
√
−1∂∂φ being the Kähler

form. For a holomorphic isometry f : (M, h) → (N, h) between Kähler
manifolds with global potentials φ resp.ψ, we have√
−1∂∂(ψ ◦ f ) =

√
−1∂∂φ, i.e., φ(z) = ψ(f (z))+ u, u = 2Re(h), ∃ h hol.
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The diastasis of Calabi

Let (M, g) be a Kähler manifold with Kähler form ωg . Let U ⊂ M be a
holomorphic coordinate ball such that there exists a smooth potential
function φ s.t.

√
−1∂∂φ = ωg .

Assume that g and hence φ to be
real-analytic. There exists a unique function Φ(z ,w) defined on some
neighborhood of the diagonal of U × U, holomorphic in z and
anti-holomorphic in w , s.t. φ(z) = Φ(z , z). If 0 ∈ U and

φ(z) =
∑

I ,J aI Jz
I zJ in a neighborhood of 0, then

Φ(z ,w) =
∑

I ,J aI Jz
IwJ , I = (i1, · · · , im), J = (j1, · · · , jm), ik , jk ≥ 0.

If
√
−1∂∂φ′ = ωg on U, then φ′ = φ+ h + h for some h holomorphic on

U. Calabi [Ca53] defined locally the diastasis δM(x , y) on (M, g) by
δM(x , y) := Φ(x , x)− Φ(x , y)− Φ(y , x) + Φ(y , y). If we replace φ by

φ′ = φ+ 2Re(h), then Φ becomes Φ′ = Φ+ H; H(x , y) := h(x) + h(y).
Replacing φ by φ′, we define analogously δ′M(x , y). We have
δ′M(x , y)− δM(x , y) = H(x , x)− H(x , y)− H(y , x) + H(y , y) = 0, i.e.,
δ′M(x , y) = δM(x , y). Thus, near x ∈ M we have a potential function
ψx(y) := δM(x , y) invariant under holomorphic isometries.
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Analytic continuation of holomorphic isometries into PN

The Fubini space is the complex projective space equipped with the Kähler

form
√
−1∂∂ log(1 + ∥z∥)2 in inhomogeneous coordinates.

Theorem (local rigidity, Calabi, Ann. Math. (1953))

Let (M, g) be complex manifold with a real-analytic Kähler metric g ;
xo ∈ M, (PN , ds2FS), 1 ≤ N ≤ ∞, be the Fubini-Study space, o ∈ PN , and

f : (M, g ; xo) → (PN , ds2FS ; o) be a germ of holomorphic isometry.
Suppose the image of f does not lie on any hyperplane, then f is
determined up to a projective unitary transformation.

Theorem (analytic continuation, Calabi, Ann. Math. (1953))

Let (M, g) be a complex manifold equipped with a real-analytic Kähler
metric. Let λ > 0, 1 ≤ N ≤ ∞, and φ : (M, g ; x0) →

(
PN , 1

λ ds2FS ; y0
)
be

a germ of holomorphic isometry. Suppose for each x ∈ M, the maximal
analytic extension of the diastasis ψx(y) := δM(x , y) is single-valued.
Then, φ admits an extension to Φ : (M, g) →

(
PN , 1

λ ds2FS
)
. Assume

furthermore that δM(x , y) = 0 if and only if x = y . Then, Φ is injective.
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The Bergman kernel

U ⋐ Cn bounded domain; H2(U) :=
{
f ∈ O(U) :

∫
U |f |2dV <∞

}
;

{fn}∞n=0 orthonormal basis.

The Bergman kernel

K (z ,w) :=
∞∑
n=0

fn(z)fn(w) , ∂zK = ∂wK = 0 .

The Bergman metric

φ(z) := logK (z , z); gi j :=
∂2φ

∂zi∂z j
=

∂2

∂zi∂z j
logK (z , z) .

The Bergman metric g and its associated Kähler form ωg are given by

g = 2Re
n∑

i ,j=1

gi jdz
i ⊗ dz j ; ωg =

√
−1∂∂ logK (z , z) .

On a bounded domain we have ω > 0.
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Bounded symmetric domains

First examples: the complex unit ball

Bn = {z ∈ Cn : ∥z∥ < 1} .

Classical cases

D I (p, q) = {Z ∈ M(p, q,C) : I − Z
t
Z > 0} , p, q ≥ 1 ;

D II (n, n) = {Z ∈ D I
n,n : Z t = −Z} , n ≥ 2 ;

D III (n, n) = {Z ∈ D I
n,n : Z t = Z} , n ≥ 3 ;

D IV
n =

{
(z1, . . . , zn) ∈ Cn : ∥z∥2 < 2 ;

∥z∥2 < 1 +
∣∣ 1
2 (z

2
1 + · · ·+ z2n )

∣∣2 } , n ≥ 3 .

Exceptional domains

DV , dim 16, type E6 ; DVI , dim 27, type E7 .
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Bergman kernels for classical domains

KBn(z ,w) =
cn

(1− < z ,w >)n+1
;

KD I (p,q)(Z ,W ) =
cp,q

det
(
Ip − ZW

t)p+q ;

KD II (n,n)(Z ,W ) =
an

det
(
In + ZW

)n−1
;

KD III (n,n)(Z ,W ) =
bn

det
(
In − ZW

)n+1
;

KD IV
n
(z ,w) =

dn(
1− z · w + 1

4

∑
1≤i ,j≤n z

2
i w

2
j

)n .
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Analytic continuation of holomorphic isometries up to
normalizing constants with respect to the Bergman metric

Let D ⋐ Cn and Ω ⋐ CN be bounded domains, and λ > 0 be a real

constant. We are interested to prove extension theorems for holomorphic

isometries up to normalizing constants f : (D, λ ds2D ; x0) → (Ω, ds2Ω; y0) .

Interior extension

On a bounded domain U the potential function φ(z) = logKU(z , z) is
globally defined, hence Calabi [Ca53] applies to give interior extension
results, as follows. We have a canonical holomorphic embedding
ΦΩ : Ω → P(H2(Ω)⋆). Choosing any orthonormal basis (hi ) of H

2(Ω),
ΦΩ : Ω → P∞ ∼= P(H2(Ω)⋆) is given by ΦΩ(ζ) = [h0(ζ), · · · , hi (ζ), · · · ].
The mapping ΦΩ ◦ f : (D, ds2D ; x0) →

(
P(H2(Ω)⋆), 1

λ ds2FS ; ΦΩ(y0)
)
is a

holomorphic isometry into a projective space of countably infinite
dimension equipped with the Fubini-Study metric. Let P(Λ) ⊂ P(H2(Ω)⋆)
be the topological projective-linear span of the image of ΦΩ ◦ f ,
Λ ⊂ H2(Ω)⋆ being a Hilbert subspace.
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Univalence of ψx(y) := δD(x , y) follows readily from the Cauchy-Schwarz
inequality |KD(x , y)|2 ≤ KD(x , x)KD(y , y), with equality if and only if(
s0(x), · · · , si (x), · · ·

)
and

(
s0(y), · · · , si (y), · · ·

)
are proportional to each

other, hence x = y . By Calabi [Ca53], ΦΩ ◦ f extends to a holomorphic
isometry Ψ : D → P(Λ), implying analytic continuation of Graph(f ) to a
complex-analytic subvariety of D × Ω.

Let U ⊂ Cn be a bounded complete circular domain. Because of the
invariance of the Bergman kernel KU under the circle group action, i.e.,
KU(e

iθz , e iθw)) = KU(z ,w) for θ ∈ R, it follows that KU(z , 0) is a
constant. Denoting by δU(x , y) the diastasis on (U, ds2U) and by Φ(z ,w)
the polarization of the real-analytic function φ(z) := δU(0, z). We have

δU(0, z) = logKU(0, 0)− logKU(0, z)− logKU(z , 0)

+ logKU(z , z) = logKU(0, 0) + logKU(z , z) ;

Φ(z ,w) = logKU(z ,w) + logKU(0, 0) .

From functional identities we will derive extension results.
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Extension of germs of maps on complete circular domains

Bounded symmetric domains Ω ⋐ CN are complete circular domains.

Applying the invariance of the diastasis, we have

Proposition (holomorphic functional identities)

Let D ⋐ Cn and Ω ⋐ CN be bounded complete circular domains. Let λ be
any positive real number and f : (D, λ ds2D ; 0) → (Ω, ds2Ω; 0) be a germ of
holomorphic isometry at 0 ∈ D, f (0) = 0.Then, there exists some real
number A > 0 such that for z ,w ∈ D sufficiently close to 0 we have

KΩ(f (z), f (z)) = A · KD(z , z)
λ; and hence

KΩ(f (z), f (w)) = A · KD(z ,w)λ; where

KD(z ,w)λ = Aeλ logKD(z,w) ,

in which log denotes the principal branch of logarithm.

Let ϵ > 0 be such that f is defined on Dϵ := B(0; ϵ) ⋐ D.
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Proposition (extension of graphs of germs of holomorphic isometries)

For each w ∈ Dϵ, let Vw ⊂ D × CN be the set of all (z , ζ) ∈ D × Ω s.t.

(Iw ) KΩ

(
ζ, f (w)

)
= A · KD

(
z ,w

)λ
.

Define V =
⋂

w∈Dϵ

Vw . Suppose dim(z,f (z))

(
V ∩ ({z} × CN)

)
≥ 1 for

z ∈ D. Then, there exists a family hα ∈ H2(Ω), α ∈ A, s.t.

Graph(f ) ⊂ Dϵ × E , where E :=
⋂

α∈A Zero(hα) ,

and s.t. dim(z,f (z))

(
V ∩ ({z} × E )

)
= 0 for a general point z ∈ Dϵ.

Moreover, each hα is the restriction to Ω of a rational function whenever
(a) KD(z ,w) is rational in (z ,w) and (b) KΩ(ζ, ξ) is rational in (ζ, ξ),

Idea of Proof (infinitesimal deformations of solutions to (Iw ))

(♯) KΩ(ft(z), f (w)) = KD(z ,w)λ ; f0(z) ≡ f (z) .

Assume ∂k

∂tk
ft(z)

∣∣
t=0

≡ 0 for k < ℓ and η(z) := ∂ℓ

∂tℓ
ft(z)

∣∣
t=0

̸≡ 0. Then,
hα(f (w)) = 0;α ∈ A, follow from expressing η(z) in canonical coordinates
of Ω of Bergman adapted to different base points along f (Dϵ) ⊂ Ω.

Ngaiming Mok (HKU) RESCALING July 1-5, 2024 11 / 46



Proposition (extension of graphs of germs of holomorphic isometries)

For each w ∈ Dϵ, let Vw ⊂ D × CN be the set of all (z , ζ) ∈ D × Ω s.t.

(Iw ) KΩ

(
ζ, f (w)

)
= A · KD

(
z ,w

)λ
.

Define V =
⋂

w∈Dϵ

Vw . Suppose dim(z,f (z))

(
V ∩ ({z} × CN)

)
≥ 1 for

z ∈ D.

Then, there exists a family hα ∈ H2(Ω), α ∈ A, s.t.

Graph(f ) ⊂ Dϵ × E , where E :=
⋂

α∈A Zero(hα) ,

and s.t. dim(z,f (z))

(
V ∩ ({z} × E )

)
= 0 for a general point z ∈ Dϵ.

Moreover, each hα is the restriction to Ω of a rational function whenever
(a) KD(z ,w) is rational in (z ,w) and (b) KΩ(ζ, ξ) is rational in (ζ, ξ),

Idea of Proof (infinitesimal deformations of solutions to (Iw ))

(♯) KΩ(ft(z), f (w)) = KD(z ,w)λ ; f0(z) ≡ f (z) .

Assume ∂k

∂tk
ft(z)

∣∣
t=0

≡ 0 for k < ℓ and η(z) := ∂ℓ

∂tℓ
ft(z)

∣∣
t=0

̸≡ 0. Then,
hα(f (w)) = 0;α ∈ A, follow from expressing η(z) in canonical coordinates
of Ω of Bergman adapted to different base points along f (Dϵ) ⊂ Ω.

Ngaiming Mok (HKU) RESCALING July 1-5, 2024 11 / 46



Proposition (extension of graphs of germs of holomorphic isometries)

For each w ∈ Dϵ, let Vw ⊂ D × CN be the set of all (z , ζ) ∈ D × Ω s.t.

(Iw ) KΩ

(
ζ, f (w)

)
= A · KD

(
z ,w

)λ
.

Define V =
⋂

w∈Dϵ

Vw . Suppose dim(z,f (z))

(
V ∩ ({z} × CN)

)
≥ 1 for

z ∈ D. Then, there exists a family hα ∈ H2(Ω), α ∈ A, s.t.

Graph(f ) ⊂ Dϵ × E , where E :=
⋂

α∈A Zero(hα) ,

and s.t. dim(z,f (z))

(
V ∩ ({z} × E )

)
= 0 for a general point z ∈ Dϵ.

Moreover, each hα is the restriction to Ω of a rational function whenever
(a) KD(z ,w) is rational in (z ,w) and (b) KΩ(ζ, ξ) is rational in (ζ, ξ),

Idea of Proof (infinitesimal deformations of solutions to (Iw ))

(♯) KΩ(ft(z), f (w)) = KD(z ,w)λ ; f0(z) ≡ f (z) .

Assume ∂k

∂tk
ft(z)

∣∣
t=0

≡ 0 for k < ℓ and η(z) := ∂ℓ

∂tℓ
ft(z)

∣∣
t=0

̸≡ 0. Then,
hα(f (w)) = 0;α ∈ A, follow from expressing η(z) in canonical coordinates
of Ω of Bergman adapted to different base points along f (Dϵ) ⊂ Ω.

Ngaiming Mok (HKU) RESCALING July 1-5, 2024 11 / 46



Proposition (extension of graphs of germs of holomorphic isometries)

For each w ∈ Dϵ, let Vw ⊂ D × CN be the set of all (z , ζ) ∈ D × Ω s.t.

(Iw ) KΩ

(
ζ, f (w)

)
= A · KD

(
z ,w

)λ
.

Define V =
⋂

w∈Dϵ

Vw . Suppose dim(z,f (z))

(
V ∩ ({z} × CN)

)
≥ 1 for

z ∈ D. Then, there exists a family hα ∈ H2(Ω), α ∈ A, s.t.

Graph(f ) ⊂ Dϵ × E , where E :=
⋂

α∈A Zero(hα) ,

and s.t. dim(z,f (z))

(
V ∩ ({z} × E )

)
= 0 for a general point z ∈ Dϵ.

Moreover, each hα is the restriction to Ω of a rational function whenever
(a) KD(z ,w) is rational in (z ,w) and (b) KΩ(ζ, ξ) is rational in (ζ, ξ),

Idea of Proof (infinitesimal deformations of solutions to (Iw ))

(♯) KΩ(ft(z), f (w)) = KD(z ,w)λ ; f0(z) ≡ f (z) .

Assume ∂k

∂tk
ft(z)

∣∣
t=0

≡ 0 for k < ℓ and η(z) := ∂ℓ

∂tℓ
ft(z)

∣∣
t=0

̸≡ 0. Then,
hα(f (w)) = 0;α ∈ A, follow from expressing η(z) in canonical coordinates
of Ω of Bergman adapted to different base points along f (Dϵ) ⊂ Ω.

Ngaiming Mok (HKU) RESCALING July 1-5, 2024 11 / 46



Proposition (extension of graphs of germs of holomorphic isometries)

For each w ∈ Dϵ, let Vw ⊂ D × CN be the set of all (z , ζ) ∈ D × Ω s.t.

(Iw ) KΩ

(
ζ, f (w)

)
= A · KD

(
z ,w

)λ
.

Define V =
⋂

w∈Dϵ

Vw . Suppose dim(z,f (z))

(
V ∩ ({z} × CN)

)
≥ 1 for

z ∈ D. Then, there exists a family hα ∈ H2(Ω), α ∈ A, s.t.

Graph(f ) ⊂ Dϵ × E , where E :=
⋂

α∈A Zero(hα) ,

and s.t. dim(z,f (z))

(
V ∩ ({z} × E )

)
= 0 for a general point z ∈ Dϵ.

Moreover, each hα is the restriction to Ω of a rational function whenever
(a) KD(z ,w) is rational in (z ,w) and (b) KΩ(ζ, ξ) is rational in (ζ, ξ),

Idea of Proof (infinitesimal deformations of solutions to (Iw ))

(♯) KΩ(ft(z), f (w)) = KD(z ,w)λ ; f0(z) ≡ f (z) .

Assume ∂k

∂tk
ft(z)

∣∣
t=0

≡ 0 for k < ℓ and η(z) := ∂ℓ

∂tℓ
ft(z)

∣∣
t=0

̸≡ 0. Then,
hα(f (w)) = 0;α ∈ A, follow from expressing η(z) in canonical coordinates
of Ω of Bergman adapted to different base points along f (Dϵ) ⊂ Ω.

Ngaiming Mok (HKU) RESCALING July 1-5, 2024 11 / 46



Algebraic extension of holomorphic isometries between
bounded domains with rational Bergman kernels

Theorem (Mok, JEMS (2012))

Let D ⋐ Cn, resp. Ω ⋐ CN , be bounded domains. Let
x0 ∈ D, λ ∈ R, λ > 0, and f : (D, λds2D ; x0) → (Ω, ds2Ω; f (x0)) be a germ
of holomorphic isometry.

Suppose the Bergman kernel KD(z ,w) extends
as a rational function in (z ,w) and KΩ(ζ, ξ) extends as a rational function
in (ζ, ξ). Then, the germ of Graph(f ) ⊂ D × Ω at (x0, f (x0)) extends to
an irreducible affine-algebraic subvariety S ♯ ⊂ Cn × CN . If (Ω, ds2Ω) is

complete as a Kähler manifold, then S := S ♯ ∩ (D × Ω) is the graph of a
holomorphic isometric embedding F : (D, λ ds2D) → (Ω, ds2Ω). If
furthermore (D, ds2D) is complete, then F : D → Ω is proper.

The unit disk ∆ is conformally equivalent to the upper half-plane H, the
unbounded realization of the unit disk by means of the inverse Cayley
transform. For τ ∈ H, τ = re iθ, where r > 0, 0 < θ < π, and for an

integer p ≥ 2, we write τ
1
p = r

1
p e

iθ
p .
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Non-standard holomorphic isometries of ∆ into ∆p

Proposition (Mok [Mo12])

Let p ≥ 2 be an integer. Equip the upper half-plane H with the Poincaré
metric ds2H = Re dτ⊗dτ

2(Imτ)2
of constant Gaussian curvature −2 and Hp with

the product metric.

Then, writing γ = e
πi
p , the proper holomorphic

mapping ρp :
(
H, ds2H) → (H, ds2H)p defined by

ρp(τ) =
(
τ

1
p , γτ

1
p , . . . , γp−1τ

1
p
)
,

called the p-th root map, is a holomorphic isometric embedding.

Sketch of Proof

The Kähler form of
(
H, ds2H

)
is given by ωH = −i∂∂ log(Im(τ)). To

check that ρp(τ) is an isometry it suffices to equate potential functions.

Writing Im
(
γkτ

1
p
)
= |τ |

1
p Im
(
e

kπi
p

+θ), that the potentials match follows
from the trigonometric identity below for some positive constant cp.

sin θ sin
(
π
p + θ

)
· · · sin

(
(p−1)π

p + θ
)
= cp sin(pθ) .
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Image of holomorphic isometry of f : Bn ↪→ Ω .

Vq =
⋃{

lines ℓ on S = GC/P, q ∈ ℓ
}
;

Vq = Vq ∩ Ω = f (Bn).
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Asymptotic total geodesy of embedded Poincaré disks

Theorem (Chan-Mok, J. Diff. Geom. (2022))

Let f : (∆, λds2∆) → (Ω, ds2Ω) be a holomorphic isometric embedding,
where λ is a positive real constant and Ω ⋐ CN is a bounded symmetric
domain in its Harish-Chandra realization.

Then, f is asymptotically
totally geodesic at a general point b ∈ ∂∆.

Proposition Let f0 : (∆, λ ds
2
∆) → (Ω, ds2Ω) be a holomorphic isometric

embedding. Suppose Z0 := f0(∆) ⊂ Ω is not asymptotically totally
geodesic at a general point b ∈ ∂Z0. Then, there exists by rescaling a
holomorphic isometric embedding f : (∆, λ ds2∆) → (Ω, ds2Ω),
f (∆) =: Z with the following property.

(†) All tangent lines Tx(Z ), x ∈ Z , are equivalent under Aut(Ω).
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Total geodesy of certain curves on tube domains

Proposition

Let Ω be an irreducible bounded symmetric domain of tube type and of
rank r ; Z ⊂ Ω be a local holomorphic curve with Aut(Ω)-equivalent
tangent planes spanned by vectors of rank r .

Then, Z ⊂ Ω is totally
geodesic and of rank r (i.e. of diagonal type).

Proof

π : PTΩ → Ω, [S ] ∼= L−r ⊗ π∗E 2, where L → PTΩ is the tautological line
bundle, and E is dual to O(1) on M, Ω ⋐ M being the Borel embedding,
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∗E , π∗h0) .
⇔ Gauss curvature K (x) = −2/r , and σ ≡ 0. □

Ngaiming Mok (HKU) RESCALING July 1-5, 2024 16 / 46



Total geodesy of certain curves on tube domains

Proposition

Let Ω be an irreducible bounded symmetric domain of tube type and of
rank r ; Z ⊂ Ω be a local holomorphic curve with Aut(Ω)-equivalent
tangent planes spanned by vectors of rank r . Then, Z ⊂ Ω is totally
geodesic and of rank r (i.e. of diagonal type).

Proof

π : PTΩ → Ω, [S ] ∼= L−r ⊗ π∗E 2, where L → PTΩ is the tautological line
bundle, and E is dual to O(1) on M, Ω ⋐ M being the Borel embedding,
and

(2π)−1
√
−1∂∂ log ∥s∥2 = rc1(L, ĝ0)− 2c1(π
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Application to equivariant holomorphic isometries

As a first application we derive a rigidity result on equivariant holomorphic

isometries, which was due to Clozel [Cl07] in the classical cases.

Theorem (Chan-Mok [CM22])

Let D and Ω be bounded symmetric domains, Φ : Aut0(D) → Aut0(Ω) be
a group homomorphism, and F : D → Ω be a Φ-equivariant holomorphic
map. Then, F is totally geodesic.

After reducing to the case where D is irreducible, the latter theorem

follows from the total geodesy of embedded Poincaré disks by polarization

of the vanishing statements σ(γ, γ) = 0, σ being the second fundamental

form of Z := F (D) ⊂ Ω when restricted to (a) γ = dF (α) where α is

tangent to a minimal disk ∆ on D, (b) where γ = dF (β) where β is a

vector of rank 2 tangent to a degree-2 totally geodesic disk ∆′.
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Algebraic subsets of a bounded symmetric domain
invariant under a discrete cocompact group action

Theorem (Chan-Mok [CM22])

Let Ω ⋐ CN be a bounded symmetric domain in its Harish-Chandra
realization, and Z ⊂ Ω be an algebraic subset. Suppose there exists a
torsion-free discrete subgroup Γ̌ ⊂ Aut(Ω) such that Γ̌ stabilizes Z and
Y := Z/Γ̌ is compact. Then, Z ⊂ Ω is totally geodesic.

Corollary

Let Ω ⋐ CN be as in Theorem, Γ ⊂ Aut(Ω) be a torsion-free cocompact
lattice. Write XΓ := Ω/Γ, and π : Ω → XΓ for the uniformization map. Let
Y ⊂ XΓ be an irreducible subvariety, and Z ⊂ Ω be an irreducible
component of π−1(Y ). Suppose Z ⊂ Ω is an algebraic subset. Then,
Z ⊂ Ω is totally geodesic.
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Pseudo-homogeneity of Z under a complex Lie group

For the Borel embedding of a bounded symmetric domain Ω ⋐ CN ⊂ M

into its compact dual manifold, we write M = G/P, where G is the

identity component of Aut(M), and G0 for the identity component of

Aut(Ω). G0 ⊂ G is a noncompact real form. We have

Proposition

Let Z ⊂ Ω be an irreducible algebraic subset. Suppose there exists a
torsion-free discrete subgroup Γ̌ ⊂ G0 such that Γ̌ stabilizes Z and
Y := Z/Γ̌ is compact (hence projective). Let H0 ⊂ G0 be the identity
component of the (positive-dimensional) stabilizer subgroup of Z , and
H ⊂ G be the complexification of H0 inside G . Then, Z is an irreducible
component of Hx ∩ Ω for any z ∈ Z . In particular, Z ⊂ Ω is
nonsingular.

There exists Ẑ ⊂ M projective such that Z is an irreducible component of

Ẑ ∩ Ω. We proceed to prove that ∀x ∈ Z ,Hx = Ẑ , which implies

Proposition.
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Proof by the Maximum Principle

Since G acts algebraically on M, the stabilizer H0 ⊂ G0 of Z is algebraic.

Since Card(Γ̌) = ∞, dim(H0) > 0. Suppose Hx ̸= Ẑ . Then, there exists
an algebraic subvariety E ⊊ Z such that E ⊃ Hx ∩ Z . There exists a

projective subvariety Ê ⊂ M such that E is a finite union of irreducible

components of Ê ∩Ω. Let now P(z1, · · · , zN) be a complex polynomial
on CN (N = dim(Ω)) such that P|

Ê∩CN ≡ 0 and such that
P|

Ẑ∩CN ̸≡ 0. We proceed to derive a contradiction.

Define Φ(z) := sup{|P(γz)| : γ ∈ Γ̌}. Write fγ(z) := P(γz) for z ∈ Ω.
We have |fγ(z)| ≤ sup

(
|P|
∣∣
Ω

)
<∞ uniformly. From Cauchy estimates,

{fγ}γ∈Γ̌ is uniformly Lipschitz on any compact subset of Ω, hence Φ
is Lipschitz, in particular continuous, on Ω. Thus, Φ is a
(continuous) plurisubharmonic function on Ω. Restricting to Z , we
have Φ(z) = 0 whenever z ∈ Hx ∩ Z ⊂ E and Φ(z0) ̸= 0 for some
z0 ∈ Z − E . Φ descends to a nonconstant plurisubharmonic function on
the projective manifold Z = Y /Γ̌, a plain contradiction. □
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an algebraic subvariety E ⊊ Z such that E ⊃ Hx ∩ Z . There exists a
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Nadel’s Semisimplicity Theorem

Theorem (Nadel, Ann. Math. (1990))

Let X be a compact Kähler manifold with ample canonical line bundle,

and denote by π : X̃ → X the uniformization map. Then, Aut0(X̃ ) is a

semisimple Lie group without compact factors.

Lemma Let Z ⊂ Ω be an algebraic subset, and let Ω′ ⊂ Ω be the smallest

totally geodesic complex submanifold containing Z . Suppose γ ∈ Aut(Ω′)

such that γ|Z = idZ . Then, γ = idΩ′ . (Below we replace Ω by Ω′.)

Proposition

Suppose there exists a torsion-free discrete subgroup Γ̌ ⊂ Aut(Ω) such

that Γ̌ stabilizes Z and Y := Z/Γ̌ is compact. Let H0 ⊂ Aut(Ω) be the

identity component of the subgroup of Aut(Ω) which stabilizes Z . Then,

H0 ⊂ Aut(Ω) is a semisimple Lie group without compact factors.
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Bi-algebraicity by means of Nadel’s Theorem

Maps inducing the representation θ : Γ̌ ↪→ H0 ⊂ G0 = Aut0(Ω)

Write XΓ̌ := Γ̌\Ω = Γ̌\G/K . Without loss of generality we assume that

ı∗π1(Y ) = Γ̌ ⊂ H0, ı : Y ↪→ XΓ̌, where ı := ıY . By Nadel’s Theorem,

H0 is a semisimple Lie group without compact factors which acts on

Ω.

The homomorphism θ : Γ̌ ↪→ H0 ⊂ G0 is discrete. Write L ⊂ H0 for

a maximal compact subgroup. Let f : Y → Γ̌\H0/L =: SΓ̌ be any smooth

map which induces the representation θ. Since (Ω, ds2Ω) is a

Cartan-Hadamard manifold, i.e., a simply connected complete

Riemannian manifold of nonpositive sectional curvature, the center

of gravity argument gives a point x ∈ Ω which is fixed by L. Regard

H0/L as the orbit H0x ⊂ Ω = G0/K , L ⊂ K , the isotropy subgroup of

(Ω, ds2Ω) at x ∈ Ω. We have SΓ̌ ↪→ XΓ̌.
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Total geodesy of Z ⊂ Ω

Since XΓ̌ is a K (π, 1), the two smooth maps f , ı : Y → XΓ̌ inducing

the representation θ are homotopic. Recall that L ⊂ H0 is a maximal

compact subgroup, hence dimR (SΓ̌) is minimal among H0-orbits on Ω.

Denote by ω the Kähler form of the canonical Kähler-Einstein metric on

XΓ̌. H0 acts on Ω and preserves Z .

For any x ∈ Z , we have

dimR(SΓ̌) ≤ dimR(H0x) ≤ dimR Z = dimR Y := 2m.

By homotopy,
∫
Y (ı

∗ω)m =
∫
Y (f

∗ω)m. The first integral gives

m!Vol(Y , ω|Y ) > 0. A contradiction would arise if we had strict

inequality of dimensions, which implies
∫
Y (f

∗ω)m = 0. Hence,

equality holds, Z is homogeneous under H0, and H0 is of Hermitian type.

Thus, Z ⊂ Ω is the image of an equivariant holomorphic map

between bounded symmetric domains. By Chan-Mok, Z ⊂ Ω is

totally geodesic. □
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Moduli space of elliptic curves

An elliptic curve is complex-analytically a compact Riemann surface

S of genus 1. In other words, S := C/L for some lattice L ⊂ C.
Replacing L by λL for some λ ∈ C− {0}, without loss of generality we

may assume Lτ = Z+ Zτ , Im(τ) > 0, i.e., τ ∈ H, where

H :=
{
τ ∈ C : Im(τ) > 0

}
, the upper half plane. Write Sτ := C/Lτ .

For τ, τ ′ ∈ H, we have Sτ ∼= Sτ ′ if and only if there exists λ ∈ C,
λ ̸= 0, such that Lτ ′ = λLτ , i.e., if and only if τ ′ = aτ+b

cτ+d where

ad − bc ̸= 0. Thus, the set of equivalence classes of C/L is in

one-to-one correspondence with X = X (1) := H/PSL(2,Z). PSL(2,Z)
acts discretely on H with fixed points. We have the j-function

j : X (1)
∼=−→ C, and X (1) = P1.

A suitable finite-index subgroup Γ ⊂ PSL(2,Z) acts on H without fixed

points and XΓ := H/Γ can be compactified to a compact Riemann surface.
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The j-function

On the upper half-plane H = {τ : Im(τ) > 0} define

j(τ) = 1728
g2(τ)

3

g2(τ)3 − 27g3(τ)2
= 1728

g2(τ)
3

∆(τ)

where g2(τ) = 60
∑

(m,n) ̸=(0,0)

(m+nτ)−4; g3(τ) = 140
∑

(m,n)̸=(0,0)

(m+nτ)−6.

and ∆(τ) := g2(τ)
3 − 27g3(τ)

2 is the modular discriminant.

The j-function establishes a biholomorphism j : H/SL(2,Z)
∼=−→ C.
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The André-Oort Conjecture

A point τ ∈ H such that τ, j(τ) ∈ Q is called a special point (in which
case [Q(τ) : Q] = 2 by Schneider). The notion of special points is defined
for any Shimura variety XΓ = Ω/Γ, and the André-Oort Conjecture
ascertains that the Zariski closure of any set of special points on XΓ is
a finite union of Shimura subvarieties X ′

Γ′ ↪→ XΓ.

The Pila-Zannier strategy

Pila-Zannier (2010) proposed a strategy for finiteness and characterization
problems concerning distinguished points in different arithmetic contexts
(e.g., torsion points on abelian varieties, special points on Shimura
varieties). For the André-Oort Conjecture on a Shimura variety XΓ = Ω/Γ,
π : Ω → XΓ, it breaks down into (a) an arithmetic component consisting
of lower estimates on the size of Galois orbits of special points and
(b) a geometric component consisting of the characterization of
Zariski closures of π(Z ) ⊂ XΓ for an algebraic subset Z ⊂ Ω.
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Lindemann-Weierstrass Theorem and Schanuel Conjecture

Lindemann-Weierstrass Theorem (1882)

Suppose α1, · · · , αn ∈ Q are Q-linearly independent. Then, eα1 , · · · , eαn

are algebraically independent.

Schanuel Conjecture (1960s)

Suppose α1, · · · , αn ∈ C are Q-linearly independent. Then,
trans.deg.QQ (α1, · · · , αn; e

α1 , · · · , eαn) ≥ n.

The Lindemann-Weierstrass Theorem answers in the affirmative the
special case of the Schanuel Conjecture where α1, · · · , αn ∈ Q.

Baker’s Theorem (1975)

Suppose x1, · · · , xn ∈ Q, and log(x1), · · · log(xn) are linearly independent
over Q. Then 1, log(x1), · · · , log(xn) are linearly independent over Q.
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The Ax-Lindemann-Weierstrass Theorem on XΓ = Ω/Γ

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and

Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev, Publ. Math. I.H.E.S. (2016))

Let Ω ⋐ CN be a bounded symmetric domain in its Harish-Chandra
realization, Γ ⊂ Aut(Ω) be an arithmetic torsion-free lattice. Write
XΓ := Ω/Γ, π : Ω → XΓ for the uniformization map. Let Z ⊂ Ω be an

irreducible algebraic subset and denote by Z = π(Z )
Zar ⊂ XΓ the Zariski

closure of image of Z under the uniformization map in the quasi-projective
variety XΓ. Then, Z ⊂ XΓ is a totally geodesic subset.

Key arguments are from model theory (counting theorem Pila-Wilkie) and
complex differential geometry (volume estimates of Hwang-To).

Using the above, Tsimerman (2018) proved the André-Oort Conjecture for
Siegel modular varieties Ag = Hg/Sp(g ;Z). Recently, Pila, Shankar and
Tsimerman have made available a preprint in the arXiv resolving the full
André-Oort Conjecture in the affirmative.
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André-Oort Conjecture in the affirmative.

Ngaiming Mok (HKU) RESCALING July 1-5, 2024 28 / 46



The Ax-Lindemann-Weierstrass Theorem on XΓ = Ω/Γ

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and

Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev, Publ. Math. I.H.E.S. (2016))

Let Ω ⋐ CN be a bounded symmetric domain in its Harish-Chandra
realization, Γ ⊂ Aut(Ω) be an arithmetic torsion-free lattice. Write
XΓ := Ω/Γ, π : Ω → XΓ for the uniformization map. Let Z ⊂ Ω be an

irreducible algebraic subset and denote by Z = π(Z )
Zar ⊂ XΓ the Zariski

closure of image of Z under the uniformization map in the quasi-projective
variety XΓ.

Then, Z ⊂ XΓ is a totally geodesic subset.

Key arguments are from model theory (counting theorem Pila-Wilkie) and
complex differential geometry (volume estimates of Hwang-To).

Using the above, Tsimerman (2018) proved the André-Oort Conjecture for
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Ax-Lindemann-Weierstrass Theorem for rank-1 lattices

Theorem (Mok, Compositio Math. (2019))

Let n ≥ 2 and Γ ⊂ Aut(Bn) be a not necessarily arithmetic torsion-free
lattice. Write XΓ := Bn/Γ, π : Ω → XΓ for the uniformization map. Let

Z ⊂ Ω be an irreducible algebraic subset and Z := π(Z )
Zar ⊂ XΓ be the

Zariski closure of π(Z ). Then, Z ⊂ XΓ is a totally geodesic subset.

Sketch of proof

(a) We have Bn ⊂ Pn, Z open ⊂ Ẑ ⊂ Pn. Consider [Ẑ ] as a member of an
irreducible component K of Chow(Pn), with universal family µ : U → Pn.
Restrict U to Bn and take quotients wrt Γ to get µΓ : UΓ → XΓ,
tautologically foliated by F . Proved algebraicity of UΓ and F by means of
L2-estimates of ∂ (Mok-Zhong, Ann. Math. (1989)) and Kähler geometry.

(b) Let Z̃ be an irreducible component of π−1
Γ (Z ). Then, at a good point

b ∈ ∂Z̃ , Z̃ extends across b as the union of an analytic family of
algebraic subvarieties of Pn. Prove by a rescaling argument and Kähler
geometry that Z is a holomorphically isometric copy of some Bm. Then, a
result of Umemura using the diastasis implies total geodesy of Z ⊂ Bn.
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Sketch of proof

(a) We have Bn ⊂ Pn, Z open ⊂ Ẑ ⊂ Pn. Consider [Ẑ ] as a member of an
irreducible component K of Chow(Pn), with universal family µ : U → Pn.
Restrict U to Bn and take quotients wrt Γ to get µΓ : UΓ → XΓ,
tautologically foliated by F . Proved algebraicity of UΓ and F by means of
L2-estimates of ∂ (Mok-Zhong, Ann. Math. (1989)) and Kähler geometry.

(b) Let Z̃ be an irreducible component of π−1
Γ (Z ). Then, at a good point

b ∈ ∂Z̃ , Z̃ extends across b as the union of an analytic family of
algebraic subvarieties of Pn. Prove by a rescaling argument and Kähler
geometry that Z is a holomorphically isometric copy of some Bm. Then, a
result of Umemura using the diastasis implies total geodesy of Z ⊂ Bn.
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Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman, Ann. Math. (2019))

Let Ω ⋐ CN be a bounded symmetric domain, Γ ⊂ Aut(Ω) be an

arithmetic lattice, and write XΓ := Ω/Γ, as a quasi-projective variety. Let

W ⊂ Ω× XΓ be an algebraic subvariety. Let D ⊂ Ω× XΓ be the graph of

the uniformization map πΓ : Ω → XΓ, and U be an irreducible

component of W ∩ D whose dimension is larger than expected,

i.e.,

codimU < codim(W ) + codim(D),

the codimensions being in Ω× XΓ, or, equivalently,

dim(U) > dim(W )− dim(XΓ).

Then, the projection of U to XΓ is contained in a totally geodesic

subvariety Y ⊊ XΓ.
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Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice Γ ⊂ Aut(Ω), π : Ω → XΓ. In what follows

modular functions are Γ-invariant meromorphic functions on Ω descending

to rational functions on XΓ.

Theorem (Mok-Pila-Tsimerman, Ann. Math. (2019))

Let V ⊂ Ω be an irreducible complex analytic subvariety, not contained
in any weakly special subvariety E ⊊ Ω. Let (zi )1≤i≤n be algebraic
coordinates on Ω, {φ1, . . . , φN} be a basis of modular functions. Then,

trans.deg.CC
(
{zi}, {φj}

)
≥ n + dimV ,

where all φj are assumed defined at some point on V and restricted to V .

1 We may take the algebraic coordinates (z1, · · · , zn) to be the
Harish-Chandra coordinates on Ω ⋐ Cn ⊂ Ω̂.

2 Here a weakly special subvariety E ⊂ Ω is a totally geodesic
submanifold E ⊂ Ω such that π(E ) ⊂ XΓ is quasi-projective.
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Applications of Ax-Schanuel on Shimura varieties

Mok-Pila-Tsimerman has been generalized by Bakker-Tsimerman (2019)
to period domains, and by Gao (2020) to mixed Shimura varieties. There
have been many applications, to the Zilber-Pink Conjecture (beyond
André-Oort), to the Betti map for abelian schemes, etc.

The Uniform Mordell-Lang Conjecture

Faltings (1983) proved the Mordell Conjecture, i.e., for a smooth
projective algebraic curve C of genus g ≥ 2 defined over a number field K ,
there are at most a finite number of K -rational points.

Let C be embedded in its Jacobian J(C ). Dimitrov-Gao-Habegger (2021),
together with a later contribution by Kühne concerning K -rational points
of small height, established the Uniform Mordell-Lang Conjecture for
curves, proving that the set C (K ) of K -rational points on C is of size
uniformly bounded in terms of g , d = [K : Q] and the Mordell-Weil
rank ρ of J(C ).

The proof has many ingredients, but it uses in an essential way Gao’s work
on the degeneracy of the Betti map, which in turn relies on Ax-Schanuel
on mixed Shimura varieties.
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The inverse Cayley transform on Bn

Let ℓ ⊂ Bn be the geodesic on
(
Bn, ds2Bn

)
joining the point (−i , 0, · · · , 0)

to (i ; 0, · · · , 0). Let 0 ≤ t < 1 and φt ∈ Aut(Bn) be the transvection
along ℓ mapping 0 to (0, · · · , 0,−it).

Let αt be the complex affine
transformation on C such that dα′(0, · · · , 0,−it) = 2(φt(0))

−1, and
αt(0, · · · , 0,−it) = (0, · · · , 0, it) so that, defining Φt = αt ◦ φt we have
Φt(0) = (0, · · · , 0, it) and dΦt(0) = 2In.

φt(z1, · · · , zn−1; zn) =

(√
1− t2z1
1 + itzn

, · · · ,
√
1− t2zn−1

1 + itzn
;
zn − it

1 + itzn

)

dφt(0, · · · , 0; zn) = diag

(√
1− t2

1 + itzn
, · · · ,

√
1− t2

1 + itzn
;

1− t2

(1 + itzn)2

)
;

dφt(0, · · · , 0; 0) = diag
(√

1− t2, · · · ,
√

1− t2; 1− t2
)
.
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The inverse Cayley transform on Bn

αt(w) =

(
2w1√
1− t2

, · · · 2wn−1√
1− t2

,
2(wn + it)

1− t2

)
+ (0, · · · , 0, it).

Expanding Φt(z) = αt(φt(z)) and taking limits as t → 1 we have

Φt(z) =
( 2√

1− t2

√
1− t2z1
1 + itzn

, · · · , 2√
1− t2

√
1− t2zn−1

1 + itzn
,

2

1− t2

( zn − it

1 + itzn
+ it

)
+ it

)
=
( 2z1
1 + itzn

, · · · 2zn−1

1 + itzn
;

2zn
1 + itzn

+ it
)
;

Φ(z) = lim
t→1

Φt(z) = lim
t→1

( 2z1
1 + izn

, · · · 2zn−1

1 + izn
;

2zn
1 + itzn

+ it
)

=
( 2z1
1 + izn

, · · · , 2zn−1

1 + izn
;
zn + i

1 + izn

)
=: c(z).
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Siegel domain representation of the complex unit ball

Write c(z) =: τ = (τ1, · · · , τn). As in the case of n = 1 we have
zn = τn−i

1−iτn
. For 1 ≤ k ≤ n − 1 we have τk = 2zk

1+izn
,

zk =
τk
2
(1 + izn) =

τk
2

(
1 + i

(
τn − i

1− iτn

))
=

τk
1− iτn

.

Under the inverse Cayley transform c we have

c(Bn) =
{
τ = (τ1, · · · , τn) ∈ Cn :(∣∣∣∣ τ1

1− iτn

∣∣∣∣2 + · · ·+
∣∣∣∣ τn−1

1− iτn

∣∣∣∣2
)

+

∣∣∣∣ τn − i

1− iτn

∣∣∣∣2 < 1
}

=
{
τ : (|τ1|2 + · · · |τn−1|2) + |τn − i |2 < |τn + i |2

}
=
{
τ : Im(τn) >

1

4

(
|τ1|2 + · · ·+ |τn−1|2

)}
=: Dn
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The partial inverse Cayley transform on Ω

Write α = ∂
∂z1

and let CN = Cα⊕Hα ⊕Nα, Hα
∼= Cp, Nα

∼= Cq, for

the eigenspace decomposition corresponding to the eigenvalues −2,

−1 resp. 0 of Hα(ξ, η) := Rααξη(0). We have c = (i ; 0, · · · , 0; b).

Lemma

Let x ∈ ∂∆× {0} ⊂ Reg(∂Ω). Let Λ be a minimal rational curve passing
through x . Then, Λ ∩ Ω = ∅ if and only if, writing Tx(Λ) = Cη, we have
η ∈ Hα ⊕Nα.

Proposition (Cayley projection)

Let Θ ⊂ Reg(∂Ω) be a maximal boundary component. Then, for each
point z ∈ Ω there exists a unique point x ∈ Θ such that z ∈ Vx .
Furthermore, writing φ : Ω → Θ for the continuous map defined by setting
φ(z) = x if and only if z ∈ Ω, x ∈ Θ and z ∈ Vx . Then, φ : Ω → Θ is a
holomorphic submersion.
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The partial inverse Cayley transform on Ω

Proposition (Cayley projection in Siegel coordinates)

Write D := c(Ω) ⊂ CN , and let ϖ : D → Ω′ be the Cayley projection map
in Siegel coordinates, ϖ(z1; z2, · · · , zp+1; zp+2, · · · , zN) := (zp+2, · · · , zN).
Then, Fb = {(w1, · · · ,wp+1; b) : Im(w1) > λ(w2, · · · ,wp+1; b)}, where
λ : Cp × Ω′ → R is a nonnegative real analytic function. Moreover, for

each minimal rational curve ℓ on Ω̂ such that ℓ ∩Θ consists of a single
point (i ; 0; b) ∈ Θ, c(ℓ ∩ Ω) is an upper half-plane given by

c(ℓ ∩ Ω) =
{
(w1; a; b) ∈ Cα×Hα × Ω′ :, Im(w1) > λ(a; b) ≥ 0

}
for some a = (a2, · · · , ap+1) ∈ Cp ∼= Hα and for some b ∈ Ω′. Conversely,
for each (a; b) ∈ Hα × Ω′, D ∩ (C× {(a; b)} = c(ℓ ∩ Ω) for some minimal
rational curve ℓ passing through (i ; 0; b) ∈ Θ.
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The partial inverse Cayley transform on Ω via geometry

Denote by O(2), O(1) resp. O the restriction of O(2), O(1) resp. O to

the minimal disk Λ ∩ Ω ∼= ∆, TΩ

∣∣
Λ∩Ω = O(2)⊕O(1)p ⊕Oq.

We have (TΩ, g)
∣∣
Λ
= (O(2), h2)⊕ (O(1), h1)

p ⊕ (O, h0)q, where

(O(2), h2) ∼= (O(1), h1)
⊗2 and h0 is flat.

Geometric construction via dilatations

dφt(z1; 0; 0) = diag

(
1− t2

(1 + itz1)2
;

√
1− t2

1 + itz1
, · · · ,

√
1− t2

1 + itz1
; 1, · · · , 1

)
;

dφt(0; 0; 0) = diag
(
1− t2;

√
1− t2, · · · ,

√
1− t2; 0

)
.

We define now

αt(w) =

(
2(w1 + it)

1− t2
+ it;

2w2√
1− t2

, · · · 2wp+1√
1− t2

; 2wp+2, · · · , 2wN

)
;

Φt(z) = αt(φt(s))

dφt(c) = diag

(
1− t2

(1− t)2
;

√
1− t2

1− t
, · · · ,

√
1− t2

1− t
; 1, · · · , 1

)
;

dΦt(c) = diag

(
2

(1− t)2
;

2

1− t
, · · · , 2

1− t
; 2, · · · , 2

)
.
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The partial inverse Cayley transform on Ω via geometry

For each t ∈ (0, 1), Φt(Λξ) is a minimal rational curve Λt
ξ passing through

ct := Φt(c) =
(

2i
1−t ; 0, · · · , 0; 0, · · · , 0

)
such that

Tct

(
Λt
ξ

)
= CdΦt(c)(αξ).

dΦt(c)(αξ) =
2α

(1− t)2
+

2ξ

1− t
+ 2q(ξ)

=
2

(1− t)2
(
α+ (1− t)ξ + (1− t)2q(ξ)

)
.

Fix a point xξ ̸= c lying on the affine line Λξ ∩ CN . As t → 1, Φt(z)

converges to c(z)) and thus Λt
ξ converges to a minimal rational

curve c(Λξ) passing through c(xξ) ∈ CN such that Tc(xξ) = Cα. In

particular, all affine lines c(Λξ) ∩ CN are parallel to Λ.
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Rescaling Arguments for Ax-Lindemann-Weierstrass

Write Ω ⊂ Ω̂ for the Borel embedding. Let π : Ω → XΓ := Ω/Γ be the

uniformization map, Z ⊂ Ω be an irreducible algebraic subset. Write

Z ⊂ XΓ for the Zariski closure of π(Z ) in XΓ. We have constructed

µΓ : UΓ → XΓ arising from an irreducible component U universal

family of the Chow scheme of the Hermitian symmetric space Ω̂, by

restriction to Ω and by taking quotients with respect to Γ. (In the

noncocompact case Mok-Zhong applies to prove quasi-projectivity of UΓ.)

(UΓ,F ) is tautologically foliated. Lift π(Z ) to UΓ, take its Zariski

closure in UΓ, lift to U and project to Ω to obtain an irreducible

component Z̃ of π−1(Z) containing Z . We have a multifoliated structure

on some neighborhood of a general boundary point b on ∂Z̃ . Thus, there

exists some open neighborhood U of b and a complex submanifold S ⊂ U

such that π(S) ⊂ XΓ contains a nonempty open subset of Z in the

complex topology. For illustration consider the case where rank(Ω) = 2.
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Rescaling Arguments for Ax-Lindemann-Weierstrass

(1) Take a general boundary point b ∈ ∂Z̃ ∩ U, b ∈ Reg(∂Ω). The point
b lies on a unique boundary component Θ of rank 1 on Reg(∂Ω). Pick a
minimal rational curve Λ passing through b such that Λ ∩ Ω ̸= ∅, consider
a one-parameter group {φt : −∞ < t < +∞} corresponding to a hyper-
bolic flow on the geodesic disk D := Λ ∩ Ω, fixing b (and any point on Θ)
and pushing D to an opposite point b′ ∈ Θ′, an opposite boundary
component on Reg(∂Ω).

Write Γ̌ for the image of π1(Z) in Γ. Applying
estimates on intrinsic metrics, there exists γn ∈ Γ̌ such that γn = κn ◦ φn

with {κn} lying on a compact Q ⋐ G0 := Aut0(Ω). Then, (γn)∗Z̃ = Z̃ ,

κσ(n) → κ ∈ G0, and Z̃ = (γn)∗Z̃ = (κn)∗(φn)∗Z̃ subconverges to κ∗W ,

where W is the limit of (φn)∗Z̃ . Near b, W decomposes into a disjoint
union of holomorphic isometric copies of some Bm.

(2) When Z̃ is strictly pseudoconvex at b, rescaling gives a holomorphic

isometric embedding of Bm into Ω, m = dim(Z̃ ). By Mok (2012),

Z̃ ⊂ Ω is algebraic, hence bi-algebraic, thus totally geodesic by
Chan-Mok. In general, Z̃ = κ∗W decomposes into a disjoint union of
images of holomorphic isometric embeddings of some Bm.
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Rescaling arguments for Ax-Lindemann-Weierstrass

(3) Recall that Θ ⊂ Reg(∂Ω) is the boundary component passing through

b, and S ⊂ U analytically continues Z̃ across b ∈ ∂Z̃ . In general S
intersects Θ to give a complex analytic subvariety E ⊂ Θ ∩ U. We may

assume that E is smooth at b and decompose Z̃ near b into a disjoint

union of nonsingular strictly pseudoconvex subsets Z̃t parametrized
holomorphically by bt ∈ E .

(4) We have a totally geodesic embedded complex submanifold
∆×Θ ⊂ Ω, where ∆× {b} corresponds to D = Λ ∩Ω. Now proceed with

rescaling simultaneously Z̃t , and we end up with identifying Z̃ , up to an
automorphism, with a union W (in the notation of (1)) of
holomorphically and isometrically embedded Bm such that W is
invariant with respect to a real 1-parameter family Φ of translations.

Sidney Frankel first made use of 1-parameter families of translations in the

study of convex domains in CN which cover compact complex manifolds.
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The ALW Theorem on XΓ = Ω/Γ for arbitrary cocompact Γ

Theorem (Ax-Lindemann-Weierstrass for cocompact Γ)

Let Ω ⋐ CN be a bounded symmetric domain in its Harish-Chandra
realization, Γ ⊂ Aut(Ω) be a torsion-free cocompact lattice. Write
XΓ := Ω/Γ, π : Ω → XΓ for the uniformization map.

Let Z ⊂ Ω be an

irreducible algebraic subset and denote by Z = π(Z )
Zar ⊂ XΓ the Zariski

closure of the image of Z under the uniformization map in the projective
manifold XΓ. Then, Z ⊂ XΓ is a totally geodesic subset.

Let Z̃ be an irreducible component of π−1(Z ). Assume wlog 0 ∈ Z̃ .
Denote by Ω′ ⊂ Ω the smallest totally geodesic complex submanifold
containing Z̃ , Ω′ ⋐ CN′

its Harish-Chandra realization. Starting with the
real 1-parameter group Φ ⊂ G ′

0 := Aut0(Ω
′) of translations and consider-

ing a maximal algebraic subgroup H0 ⊂ G ′
0 containing Φ, we prove that

H0 ⊂ G ′
0 is normal. We claim that H0 = G ′

0, hence Z̃ = Ω′, proving Thm.
To this end we argue that H0 ̸= G ′

0 would lead to a contradiction.
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The assumption H0 ̸= G ′
0 would allow us to enhance the dimension of

leaves extending beyond ∂Ω′ of some holomorphic foliation F defined on
U ∩ Ω′ for some open neighborhood U of a good boundary point
p ∈ ∂Z̃ ⊂ ∂Ω′ on CN′

. Applying the rescaling method for subvarieties at
p, we would obtain an algebraic subgroup H♯

0 ⊋ H0 of G ′
0 contradicting the

maximality of H0 ⊂ G ′
0 as an algebraic subgroup containing Φ.

Strengthening of characterization of bialgebraic varieties replacing
algebraicity on Z ⊂ Ω by an analytic condition

Theorem (Generalization of Chan-Mok (2022)) Let Ω ⋐ CN be a
bounded symmetric domain in its Harish-Chandra realization. Let Ω♯ ⋑ Ω
be a bounded domain containing the topological closure Ω, Z ♯ ⊂ Ω♯ be an
irreducible complex-analytic subvariety, and Z ⊂ Ω be an irreducible
component of Z ♯ ∩ Ω. Suppose there exists a torsion-free discrete
subgroup Γ̌ ⊂ Aut0(Ω) leaving Z invariant as a set such that
Y := Z/Γ̌ is compact. Then, Z ⊂ Ω is a totally geodesic submanifold,
hence Y ↪→ XΓ̌ := Ω/Γ̌ is a totally geodesic subset.
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Alles Gute zum Geburtstag,

Thomas!!
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