The rescaling method on subvarieties of bounded symmetric domains arising from their quotients with respect to cocompact lattices

Ngaiming Mok

The University of Hong Kong

Transcendental Aspects of Algebraic Geometry Cetraro, Italy

July 1-5, 2024

Isometries between Riemannian manifolds

For a Riemannian manifold (M, g) given by $(g_{\alpha\beta}(x))$ in local coordinates, we have $\|\xi\|_g^2 = \sum_{\alpha,\beta} g_{\alpha\beta}(x)\xi^{\alpha}\xi^{\beta}$ for $\xi \in T_x(M)$. If $f: (M,g) \to (N,h)$ is an isometry, we have, for each pair (α, β) of indices,

 $g_{\alpha\beta}(x) = \sum_{i,j} h_{ij} \frac{\partial f^i}{\partial x_{\alpha}} \frac{\partial f^j}{\partial x_{\beta}}(x).$

Isometries between Riemannian manifolds

For a Riemannian manifold (M, g) given by $(g_{\alpha\beta}(x))$ in local coordinates, we have $\|\xi\|_g^2 = \sum_{\alpha,\beta} g_{\alpha\beta}(x)\xi^{\alpha}\xi^{\beta}$ for $\xi \in T_x(M)$. If $f: (M,g) \to (N,h)$ is an isometry, we have, for each pair (α, β) of indices,

 $g_{\alpha\beta}(x) = \sum_{i,j} h_{ij} \frac{\partial f^i}{\partial x_{\alpha}} \frac{\partial f^j}{\partial x_{\beta}}(x).$

Holomorphic isometries between Hermitian manifolds

For a holomorphic isometry $f : (M,g) \to (N,h)$ between Hermitian manifolds, we have $g_{\alpha\overline{\beta}}(z) = \sum_{i,j} h_{i\overline{j}}(z) \frac{\partial f^i}{\partial z_\alpha} \frac{\partial \overline{f^j}}{\partial \overline{z_\beta}}(z)$ for all (α,β) .

Isometries between Riemannian manifolds

For a Riemannian manifold (M, g) given by $(g_{\alpha\beta}(x))$ in local coordinates, we have $\|\xi\|_g^2 = \sum_{\alpha,\beta} g_{\alpha\beta}(x)\xi^{\alpha}\xi^{\beta}$ for $\xi \in T_x(M)$. If $f: (M,g) \to (N,h)$ is an isometry, we have, for each pair (α, β) of indices,

 $g_{\alpha\beta}(x) = \sum_{i,j} h_{ij} \frac{\partial f^i}{\partial x_{\alpha}} \frac{\partial f^j}{\partial x_{\beta}}(x).$

Holomorphic isometries between Hermitian manifolds

For a holomorphic isometry $f : (M,g) \to (N,h)$ between Hermitian manifolds, we have $g_{\alpha\overline{\beta}}(z) = \sum_{i,j} h_{i\overline{j}}(z) \frac{\partial f^i}{\partial z_\alpha} \frac{\partial \overline{f^j}}{\partial \overline{z_\beta}}(z)$ for all (α,β) .

Kähler manifolds and holomorphic isometries between them

A Hermitian manifold (M,g) is Kähler if and only if locally \exists a potential function φ such that $g_{\alpha\overline{\beta}} := \frac{\partial^2 \varphi}{\partial z_\alpha \partial \overline{z_\beta}}$, $\omega_g := \sqrt{-1}\partial\overline{\partial}\varphi$ being the Kähler form.

Isometries between Riemannian manifolds

For a Riemannian manifold (M, g) given by $(g_{\alpha\beta}(x))$ in local coordinates, we have $\|\xi\|_g^2 = \sum_{\alpha,\beta} g_{\alpha\beta}(x)\xi^{\alpha}\xi^{\beta}$ for $\xi \in T_x(M)$. If $f: (M,g) \to (N,h)$ is an isometry, we have, for each pair (α, β) of indices,

 $g_{\alpha\beta}(x) = \sum_{i,j} h_{ij} \frac{\partial f^i}{\partial x_{\alpha}} \frac{\partial f^j}{\partial x_{\beta}}(x).$

Holomorphic isometries between Hermitian manifolds

For a holomorphic isometry $f : (M,g) \to (N,h)$ between Hermitian manifolds, we have $g_{\alpha\overline{\beta}}(z) = \sum_{i,j} h_{i\overline{j}}(z) \frac{\partial f^i}{\partial z_{\alpha}} \frac{\partial \overline{f^j}}{\partial \overline{z_{\beta}}}(z)$ for all (α,β) .

Kähler manifolds and holomorphic isometries between them

A Hermitian manifold (M, g) is Kähler if and only if locally \exists a potential function φ such that $g_{\alpha\overline{\beta}} := \frac{\partial^2 \varphi}{\partial z_\alpha \partial \overline{z_\beta}}$, $\omega_g := \sqrt{-1}\partial\overline{\partial}\varphi$ being the Kähler form. For a holomorphic isometry $f : (M, h) \to (N, h)$ between Kähler manifolds with *global* potentials φ resp. ψ , we have $\sqrt{-1}\partial\overline{\partial}(\psi \circ f) = \sqrt{-1}\partial\overline{\partial}\varphi$, i.e., $\varphi(z) = \psi(f(z)) + u$, $u = 2\operatorname{Re}(h)$, $\exists h$ hol. Ngaiming Mok (HKU) RESCALING JULTS, 2004 2/46

Let (M, g) be a Kähler manifold with Kähler form ω_g . Let $U \subset M$ be a holomorphic coordinate ball such that there exists a smooth **potential** function φ s.t. $\sqrt{-1}\partial\overline{\partial}\varphi = \omega_g$.

Let (M, g) be a Kähler manifold with Kähler form ω_g . Let $U \subset M$ be a holomorphic coordinate ball such that there exists a smooth **potential** function φ s.t. $\sqrt{-1}\partial\overline{\partial}\varphi = \omega_g$. Assume that g and hence φ to be **real-analytic**. There exists a unique function $\Phi(z, w)$ defined on some neighborhood of the diagonal of $U \times U$, holomorphic in z and anti-holomorphic in w, s.t. $\varphi(z) = \Phi(z, z)$.

Let (M, g) be a Kähler manifold with Kähler form ω_g . Let $U \subset M$ be a holomorphic coordinate ball such that there exists a smooth **potential** function φ s.t. $\sqrt{-1}\partial\overline{\partial}\varphi = \omega_g$. Assume that g and hence φ to be real-analytic. There exists a unique function $\Phi(z, w)$ defined on some neighborhood of the diagonal of $U \times U$, holomorphic in z and anti-holomorphic in w, s.t. $\varphi(z) = \Phi(z, z)$. If $0 \in U$ and $\varphi(z) = \sum_{I,J} a_{I\overline{J}} z^I \overline{z^J}$ in a neighborhood of 0, then $\Phi(z, w) = \sum_{I,J} a_{I\overline{J}} z^I \overline{w}^J$, $I = (i_1, \cdots, i_m)$, $J = (j_1, \cdots, j_m)$, $i_k, j_k \ge 0$.

Let (M, g) be a Kähler manifold with Kähler form ω_g . Let $U \subset M$ be a holomorphic coordinate ball such that there exists a smooth **potential** function φ s.t. $\sqrt{-1}\partial\overline{\partial}\varphi = \omega_g$. Assume that g and hence φ to be **real-analytic**. There exists a unique function $\Phi(z, w)$ defined on some neighborhood of the diagonal of $U \times U$, holomorphic in z and anti-holomorphic in w, s.t. $\varphi(z) = \Phi(z, z)$. If $0 \in U$ and $\varphi(z) = \sum_{I,J} a_{I\overline{J}} z^I \overline{z^J}$ in a neighborhood of 0, then $\Phi(z, w) = \sum_{I,J} a_{I\overline{J}} z^I \overline{w^J}$, $I = (i_1, \cdots, i_m)$, $J = (j_1, \cdots, j_m)$, $i_k, j_k \ge 0$.

If $\sqrt{-1}\partial\overline{\partial}\varphi' = \omega_g$ on U, then $\varphi' = \varphi + h + \overline{h}$ for some h holomorphic on U.

Let (M, g) be a Kähler manifold with Kähler form ω_g . Let $U \subset M$ be a holomorphic coordinate ball such that there exists a smooth **potential** function φ s.t. $\sqrt{-1}\partial\overline{\partial}\varphi = \omega_g$. Assume that g and hence φ to be **real-analytic**. There exists a unique function $\Phi(z, w)$ defined on some neighborhood of the diagonal of $U \times U$, holomorphic in z and anti-holomorphic in w, s.t. $\varphi(z) = \Phi(z, z)$. If $0 \in U$ and $\varphi(z) = \sum_{I,J} a_{IJ} z^I \overline{z^J}$ in a neighborhood of 0, then $\Phi(z, w) = \sum_{I,J} a_{IJ} z^I \overline{w^J}$, $I = (i_1, \cdots, i_m)$, $J = (j_1, \cdots, j_m)$, $i_k, j_k \ge 0$.

If $\sqrt{-1}\partial\overline{\partial}\varphi' = \omega_g$ on U, then $\varphi' = \varphi + h + \overline{h}$ for some h holomorphic on U. Calabi [Ca53] defined locally the **diastasis** $\delta_M(x, y)$ on (M, g) by $\delta_M(x, y) := \Phi(x, x) - \Phi(x, y) - \Phi(y, x) + \Phi(y, y)$.

Let (M, g) be a Kähler manifold with Kähler form ω_g . Let $U \subset M$ be a holomorphic coordinate ball such that there exists a smooth **potential** function φ s.t. $\sqrt{-1}\partial\overline{\partial}\varphi = \omega_g$. Assume that g and hence φ to be real-analytic. There exists a unique function $\Phi(z, w)$ defined on some neighborhood of the diagonal of $U \times U$, holomorphic in z and anti-holomorphic in w, s.t. $\varphi(z) = \Phi(z, z)$. If $0 \in U$ and $\varphi(z) = \sum_{I,J} a_{IJ} z^I \overline{z^J}$ in a neighborhood of 0, then $\Phi(z, w) = \sum_{I,J} a_{IJ} z^I \overline{w^J}$, $I = (i_1, \cdots, i_m)$, $J = (j_1, \cdots, j_m)$, $i_k, j_k \ge 0$.

If $\sqrt{-1}\partial\overline{\partial}\varphi' = \omega_g$ on *U*, then $\varphi' = \varphi + h + \overline{h}$ for some *h* holomorphic on *U*. Calabi [Ca53] defined locally the **diastasis** $\delta_M(x, y)$ on (M, g) by $\delta_M(x, y) := \Phi(x, x) - \Phi(x, y) - \Phi(y, x) + \Phi(y, y)$. If we replace φ by $\varphi' = \varphi + 2\operatorname{Re}(h)$, then Φ becomes $\Phi' = \Phi + H$; $H(x, y) := h(x) + \overline{h(y)}$.

Let (M, g) be a Kähler manifold with Kähler form ω_g . Let $U \subset M$ be a holomorphic coordinate ball such that there exists a smooth **potential** function φ s.t. $\sqrt{-1}\partial\overline{\partial}\varphi = \omega_g$. Assume that g and hence φ to be real-analytic. There exists a unique function $\Phi(z, w)$ defined on some neighborhood of the diagonal of $U \times U$, holomorphic in z and anti-holomorphic in w, s.t. $\varphi(z) = \Phi(z, z)$. If $0 \in U$ and $\varphi(z) = \sum_{I,J} a_{IJ} z^I \overline{z^J}$ in a neighborhood of 0, then $\Phi(z, w) = \sum_{I,J} a_{IJ} z^I \overline{w^J}$, $I = (i_1, \cdots, i_m)$, $J = (j_1, \cdots, j_m)$, $i_k, j_k \ge 0$.

If $\sqrt{-1}\partial\overline{\partial}\varphi' = \omega_g$ on *U*, then $\varphi' = \varphi + h + \overline{h}$ for some *h* holomorphic on *U*. Calabi [Ca53] defined locally the **diastasis** $\delta_M(x, y)$ on (M, g) by $\delta_M(x, y) := \Phi(x, x) - \Phi(x, y) - \Phi(y, x) + \Phi(y, y)$. If we replace φ by $\varphi' = \varphi + 2\operatorname{Re}(h)$, then Φ becomes $\Phi' = \Phi + H$; $H(x, y) := h(x) + \overline{h(y)}$. Replacing φ by φ' , we define analogously $\delta'_M(x, y)$. We have $\delta'_M(x, y) - \delta_M(x, y) = H(x, x) - H(x, y) - H(y, x) + H(y, y) = 0$, i.e., $\delta'_M(x, y) = \delta_M(x, y)$.

Let (M, g) be a Kähler manifold with Kähler form ω_g . Let $U \subset M$ be a holomorphic coordinate ball such that there exists a smooth **potential** function φ s.t. $\sqrt{-1}\partial\overline{\partial}\varphi = \omega_g$. Assume that g and hence φ to be real-analytic. There exists a unique function $\Phi(z, w)$ defined on some neighborhood of the diagonal of $U \times U$, holomorphic in z and anti-holomorphic in w, s.t. $\varphi(z) = \Phi(z, z)$. If $0 \in U$ and $\varphi(z) = \sum_{I,J} a_{IJ} z^I \overline{z^J}$ in a neighborhood of 0, then $\Phi(z, w) = \sum_{I,J} a_{IJ} z^I \overline{w^J}$, $I = (i_1, \cdots, i_m)$, $J = (j_1, \cdots, j_m)$, $i_k, j_k \ge 0$.

If $\sqrt{-1}\partial\overline{\partial}\varphi' = \omega_g$ on U, then $\varphi' = \varphi + h + \overline{h}$ for some h holomorphic on U. Calabi [Ca53] defined locally the **diastasis** $\delta_M(x, y)$ on (M, g) by $\delta_M(x, y) := \Phi(x, x) - \Phi(x, y) - \Phi(y, x) + \Phi(y, y)$. If we replace φ by $\varphi' = \varphi + 2\operatorname{Re}(h)$, then Φ becomes $\Phi' = \Phi + H$; $H(x, y) := h(x) + \overline{h(y)}$. Replacing φ by φ' , we define analogously $\delta'_M(x, y)$. We have $\delta'_M(x, y) - \delta_M(x, y) = H(x, x) - H(x, y) - H(y, x) + H(y, y) = 0$, i.e., $\delta'_M(x, y) = \delta_M(x, y)$. Thus, near $x \in M$ we have a potential function $\psi_x(y) := \delta_M(x, y)$ invariant under holomorphic isometries.

The Fubini space is the complex projective space equipped with the Kähler form $\sqrt{-1}\partial\overline{\partial}\log(1+||z||)^2$ in inhomogeneous coordinates.

The Fubini space is the complex projective space equipped with the Kähler form $\sqrt{-1}\partial\overline{\partial}\log(1+||z||)^2$ in inhomogeneous coordinates.

Theorem (local rigidity, Calabi, Ann. Math. (1953))

Let (M, g) be complex manifold with a real-analytic Kähler metric g; $x_o \in M$, $(\mathbb{P}^N, ds_{FS}^2)$, $1 \le N \le \infty$, be the Fubini-Study space, $o \in \mathbb{P}^N$, and $f : (M, g; x_o) \to (\mathbb{P}^N, ds_{FS}^2; o)$ be a germ of holomorphic isometry.

The Fubini space is the complex projective space equipped with the Kähler form $\sqrt{-1}\partial\overline{\partial}\log(1+||z||)^2$ in inhomogeneous coordinates.

Theorem (local rigidity, Calabi, Ann. Math. (1953))

Let (M, g) be complex manifold with a real-analytic Kähler metric g; $x_o \in M$, $(\mathbb{P}^N, ds_{FS}^2)$, $1 \le N \le \infty$, be the Fubini-Study space, $o \in \mathbb{P}^N$, and $f : (M, g; x_o) \to (\mathbb{P}^N, ds_{FS}^2; o)$ be a germ of holomorphic isometry. Suppose the image of f does not lie on any hyperplane, then f is determined up to a projective unitary transformation.

The Fubini space is the complex projective space equipped with the Kähler form $\sqrt{-1}\partial\overline{\partial}\log(1+||z||)^2$ in inhomogeneous coordinates.

Theorem (local rigidity, Calabi, Ann. Math. (1953))

Let (M, g) be complex manifold with a real-analytic Kähler metric g; $x_o \in M$, $(\mathbb{P}^N, ds_{FS}^2)$, $1 \le N \le \infty$, be the Fubini-Study space, $o \in \mathbb{P}^N$, and $f : (M, g; x_o) \to (\mathbb{P}^N, ds_{FS}^2; o)$ be a germ of holomorphic isometry. Suppose the image of f does not lie on any hyperplane, then f is determined up to a projective unitary transformation.

Theorem (analytic continuation, Calabi, Ann. Math. (1953))

Let (M, g) be a complex manifold equipped with a real-analytic Kähler metric. Let $\lambda > 0$, $1 \le N \le \infty$, and $\varphi : (M, g; x_0) \to (\mathbb{P}^N, \frac{1}{\lambda} ds_{FS}^2; y_0)$ be a germ of holomorphic isometry. Suppose for each $x \in M$, the maximal analytic extension of the diastasis $\psi_x(y) := \delta_M(x, y)$ is single-valued.

The Fubini space is the complex projective space equipped with the Kähler form $\sqrt{-1}\partial\overline{\partial}\log(1+||z||)^2$ in inhomogeneous coordinates.

Theorem (local rigidity, Calabi, Ann. Math. (1953))

Let (M, g) be complex manifold with a real-analytic Kähler metric g; $x_o \in M$, $(\mathbb{P}^N, ds_{FS}^2)$, $1 \le N \le \infty$, be the Fubini-Study space, $o \in \mathbb{P}^N$, and $f : (M, g; x_o) \to (\mathbb{P}^N, ds_{FS}^2; o)$ be a germ of holomorphic isometry. Suppose the image of f does not lie on any hyperplane, then f is determined up to a projective unitary transformation.

Theorem (analytic continuation, Calabi, Ann. Math. (1953))

Let (M, g) be a complex manifold equipped with a real-analytic Kähler metric. Let $\lambda > 0$, $1 \le N \le \infty$, and $\varphi : (M, g; x_0) \to (\mathbb{P}^N, \frac{1}{\lambda} ds_{FS}^2; y_0)$ be a germ of holomorphic isometry. Suppose for each $x \in M$, the maximal analytic extension of the diastasis $\psi_x(y) := \delta_M(x, y)$ is single-valued. Then, φ admits an extension to $\Phi : (M, g) \to (\mathbb{P}^N, \frac{1}{\lambda} ds_{FS}^2)$.

The Fubini space is the complex projective space equipped with the Kähler form $\sqrt{-1}\partial\overline{\partial}\log(1+||z||)^2$ in inhomogeneous coordinates.

Theorem (local rigidity, Calabi, Ann. Math. (1953))

Let (M, g) be complex manifold with a real-analytic Kähler metric g; $x_o \in M$, $(\mathbb{P}^N, ds_{FS}^2)$, $1 \le N \le \infty$, be the Fubini-Study space, $o \in \mathbb{P}^N$, and $f : (M, g; x_o) \to (\mathbb{P}^N, ds_{FS}^2; o)$ be a germ of holomorphic isometry. Suppose the image of f does not lie on any hyperplane, then f is determined up to a projective unitary transformation.

Theorem (analytic continuation, Calabi, Ann. Math. (1953))

Let (M, g) be a complex manifold equipped with a real-analytic Kähler metric. Let $\lambda > 0$, $1 \le N \le \infty$, and $\varphi : (M, g; x_0) \to (\mathbb{P}^N, \frac{1}{\lambda} ds_{FS}^2; y_0)$ be a germ of holomorphic isometry. Suppose for each $x \in M$, the maximal analytic extension of the diastasis $\psi_x(y) := \delta_M(x, y)$ is single-valued. Then, φ admits an extension to $\Phi : (M, g) \to (\mathbb{P}^N, \frac{1}{\lambda} ds_{FS}^2)$. Assume furthermore that $\delta_M(x, y) = 0$ if and only if x = y. Then, Φ is injective.

$U \Subset \mathbb{C}^n$ bounded domain; $H^2(U) := \{f \in \mathcal{O}(U) : \int_U |f|^2 dV < \infty\}$; $\{f_n\}_{n=0}^{\infty}$ orthonormal basis.

5/46

 $U \Subset \mathbb{C}^n$ bounded domain; $H^2(U) := \{ f \in \mathcal{O}(U) : \int_U |f|^2 dV < \infty \}$; $\{ f_n \}_{n=0}^{\infty}$ orthonormal basis. The Bergman kernel

$$K(z,w) := \sum_{n=0}^{\infty} f_n(z) \overline{f_n(w)} , \ \partial_{\overline{z}} K = \partial_w K = 0 .$$

 $U \Subset \mathbb{C}^n$ bounded domain; $H^2(U) := \{ f \in \mathcal{O}(U) : \int_U |f|^2 dV < \infty \}$; $\{ f_n \}_{n=0}^{\infty}$ orthonormal basis. The Bergman kernel

$$K(z,w) := \sum_{n=0}^{\infty} f_n(z) \overline{f_n(w)} , \ \partial_{\overline{z}} K = \partial_w K = 0 .$$

The Bergman metric

$$\varphi(z) := \log K(z,z); \quad g_{i\overline{j}} := \frac{\partial^2 \varphi}{\partial z_i \partial \overline{z}_j} = \frac{\partial^2}{\partial z_i \partial \overline{z}_j} \log K(z,z) \; .$$

 $U \Subset \mathbb{C}^n$ bounded domain; $H^2(U) := \{ f \in \mathcal{O}(U) : \int_U |f|^2 dV < \infty \}$; $\{ f_n \}_{n=0}^{\infty}$ orthonormal basis. The Bergman kernel

$$K(z,w) := \sum_{n=0}^{\infty} f_n(z) \overline{f_n(w)} , \ \partial_{\overline{z}} K = \partial_w K = 0 .$$

The Bergman metric

$$\varphi(z) := \log K(z,z); \quad g_{i\overline{j}} := \frac{\partial^2 \varphi}{\partial z_i \partial \overline{z}_j} = \frac{\partial^2}{\partial z_i \partial \overline{z}_j} \log K(z,z) \;.$$

The Bergman metric g and its associated Kähler form ω_g are given by

$$g = 2 \operatorname{Re} \sum_{i,j=1}^{n} g_{i\overline{j}} dz^{i} \otimes d\overline{z^{j}} ; \quad \omega_{g} = \sqrt{-1} \partial \overline{\partial} \log K(z,z) .$$

 $U \Subset \mathbb{C}^n$ bounded domain; $H^2(U) := \{ f \in \mathcal{O}(U) : \int_U |f|^2 dV < \infty \}$; $\{ f_n \}_{n=0}^{\infty}$ orthonormal basis. The Bergman kernel

$$K(z,w) := \sum_{n=0}^{\infty} f_n(z) \overline{f_n(w)} , \ \partial_{\overline{z}} K = \partial_w K = 0 .$$

The Bergman metric

$$\varphi(z) := \log K(z,z); \quad g_{i\overline{j}} := \frac{\partial^2 \varphi}{\partial z_i \partial \overline{z}_j} = \frac{\partial^2}{\partial z_i \partial \overline{z}_j} \log K(z,z) \;.$$

The Bergman metric g and its associated Kähler form ω_g are given by

$$g = 2\operatorname{Re}\sum_{i,j=1}^{n} g_{i\overline{j}} dz^{i} \otimes d\overline{z^{j}}$$
; $\omega_{g} = \sqrt{-1}\partial\overline{\partial}\log K(z,z)$.

On a bounded domain we have $\omega > 0$.

Bounded symmetric domains

First examples: the complex unit ball

$$\mathbb{B}^n = \{z \in \mathbb{C}^n : \|z\| < 1\} \ .$$

6 / 46

Bounded symmetric domains

First examples: the complex unit ball

$$\mathbb{B}^n = \{z \in \mathbb{C}^n : \|z\| < 1\} \ .$$

Classical cases

$$D^{I}(p,q) = \{ Z \in M(p,q,\mathbb{C}) : I - \overline{Z}^{t}Z > 0 \} , \quad p,q \ge 1 ;$$

$$D^{II}(n,n) = \{ Z \in D_{n,n}^{I} : Z^{t} = -Z \} , \quad n \ge 2 ;$$

$$D^{III}(n,n) = \{ Z \in D_{n,n}^{I} : Z^{t} = Z \} , \quad n \ge 3 ;$$

$$D_{n}^{IV} = \left\{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} : ||z||^{2} < 2 ;$$

$$||z||^{2} < 1 + \left| \frac{1}{2} (z_{1}^{2} + \dots + z_{n}^{2}) \right|^{2} \right\} , \quad n \ge 3 .$$

Bounded symmetric domains

First examples: the complex unit ball

$$\mathbb{B}^n = \{z \in \mathbb{C}^n : \|z\| < 1\} \ .$$

Classical cases

$$\begin{split} D^{I}(p,q) &= \{ Z \in M(p,q,\mathbb{C}) : I - \overline{Z}^{t} Z > 0 \} , \quad p,q \geq 1 ; \\ D^{II}(n,n) &= \{ Z \in D_{n,n}^{I} : Z^{t} = -Z \} , \quad n \geq 2 ; \\ D^{III}(n,n) &= \{ Z \in D_{n,n}^{I} : Z^{t} = Z \} , \quad n \geq 3 ; \\ D_{n}^{IV} &= \left\{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} : \| z \|^{2} < 2 ; \\ \| z \|^{2} < 1 + \left| \frac{1}{2} (z_{1}^{2} + \dots + z_{n}^{2}) \right|^{2} \right\} , \quad n \geq 3 . \end{split}$$

Exceptional domains

 D^V , dim 16, type E_6 ; D^{VI} , dim 27, type E_7 .

Ngaiming Mok (HKU)

Bergman kernels for classical domains

$${\mathcal K}_{{\mathbb B}^n}(z,w) = rac{c_n}{(1- < z,w>)^{n+1}}$$
 ;

$$\mathcal{K}_{D'(p,q)}(Z,W) = \frac{c_{p,q}}{\det(I_p - Z\overline{W}^t)^{p+q}};$$

$$K_{D''(n,n)}(Z,W) = \frac{a_n}{\det(I_n + Z\overline{W})^{n-1}};$$

$$\mathcal{K}_{D^{III}(n,n)}(Z,W) = rac{b_n}{\det(I_n - Z\overline{W})^{n+1}};$$

$$\mathcal{K}_{D_n^{IV}}(z,w) = rac{d_n}{\left(1-z\cdot\overline{w}+rac{1}{4}\sum_{1\leq i,j\leq n}z_i^2\overline{w_j^2}
ight)^n}\,.$$

Analytic continuation of holomorphic isometries up to normalizing constants with respect to the Bergman metric

Let $D \Subset \mathbb{C}^n$ and $\Omega \Subset \mathbb{C}^N$ be bounded domains, and $\lambda > 0$ be a real constant. We are interested to prove extension theorems for holomorphic isometries up to normalizing constants $f : (D, \lambda \, ds_D^2; x_0) \to (\Omega, ds_Q^2; y_0)$.

Analytic continuation of holomorphic isometries up to normalizing constants with respect to the Bergman metric

Let $D \Subset \mathbb{C}^n$ and $\Omega \Subset \mathbb{C}^N$ be bounded domains, and $\lambda > 0$ be a real constant. We are interested to prove extension theorems for holomorphic isometries up to normalizing constants $f : (D, \lambda ds_D^2; x_0) \to (\Omega, ds_D^2; y_0)$.

Interior extension

On a bounded domain U the potential function $\varphi(z) = \log K_U(z, z)$ is globally defined, hence Calabi [Ca53] applies to give interior extension results, as follows. We have a canonical holomorphic embedding $\Phi_{\Omega} : \Omega \to \mathbb{P}(H^2(\Omega)^*)$. Choosing any orthonormal basis (h_i) of $H^2(\Omega)$, $\Phi_{\Omega} : \Omega \to \mathbb{P}^{\infty} \cong \mathbb{P}(H^2(\Omega)^*)$ is given by $\Phi_{\Omega}(\zeta) = [h_0(\zeta), \cdots, h_i(\zeta), \cdots]$. The mapping $\Phi_{\Omega} \circ f : (D, ds_D^2; x_0) \to (\mathbb{P}(H^2(\Omega)^*), \frac{1}{\lambda} ds_{FS}^2; \Phi_{\Omega}(y_0))$ is a holomorphic isometry into a projective space of countably infinite dimension equipped with the Fubini-Study metric. Let $\mathbb{P}(\Lambda) \subset \mathbb{P}(H^2(\Omega)^*)$ be the topological projective-linear span of the image of $\Phi_{\Omega} \circ f$, $\Lambda \subset H^2(\Omega)^*$ being a Hilbert subspace.

Ngaiming Mok (HKU)

Univalence of $\psi_x(y) := \delta_D(x, y)$ follows readily from the Cauchy-Schwarz inequality $|K_D(x, y)|^2 \leq K_D(x, x)K_D(y, y)$, with equality if and only if $(s_0(x), \dots, s_i(x), \dots)$ and $(s_0(y), \dots, s_i(y), \dots)$ are proportional to each other, hence x = y. By Calabi [Ca53], $\Phi_\Omega \circ f$ extends to a holomorphic isometry $\Psi : D \to \mathbb{P}(\Lambda)$, implying analytic continuation of Graph(f) to a complex-analytic subvariety of $D \times \Omega$. Univalence of $\psi_x(y) := \delta_D(x, y)$ follows readily from the Cauchy-Schwarz inequality $|K_D(x, y)|^2 \leq K_D(x, x)K_D(y, y)$, with equality if and only if $(s_0(x), \dots, s_i(x), \dots)$ and $(s_0(y), \dots, s_i(y), \dots)$ are proportional to each other, hence x = y. By Calabi [Ca53], $\Phi_\Omega \circ f$ extends to a holomorphic isometry $\Psi : D \to \mathbb{P}(\Lambda)$, implying analytic continuation of Graph(f) to a complex-analytic subvariety of $D \times \Omega$.

Let $U \subset \mathbb{C}^n$ be a bounded complete circular domain. Because of the invariance of the Bergman kernel K_U under the circle group action, i.e., $K_U(e^{i\theta}z, e^{i\theta}w)) = K_U(z, w)$ for $\theta \in \mathbb{R}$, it follows that $K_U(z, 0)$ is a constant. Denoting by $\delta_U(x, y)$ the diastasis on (U, ds_U^2) and by $\Phi(z, w)$ the polarization of the real-analytic function $\varphi(z) := \delta_U(0, z)$. We have

$$\delta_U(0, z) = \log K_U(0, 0) - \log K_U(0, z) - \log K_U(z, 0) + \log K_U(z, z) = \log K_U(0, 0) + \log K_U(z, z); \Phi(z, w) = \log K_U(z, w) + \log K_U(0, 0).$$

Univalence of $\psi_x(y) := \delta_D(x, y)$ follows readily from the Cauchy-Schwarz inequality $|K_D(x, y)|^2 \leq K_D(x, x)K_D(y, y)$, with equality if and only if $(s_0(x), \dots, s_i(x), \dots)$ and $(s_0(y), \dots, s_i(y), \dots)$ are proportional to each other, hence x = y. By Calabi [Ca53], $\Phi_\Omega \circ f$ extends to a holomorphic isometry $\Psi : D \to \mathbb{P}(\Lambda)$, implying analytic continuation of Graph(f) to a complex-analytic subvariety of $D \times \Omega$.

Let $U \subset \mathbb{C}^n$ be a bounded complete circular domain. Because of the invariance of the Bergman kernel K_U under the circle group action, i.e., $K_U(e^{i\theta}z, e^{i\theta}w)) = K_U(z, w)$ for $\theta \in \mathbb{R}$, it follows that $K_U(z, 0)$ is a constant. Denoting by $\delta_U(x, y)$ the diastasis on (U, ds_U^2) and by $\Phi(z, w)$ the polarization of the real-analytic function $\varphi(z) := \delta_U(0, z)$. We have

 $\delta_U(0,z) = \log K_U(0,0) - \log K_U(0,z) - \log K_U(z,0)$

$$+ \log K_U(z, z) = \log K_U(0, 0) + \log K_U(z, z);$$

 $\Phi(z,w) = \log K_U(z,w) + \log K_U(0,0).$

From functional identities we will derive extension results.

Extension of germs of maps on complete circular domains

Bounded symmetric domains $\Omega \Subset \mathbb{C}^N$ are complete circular domains. Applying the invariance of the diastasis, we have

Extension of germs of maps on complete circular domains

Bounded symmetric domains $\Omega \in \mathbb{C}^N$ are complete circular domains.

Applying the invariance of the diastasis, we have

Proposition (holomorphic functional identities)

Let $D \Subset \mathbb{C}^n$ and $\Omega \Subset \mathbb{C}^N$ be bounded complete circular domains. Let λ be any positive real number and $f : (D, \lambda ds_D^2; 0) \to (\Omega, ds_\Omega^2; 0)$ be a germ of holomorphic isometry at $0 \in D$, f(0) = 0.

Extension of germs of maps on complete circular domains

Bounded symmetric domains $\Omega \Subset \mathbb{C}^N$ are complete circular domains.

Applying the invariance of the diastasis, we have

Proposition (holomorphic functional identities)

Let $D \Subset \mathbb{C}^n$ and $\Omega \Subset \mathbb{C}^N$ be bounded complete circular domains. Let λ be any positive real number and $f : (D, \lambda ds_D^2; 0) \rightarrow (\Omega, ds_\Omega^2; 0)$ be a germ of holomorphic isometry at $0 \in D$, f(0) = 0. Then, there exists some real number A > 0 such that for $z, w \in D$ sufficiently close to 0 we have

 $egin{aligned} &\mathcal{K}_\Omega(f(z),f(z)) = A \cdot \mathcal{K}_D(z,z)^\lambda; & ext{and hence} \ &\mathcal{K}_\Omega(f(z),f(w)) = A \cdot \mathcal{K}_D(z,w)^\lambda; & ext{where} \ &\mathcal{K}_D(z,w)^\lambda = A e^{\lambda \log \mathcal{K}_D(z,w)} \ , \end{aligned}$

in which log denotes the principal branch of logarithm.
Extension of germs of maps on complete circular domains

Bounded symmetric domains $\Omega \Subset \mathbb{C}^N$ are complete circular domains.

Applying the invariance of the diastasis, we have

Proposition (holomorphic functional identities)

Let $D \Subset \mathbb{C}^n$ and $\Omega \Subset \mathbb{C}^N$ be bounded complete circular domains. Let λ be any positive real number and $f : (D, \lambda ds_D^2; 0) \rightarrow (\Omega, ds_\Omega^2; 0)$ be a germ of holomorphic isometry at $0 \in D$, f(0) = 0. Then, there exists some real number A > 0 such that for $z, w \in D$ sufficiently close to 0 we have

 $egin{aligned} &\mathcal{K}_\Omega(f(z),f(z)) = A \cdot \mathcal{K}_D(z,z)^\lambda; & ext{and hence} \ &\mathcal{K}_\Omega(f(z),f(w)) = A \cdot \mathcal{K}_D(z,w)^\lambda; & ext{where} \ &\mathcal{K}_D(z,w)^\lambda = A e^{\lambda \log \mathcal{K}_D(z,w)} \ , \end{aligned}$

in which log denotes the principal branch of logarithm.

Let $\epsilon > 0$ be such that f is defined on $D_{\epsilon} := B(0; \epsilon) \Subset D$.

For each $w \in D_{\epsilon}$, let $V_w \subset D \times \mathbb{C}^N$ be the set of all $(z, \zeta) \in D \times \Omega$ s.t.

 $(\mathbf{I}_w) \quad K_{\Omega}(\zeta, f(w)) = A \cdot K_D(z, w)^{\lambda} .$

For each $w \in D_{\epsilon}$, let $V_w \subset D \times \mathbb{C}^N$ be the set of all $(z, \zeta) \in D \times \Omega$ s.t.

$$(\mathbf{I}_w)$$
 $K_{\Omega}(\zeta, f(w)) = A \cdot K_D(z, w)^{\lambda}$.

Define $V = \bigcap_{w \in D_{\epsilon}} V_w$. Suppose $\dim_{(z,f(z))} (V \cap (\{z\} \times \mathbb{C}^N)) \ge 1$ for $z \in D$.

For each $w \in D_{\epsilon}$, let $V_w \subset D \times \mathbb{C}^N$ be the set of all $(z, \zeta) \in D \times \Omega$ s.t. $(I_w) \quad K_{\Omega}(\zeta, f(w)) = A \cdot K_D(z, w)^{\lambda}$. Define $V = \bigcap_{w \in D_{\epsilon}} V_w$. Suppose $\dim_{(z,f(z))} (V \cap (\{z\} \times \mathbb{C}^N)) \ge 1$ for $z \in D$. Then, there exists a family $h_{\alpha} \in H^2(\Omega), \alpha \in \mathbf{A}$, s.t. $\operatorname{Graph}(f) \subset D_{\epsilon} \times E$, where $E := \bigcap_{\alpha \in \mathbf{A}} \operatorname{Zero}(h_{\alpha})$, and s.t. $\dim_{(z,f(z))} (V \cap (\{z\} \times E)) = 0$ for a general point $z \in D_{\epsilon}$.

For each $w \in D_{\epsilon}$, let $V_w \subset D \times \mathbb{C}^N$ be the set of all $(z, \zeta) \in D \times \Omega$ s.t. $(\mathbf{I}_w) \quad K_{\Omega}(\zeta, f(w)) = A \cdot K_D(z, w)^{\lambda}.$ Define $V = \bigcap V_w$. Suppose $\dim_{(z,f(z))} (V \cap (\{z\} \times \mathbb{C}^N)) \ge 1$ for $w \in D_{\epsilon}$ $z \in D$. Then, there exists a family $h_{\alpha} \in H^{2}(\Omega)$, $\alpha \in \mathbf{A}$, s.t. $\operatorname{Graph}(f) \subset D_{\epsilon} \times E$, where $E := \bigcap_{\alpha \in \mathbf{A}} \operatorname{Zero}(h_{\alpha})$, and s.t. $\dim_{(z,f(z))} (V \cap (\{z\} \times E)) = 0$ for a general point $z \in D_{\epsilon}$. Moreover, each h_{α} is the restriction to Ω of a rational function whenever (a) $K_D(z, w)$ is rational in (z, \overline{w}) and (b) $K_{\Omega}(\zeta, \xi)$ is rational in $(\zeta, \overline{\xi})$,

For each $w \in D_{\epsilon}$, let $V_w \subset D \times \mathbb{C}^N$ be the set of all $(z, \zeta) \in D \times \Omega$ s.t. $(I_w) \quad K_{\Omega}(\zeta, f(w)) = A \cdot K_D(z, w)^{\lambda}$. Define $V = \bigcap_{w \in D_{\epsilon}} V_w$. Suppose $\dim_{(z,f(z))} (V \cap (\{z\} \times \mathbb{C}^N)) \ge 1$ for $z \in D$. Then, there exists a family $h_{\alpha} \in H^2(\Omega)$, $\alpha \in \mathbf{A}$, s.t. $\operatorname{Graph}(f) \subset D_{\epsilon} \times E$, where $E := \bigcap_{\alpha \in \mathbf{A}} \operatorname{Zero}(h_{\alpha})$, and s.t. $\dim_{(z,f(z))} (V \cap (\{z\} \times E)) = 0$ for a general point $z \in D_{\epsilon}$.

Moreover, each h_{α} is the restriction to Ω of a rational function whenever (a) $K_D(z, w)$ is rational in (z, \overline{w}) and (b) $K_{\Omega}(\zeta, \xi)$ is rational in $(\zeta, \overline{\xi})$,

Idea of Proof (infinitesimal deformations of solutions to (I_w))

(#) $K_{\Omega}(f_t(z), \overline{f(w)}) = K_D(z, w)^{\lambda}$; $f_0(z) \equiv f(z)$. Assume $\frac{\partial^k}{\partial t^k} f_t(z)|_{t=0} \equiv 0$ for $k < \ell$ and $\eta(z) := \frac{\partial^\ell}{\partial t^\ell} f_t(z)|_{t=0} \not\equiv 0$. Then, $h_{\alpha}(f(w)) = 0$; $\alpha \in \mathbf{A}$, follow from expressing $\eta(z)$ in canonical coordinates of Ω of Bergman adapted to different base points along $f(D_{\epsilon}) \subset \Omega$.

Algebraic extension of holomorphic isometries between bounded domains with rational Bergman kernels

Theorem (Mok, JEMS (2012))

Let $D \Subset \mathbb{C}^n$, resp. $\Omega \Subset \mathbb{C}^N$, be bounded domains. Let $x_0 \in D, \ \lambda \in \mathbb{R}, \lambda > 0$, and $f : (D, \lambda ds_D^2; x_0) \to (\Omega, ds_\Omega^2; f(x_0))$ be a germ of holomorphic isometry.

Algebraic extension of holomorphic isometries between bounded domains with rational Bergman kernels

Theorem (Mok, JEMS (2012))

Let $D \Subset \mathbb{C}^n$, resp. $\Omega \Subset \mathbb{C}^N$, be bounded domains. Let $x_0 \in D, \lambda \in \mathbb{R}, \lambda > 0$, and $f : (D, \lambda ds_D^2; x_0) \to (\Omega, ds_\Omega^2; f(x_0))$ be a germ of holomorphic isometry. Suppose the Bergman kernel $K_D(z, w)$ extends as a rational function in (z, \overline{w}) and $K_{\Omega}(\zeta, \xi)$ extends as a rational function in (z, \overline{w}) .

12 / 46

Algebraic extension of holomorphic isometries between bounded domains with rational Bergman kernels

Theorem (Mok, JEMS (2012))

Let $D \Subset \mathbb{C}^n$, resp. $\Omega \Subset \mathbb{C}^N$, be bounded domains. Let $x_0 \in D, \lambda \in \mathbb{R}, \lambda > 0$, and $f : (D, \lambda ds_D^2; x_0) \to (\Omega, ds_\Omega^2; f(x_0))$ be a germ of holomorphic isometry. Suppose the Bergman kernel $K_D(z, w)$ extends as a rational function in (z, \overline{w}) and $K_{\Omega}(\zeta, \xi)$ extends as a rational function in (z, \overline{w}) and $K_{\Omega}(\zeta, \xi)$ extends as a rational function in $(\zeta, \overline{\xi})$. Then, the germ of $\operatorname{Graph}(f) \subset D \times \Omega$ at $(x_0, f(x_0))$ extends to an irreducible affine-algebraic subvariety $S^{\sharp} \subset \mathbb{C}^n \times \mathbb{C}^N$.

Theorem (Mok, JEMS (2012))

Let $D \Subset \mathbb{C}^n$, resp. $\Omega \Subset \mathbb{C}^N$, be bounded domains. Let $x_0 \in D, \lambda \in \mathbb{R}, \lambda > 0$, and $f : (D, \lambda ds_D^2; x_0) \to (\Omega, ds_\Omega^2; f(x_0))$ be a germ of holomorphic isometry. Suppose the Bergman kernel $K_D(z, w)$ extends as a rational function in (z, \overline{w}) and $K_\Omega(\zeta, \xi)$ extends as a rational function in $(\zeta, \overline{\xi})$. Then, the germ of $\operatorname{Graph}(f) \subset D \times \Omega$ at $(x_0, f(x_0))$ extends to an irreducible affine-algebraic subvariety $S^{\sharp} \subset \mathbb{C}^n \times \mathbb{C}^N$. If (Ω, ds_Ω^2) is complete as a Kähler manifold, then $S := S^{\sharp} \cap (D \times \Omega)$ is the graph of a holomorphic isometric embedding $F : (D, \lambda ds_D^2) \to (\Omega, ds_\Omega^2)$.

Theorem (Mok, JEMS (2012))

Let $D \Subset \mathbb{C}^n$, resp. $\Omega \Subset \mathbb{C}^N$, be bounded domains. Let $x_0 \in D, \lambda \in \mathbb{R}, \lambda > 0$, and $f : (D, \lambda ds_D^2; x_0) \to (\Omega, ds_\Omega^2; f(x_0))$ be a germ of holomorphic isometry. Suppose the Bergman kernel $K_D(z, w)$ extends as a rational function in (z, \overline{w}) and $K_{\Omega}(\zeta, \xi)$ extends as a rational function in $(\zeta, \overline{\xi})$. Then, the germ of $\operatorname{Graph}(f) \subset D \times \Omega$ at $(x_0, f(x_0))$ extends to an irreducible affine-algebraic subvariety $S^{\sharp} \subset \mathbb{C}^n \times \mathbb{C}^N$. If (Ω, ds_Ω^2) is complete as a Kähler manifold, then $S := S^{\sharp} \cap (D \times \Omega)$ is the graph of a holomorphic isometric embedding $F : (D, \lambda ds_D^2) \to (\Omega, ds_\Omega^2)$. If furthermore (D, ds_D^2) is complete, then $F : D \to \Omega$ is proper.

Theorem (Mok, JEMS (2012))

Let $D \Subset \mathbb{C}^n$, resp. $\Omega \Subset \mathbb{C}^N$, be bounded domains. Let $x_0 \in D, \lambda \in \mathbb{R}, \lambda > 0$, and $f : (D, \lambda ds_D^2; x_0) \to (\Omega, ds_\Omega^2; f(x_0))$ be a germ of holomorphic isometry. Suppose the Bergman kernel $K_D(z, w)$ extends as a rational function in (z, \overline{w}) and $K_{\Omega}(\zeta, \xi)$ extends as a rational function in $(\zeta, \overline{\xi})$. Then, the germ of $\operatorname{Graph}(f) \subset D \times \Omega$ at $(x_0, f(x_0))$ extends to an irreducible affine-algebraic subvariety $S^{\sharp} \subset \mathbb{C}^n \times \mathbb{C}^N$. If (Ω, ds_Ω^2) is complete as a Kähler manifold, then $S := S^{\sharp} \cap (D \times \Omega)$ is the graph of a holomorphic isometric embedding $F : (D, \lambda ds_D^2) \to (\Omega, ds_\Omega^2)$. If furthermore (D, ds_D^2) is complete, then $F : D \to \Omega$ is proper.

The unit disk Δ is conformally equivalent to the upper half-plane \mathcal{H} , the unbounded realization of the unit disk by means of the inverse Cayley transform. For $\tau \in \mathcal{H}$, $\tau = re^{i\theta}$, where r > 0, $0 < \theta < \pi$, and for an integer $p \ge 2$, we write $\tau^{\frac{1}{p}} = r^{\frac{1}{p}} e^{\frac{i\theta}{p}}$.

Non-standard holomorphic isometries of Δ into Δ^p

Proposition (Mok [Mo12])

Let $p \ge 2$ be an integer. Equip the upper half-plane \mathcal{H} with the Poincaré metric $ds_{\mathcal{H}}^2 = \operatorname{Re} \frac{d\tau \otimes d\overline{\tau}}{2(Im\tau)^2}$ of constant Gaussian curvature -2 and \mathcal{H}^p with

the product metric.

Let $p \geq 2$ be an integer. Equip the upper half-plane \mathcal{H} with the Poincaré metric $ds_{\mathcal{H}}^2 = \operatorname{Re} \frac{d\tau \otimes d\overline{\tau}}{2(Im\tau)^2}$ of constant Gaussian curvature -2 and \mathcal{H}^p with the product metric. Then, writing $\gamma = e^{\frac{\pi i}{p}}$, the proper holomorphic mapping $\rho_p : (\mathcal{H}, ds_{\mathcal{H}}^2) \rightarrow (\mathcal{H}, ds_{\mathcal{H}}^2)^p$ defined by $\rho_p(\tau) = (\tau^{\frac{1}{p}}, \gamma \tau^{\frac{1}{p}}, \dots, \gamma^{p-1} \tau^{\frac{1}{p}}),$ called the p-th root map, is a holomorphic isometric embedding.

Let $p \geq 2$ be an integer. Equip the upper half-plane \mathcal{H} with the Poincaré metric $ds_{\mathcal{H}}^2 = \operatorname{Re} \frac{d\tau \otimes d\overline{\tau}}{2(\operatorname{Im}\tau)^2}$ of constant Gaussian curvature -2 and \mathcal{H}^p with the product metric. Then, writing $\gamma = e^{\frac{\pi i}{p}}$, the proper holomorphic mapping $\rho_p : (\mathcal{H}, ds_{\mathcal{H}}^2) \to (\mathcal{H}, ds_{\mathcal{H}}^2)^p$ defined by $\rho_p(\tau) = \left(\tau^{\frac{1}{p}}, \gamma \tau^{\frac{1}{p}}, \ldots, \gamma^{p-1} \tau^{\frac{1}{p}}\right),$

called the p-th root map, is a holomorphic isometric embedding.

Sketch of Proof

The Kähler form of $(\mathcal{H}, ds_{\mathcal{H}}^2)$ is given by $\omega_{\mathcal{H}} = -i\partial\overline{\partial}\log(\mathrm{Im}(\tau))$.

Let $p \geq 2$ be an integer. Equip the upper half-plane \mathcal{H} with the Poincaré metric $ds_{\mathcal{H}}^2 = \operatorname{Re} \frac{d\tau \otimes d\overline{\tau}}{2(\operatorname{Im}\tau)^2}$ of constant Gaussian curvature -2 and \mathcal{H}^p with the product metric. Then, writing $\gamma = e^{\frac{\pi i}{p}}$, the proper holomorphic mapping $\rho_p : (\mathcal{H}, ds_{\mathcal{H}}^2) \to (\mathcal{H}, ds_{\mathcal{H}}^2)^p$ defined by $\rho_p(\tau) = (\tau^{\frac{1}{p}}, \gamma \tau^{\frac{1}{p}}, \ldots, \gamma^{p-1} \tau^{\frac{1}{p}}),$

called the p-th root map, is a holomorphic isometric embedding.

Sketch of Proof

The Kähler form of $(\mathcal{H}, ds_{\mathcal{H}}^2)$ is given by $\omega_{\mathcal{H}} = -i\partial\overline{\partial}\log(\mathrm{Im}(\tau))$. To check that $\rho_p(\tau)$ is an isometry it suffices to equate potential functions.

Let $p \geq 2$ be an integer. Equip the upper half-plane \mathcal{H} with the Poincaré metric $ds_{\mathcal{H}}^2 = \operatorname{Re} \frac{d\tau \otimes d\overline{\tau}}{2(\operatorname{Im}\tau)^2}$ of constant Gaussian curvature -2 and \mathcal{H}^p with the product metric. Then, writing $\gamma = e^{\frac{\pi i}{p}}$, the proper holomorphic mapping $\rho_p : (\mathcal{H}, ds_{\mathcal{H}}^2) \to (\mathcal{H}, ds_{\mathcal{H}}^2)^p$ defined by $\rho_p(\tau) = (\tau^{\frac{1}{p}}, \gamma \tau^{\frac{1}{p}}, \ldots, \gamma^{p-1} \tau^{\frac{1}{p}}),$

called the p-th root map, is a holomorphic isometric embedding.

Sketch of Proof

The Kähler form of $(\mathcal{H}, ds_{\mathcal{H}}^2)$ is given by $\omega_{\mathcal{H}} = -i\partial\overline{\partial}\log(\mathrm{Im}(\tau))$. To check that $\rho_p(\tau)$ is an isometry it suffices to equate potential functions. Writing $\mathrm{Im}(\gamma^k \tau^{\frac{1}{p}}) = |\tau|^{\frac{1}{p}} \mathrm{Im}(e^{\frac{k\pi i}{p} + \theta})$, that the potentials match follows from the trigonometric identity below for some positive constant c_p .

Let $p \geq 2$ be an integer. Equip the upper half-plane \mathcal{H} with the Poincaré metric $ds_{\mathcal{H}}^2 = \operatorname{Re} \frac{d\tau \otimes d\overline{\tau}}{2(\operatorname{Im}\tau)^2}$ of constant Gaussian curvature -2 and \mathcal{H}^p with the product metric. Then, writing $\gamma = e^{\frac{\pi i}{p}}$, the proper holomorphic mapping $\rho_p : (\mathcal{H}, ds_{\mathcal{H}}^2) \to (\mathcal{H}, ds_{\mathcal{H}}^2)^p$ defined by $\rho_p(\tau) = (\tau^{\frac{1}{p}}, \gamma \tau^{\frac{1}{p}}, \ldots, \gamma^{p-1} \tau^{\frac{1}{p}}),$

called the p-th root map, is a holomorphic isometric embedding.

Sketch of Proof

The Kähler form of $(\mathcal{H}, ds_{\mathcal{H}}^2)$ is given by $\omega_{\mathcal{H}} = -i\partial\overline{\partial}\log(\mathrm{Im}(\tau))$. To check that $\rho_p(\tau)$ is an isometry it suffices to equate potential functions. Writing $\mathrm{Im}(\gamma^k \tau^{\frac{1}{p}}) = |\tau|^{\frac{1}{p}} \mathrm{Im}(e^{\frac{k\pi i}{p} + \theta})$, that the potentials match follows from the trigonometric identity below for some positive constant c_p . $\sin\theta\sin\left(\frac{\pi}{p} + \theta\right)\cdots\sin\left(\frac{(p-1)\pi}{p} + \theta\right) = c_p\sin(p\theta)$.

mage of holomorphic isometry of
$$f : B^n \hookrightarrow \Omega$$

 $\mathcal{V}_q = \bigcup \{ \text{lines } \ell \text{ on } S = G^{\mathbb{C}}/P, \ q \in \ell \} ;$
 $V_q = \mathcal{V}_q \cap \Omega = f(B^n).$

.

Let $f : (\Delta, \lambda ds^2_{\Delta}) \to (\Omega, ds^2_{\Omega})$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization.

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Proposition Let $f_0 : (\Delta, \lambda \, ds^2_{\Delta}) \to (\Omega, ds^2_{\Omega})$ be a holomorphic isometric embedding.

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Proposition Let $f_0 : (\Delta, \lambda \, ds^2_{\Delta}) \to (\Omega, ds^2_{\Omega})$ be a holomorphic isometric embedding. Suppose $Z_0 := f_0(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a general point $b \in \partial Z_0$.

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Proposition Let $f_0 : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding. Suppose $Z_0 := f_0(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a general point $b \in \partial Z_0$. Then, there exists by rescaling a holomorphic isometric embedding $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$, $f(\Delta) =: Z$ with the following property.

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Proposition Let $f_0 : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding. Suppose $Z_0 := f_0(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a general point $b \in \partial Z_0$. Then, there exists by rescaling a holomorphic isometric embedding $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$, $f(\Delta) =: Z$ with the following property. (†) All tangent lines $T_x(Z)$, $x \in Z$, are equivalent under $Aut(\Omega)$.

Let Ω be an irreducible bounded symmetric domain of tube type and of rank r; $Z \subset \Omega$ be a local holomorphic curve with $Aut(\Omega)$ -equivalent tangent planes spanned by vectors of rank r.

Let Ω be an irreducible bounded symmetric domain of tube type and of rank r; $Z \subset \Omega$ be a local holomorphic curve with $Aut(\Omega)$ -equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Let Ω be an irreducible bounded symmetric domain of tube type and of rank r; $Z \subset \Omega$ be a local holomorphic curve with $Aut(\Omega)$ -equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Proof

 $\pi : \mathbb{P}T_{\Omega} \to \Omega$, $[\mathscr{S}] \cong L^{-r} \otimes \pi^* E^2$, where $L \to \mathbb{P}T_{\Omega}$ is the tautological line bundle, and E is dual to $\mathcal{O}(1)$ on M, $\Omega \Subset M$ being the Borel embedding, and

Let Ω be an irreducible bounded symmetric domain of tube type and of rank r; $Z \subset \Omega$ be a local holomorphic curve with $Aut(\Omega)$ -equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Proof

 $\pi : \mathbb{P}T_{\Omega} \to \Omega$, $[\mathscr{S}] \cong L^{-r} \otimes \pi^* E^2$, where $L \to \mathbb{P}T_{\Omega}$ is the tautological line bundle, and E is dual to $\mathcal{O}(1)$ on M, $\Omega \Subset M$ being the Borel embedding, and

$$(2\pi)^{-1}\sqrt{-1}\partial\overline{\partial}\log\|s\|^2 = rc_1(L,\hat{g}_0) - 2c_1(\pi^*E,\pi^*h_0),$$

where \hat{g}_0 and h_0 are canonical metrics. The norm ||s(x)|| only depends on the isomorphism type of $T_x(Z)$. Thus, ||s|| = constant o Z.

Let Ω be an irreducible bounded symmetric domain of tube type and of rank r; $Z \subset \Omega$ be a local holomorphic curve with $Aut(\Omega)$ -equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Proof

 $\pi : \mathbb{P}T_{\Omega} \to \Omega$, $[\mathscr{S}] \cong L^{-r} \otimes \pi^* E^2$, where $L \to \mathbb{P}T_{\Omega}$ is the tautological line bundle, and E is dual to $\mathcal{O}(1)$ on M, $\Omega \Subset M$ being the Borel embedding, and

$$(2\pi)^{-1}\sqrt{-1}\partial\overline{\partial}\log \|s\|^2 = rc_1(L,\hat{g}_0) - 2c_1(\pi^*E,\pi^*h_0),$$

where \hat{g}_0 and h_0 are canonical metrics. The norm ||s(x)|| only depends on the isomorphism type of $T_x(Z)$. Thus, ||s|| = constant o Z. Hence,

 $0 = rc_1(L, \hat{g}_0) - 2c_1(\pi^* E, \pi^* h_0).$

 \Leftrightarrow Gauss curvature K(x) = -2/r, and $\sigma \equiv 0$. \Box

As a first application we derive a rigidity result on equivariant holomorphic isometries, which was due to Clozel [Cl07] in the classical cases.

As a first application we derive a rigidity result on equivariant holomorphic isometries, which was due to Clozel [Cl07] in the classical cases.

Theorem (Chan-Mok [CM22])

Let D and Ω be bounded symmetric domains, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, and $F : D \to \Omega$ be a Φ -equivariant holomorphic map.

As a first application we derive a rigidity result on equivariant holomorphic isometries, which was due to Clozel [Cl07] in the classical cases.

Theorem (Chan-Mok [CM22])

Let D and Ω be bounded symmetric domains, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, and $F : D \to \Omega$ be a Φ -equivariant holomorphic map. Then, F is totally geodesic.

As a first application we derive a rigidity result on equivariant holomorphic isometries, which was due to Clozel [Cl07] in the classical cases.

Theorem (Chan-Mok [CM22])

Let D and Ω be bounded symmetric domains, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, and $F : D \to \Omega$ be a Φ -equivariant holomorphic map. Then, F is totally geodesic.

After reducing to the case where D is irreducible, the latter theorem follows from the total geodesy of embedded Poincaré disks by polarization of the vanishing statements $\sigma(\gamma, \gamma) = 0$, σ being the second fundamental form of $Z := F(D) \subset \Omega$ when restricted to

As a first application we derive a rigidity result on equivariant holomorphic isometries, which was due to Clozel [Cl07] in the classical cases.

Theorem (Chan-Mok [CM22])

Let D and Ω be bounded symmetric domains, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, and $F : D \to \Omega$ be a Φ -equivariant holomorphic map. Then, F is totally geodesic.

After reducing to the case where D is irreducible, the latter theorem follows from the total geodesy of embedded Poincaré disks by polarization of the vanishing statements $\sigma(\gamma, \gamma) = 0$, σ being the second fundamental form of $Z := F(D) \subset \Omega$ when restricted to **(a)** $\gamma = dF(\alpha)$ where α is tangent to a minimal disk Δ on D,

As a first application we derive a rigidity result on equivariant holomorphic isometries, which was due to Clozel [Cl07] in the classical cases.

Theorem (Chan-Mok [CM22])

Let D and Ω be bounded symmetric domains, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, and $F : D \to \Omega$ be a Φ -equivariant holomorphic map. Then, F is totally geodesic.

After reducing to the case where D is irreducible, the latter theorem follows from the total geodesy of embedded Poincaré disks by polarization of the vanishing statements $\sigma(\gamma, \gamma) = 0$, σ being the second fundamental form of $Z := F(D) \subset \Omega$ when restricted to **(a)** $\gamma = dF(\alpha)$ where α is tangent to a minimal disk Δ on D, **(b)** where $\gamma = dF(\beta)$ where β is a vector of rank 2 tangent to a degree-2 totally geodesic disk Δ' .
Algebraic subsets of a bounded symmetric domain invariant under a discrete cocompact group action

Theorem (Chan-Mok [CM22])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, and $Z \subset \Omega$ be an algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $Y := Z/\check{\Gamma}$ is compact. Then, $Z \subset \Omega$ is totally geodesic.

Algebraic subsets of a bounded symmetric domain invariant under a discrete cocompact group action

Theorem (Chan-Mok [CM22])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, and $Z \subset \Omega$ be an algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $Y := Z/\check{\Gamma}$ is compact. Then, $Z \subset \Omega$ is totally geodesic.

Corollary

Let $\Omega \Subset \mathbb{C}^N$ be as in Theorem, $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free cocompact lattice. Write $X_{\Gamma} := \Omega/\Gamma$, and $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Y \subset X_{\Gamma}$ be an irreducible subvariety, and $Z \subset \Omega$ be an irreducible component of $\pi^{-1}(Y)$. Suppose $Z \subset \Omega$ is an algebraic subset. Then, $Z \subset \Omega$ is totally geodesic.

For the Borel embedding of a bounded symmetric domain $\Omega \Subset \mathbb{C}^N \subset M$ into its compact dual manifold, we write M = G/P, where G is the identity component of $\operatorname{Aut}(M)$, and G_0 for the identity component of $\operatorname{Aut}(\Omega)$. $G_0 \subset G$ is a noncompact real form. We have

For the Borel embedding of a bounded symmetric domain $\Omega \Subset \mathbb{C}^N \subset M$ into its compact dual manifold, we write M = G/P, where G is the identity component of $\operatorname{Aut}(M)$, and G_0 for the identity component of $\operatorname{Aut}(\Omega)$. $G_0 \subset G$ is a noncompact real form. We have

Proposition

Let $Z \subset \Omega$ be an irreducible algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset G_0$ such that $\check{\Gamma}$ stabilizes Z and $Y := Z/\check{\Gamma}$ is compact (hence projective).

For the Borel embedding of a bounded symmetric domain $\Omega \Subset \mathbb{C}^N \subset M$ into its compact dual manifold, we write M = G/P, where G is the identity component of $\operatorname{Aut}(M)$, and G_0 for the identity component of $\operatorname{Aut}(\Omega)$. $G_0 \subset G$ is a noncompact real form. We have

Proposition

Let $Z \subset \Omega$ be an irreducible algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset G_0$ such that $\check{\Gamma}$ stabilizes Z and $Y := Z/\check{\Gamma}$ is compact (hence projective). Let $H_0 \subset G_0$ be the identity component of the (positive-dimensional) stabilizer subgroup of Z, and $H \subset G$ be the complexification of H_0 inside G.

For the Borel embedding of a bounded symmetric domain $\Omega \Subset \mathbb{C}^N \subset M$ into its compact dual manifold, we write M = G/P, where G is the identity component of $\operatorname{Aut}(M)$, and G_0 for the identity component of $\operatorname{Aut}(\Omega)$. $G_0 \subset G$ is a noncompact real form. We have

Proposition

Let $Z \subset \Omega$ be an irreducible algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset G_0$ such that $\check{\Gamma}$ stabilizes Z and $Y := Z/\check{\Gamma}$ is compact (hence projective). Let $H_0 \subset G_0$ be the identity component of the (positive-dimensional) stabilizer subgroup of Z, and $H \subset G$ be the complexification of H_0 inside G. Then, Z is an irreducible component of $Hx \cap \Omega$ for any $z \in Z$. In particular, $Z \subset \Omega$ is nonsingular.

For the Borel embedding of a bounded symmetric domain $\Omega \Subset \mathbb{C}^N \subset M$ into its compact dual manifold, we write M = G/P, where G is the identity component of $\operatorname{Aut}(M)$, and G_0 for the identity component of $\operatorname{Aut}(\Omega)$. $G_0 \subset G$ is a noncompact real form. We have

Proposition

Let $Z \subset \Omega$ be an irreducible algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset G_0$ such that $\check{\Gamma}$ stabilizes Z and $Y := Z/\check{\Gamma}$ is compact (hence projective). Let $H_0 \subset G_0$ be the identity component of the (positive-dimensional) stabilizer subgroup of Z, and $H \subset G$ be the complexification of H_0 inside G. Then, Z is an irreducible component of $Hx \cap \Omega$ for any $z \in Z$. In particular, $Z \subset \Omega$ is nonsingular.

There exists $\widehat{Z} \subset M$ projective such that Z is an irreducible component of $\widehat{Z} \cap \Omega$. We proceed to prove that $\forall x \in Z, \overline{Hx} = \widehat{Z}$, which implies Proposition.

Since G acts algebraically on M, the stabilizer $H_0 \subset G_0$ of Z is algebraic.

Since G acts algebraically on M, the stabilizer $H_0 \subset G_0$ of Z is algebraic. Since $\operatorname{Card}(\check{\Gamma}) = \infty$, dim $(H_0) > 0$.

Since G acts algebraically on M, the stabilizer $H_0 \subset G_0$ of Z is algebraic. Since $\operatorname{Card}(\check{\Gamma}) = \infty$, dim $(H_0) > 0$. Suppose $\overline{Hx} \neq \widehat{Z}$.

Since *G* acts algebraically on *M*, the stabilizer $H_0 \subset G_0$ of *Z* is algebraic. Since $\operatorname{Card}(\check{\Gamma}) = \infty$, dim $(H_0) > 0$. **Suppose** $\overline{Hx} \neq \widehat{Z}$. Then, there exists an algebraic subvariety $E \subsetneq Z$ such that $E \supset Hx \cap Z$. There exists a projective subvariety $\widehat{E} \subset M$ such that *E* is a finite union of irreducible components of $\widehat{E} \cap \Omega$.

Since *G* acts algebraically on *M*, the stabilizer $H_0 \subset G_0$ of *Z* is algebraic. Since $\operatorname{Card}(\check{\Gamma}) = \infty$, dim $(H_0) > 0$. **Suppose** $\overline{Hx} \neq \widehat{Z}$. Then, there exists an algebraic subvariety $E \subsetneq Z$ such that $E \supset Hx \cap Z$. There exists a projective subvariety $\widehat{E} \subset M$ such that *E* is a finite union of irreducible components of $\widehat{E} \cap \Omega$. Let now $P(z_1, \dots, z_N)$ be a complex polynomial on \mathbb{C}^N ($N = \dim(\Omega)$) such that $P|_{\widehat{E} \cap \mathbb{C}^N} \equiv 0$ and such that $P|_{\widehat{Z} \cap \mathbb{C}^N} \not\equiv 0$. We proceed to derive a contradiction.

Since *G* acts algebraically on *M*, the stabilizer $H_0 \subset G_0$ of *Z* is algebraic. Since $\operatorname{Card}(\check{\Gamma}) = \infty$, $\dim(H_0) > 0$. **Suppose** $\overline{Hx} \neq \widehat{Z}$. Then, there exists an algebraic subvariety $E \subsetneq Z$ such that $E \supset Hx \cap Z$. There exists a projective subvariety $\widehat{E} \subset M$ such that *E* is a finite union of irreducible components of $\widehat{E} \cap \Omega$. Let now $P(z_1, \dots, z_N)$ be a complex polynomial on \mathbb{C}^N ($N = \dim(\Omega)$) such that $P|_{\widehat{E} \cap \mathbb{C}^N} \equiv 0$ and such that $P|_{\widehat{Z} \cap \mathbb{C}^N} \not\equiv 0$. We proceed to derive a contradiction.

Define $\Phi(z) := \sup\{|P(\gamma z)| : \gamma \in \check{\Gamma}\}$. Write $f_{\gamma}(z) := P(\gamma z)$ for $z \in \Omega$. We have $|f_{\gamma}(z)| \leq \sup(|P||_{\overline{\Omega}}) < \infty$ uniformly.

Since *G* acts algebraically on *M*, the stabilizer $H_0 \subset G_0$ of *Z* is algebraic. Since $\operatorname{Card}(\check{\Gamma}) = \infty$, $\dim(H_0) > 0$. **Suppose** $\overline{Hx} \neq \widehat{Z}$. Then, there exists an algebraic subvariety $E \subsetneq Z$ such that $E \supset Hx \cap Z$. There exists a projective subvariety $\widehat{E} \subset M$ such that *E* is a finite union of irreducible components of $\widehat{E} \cap \Omega$. Let now $P(z_1, \dots, z_N)$ be a complex polynomial on \mathbb{C}^N ($N = \dim(\Omega)$) such that $P|_{\widehat{E} \cap \mathbb{C}^N} \equiv 0$ and such that $P|_{\widehat{Z} \cap \mathbb{C}^N} \not\equiv 0$. We proceed to derive a contradiction.

Define $\Phi(z) := \sup\{|P(\gamma z)| : \gamma \in \check{\Gamma}\}$. Write $f_{\gamma}(z) := P(\gamma z)$ for $z \in \Omega$. We have $|f_{\gamma}(z)| \le \sup(|P||_{\overline{\Omega}}) < \infty$ uniformly. From Cauchy estimates, $\{f_{\gamma}\}_{\gamma \in \check{\Gamma}}$ is uniformly Lipschitz on any compact subset of Ω , hence Φ is Lipschitz, in particular continuous, on Ω . Thus, Φ is a (continuous) plurisubharmonic function on Ω .

Since *G* acts algebraically on *M*, the stabilizer $H_0 \subset G_0$ of *Z* is algebraic. Since $\operatorname{Card}(\check{\Gamma}) = \infty$, dim $(H_0) > 0$. **Suppose** $\overline{H_X} \neq \widehat{Z}$. Then, there exists an algebraic subvariety $E \subsetneq Z$ such that $E \supset H_X \cap Z$. There exists a projective subvariety $\widehat{E} \subset M$ such that *E* is a finite union of irreducible components of $\widehat{E} \cap \Omega$. Let now $P(z_1, \dots, z_N)$ be a complex polynomial on \mathbb{C}^N ($N = \dim(\Omega)$) such that $P|_{\widehat{E} \cap \mathbb{C}^N} \equiv 0$ and such that $P|_{\widehat{Z} \cap \mathbb{C}^N} \not\equiv 0$. We proceed to derive a contradiction.

Define $\Phi(z) := \sup\{|P(\gamma z)| : \gamma \in \check{\Gamma}\}$. Write $f_{\gamma}(z) := P(\gamma z)$ for $z \in \Omega$. We have $|f_{\gamma}(z)| \leq \sup(|P||_{\overline{\Omega}}) < \infty$ uniformly. From Cauchy estimates, $\{f_{\gamma}\}_{\gamma \in \check{\Gamma}}$ is uniformly Lipschitz on any compact subset of Ω , hence Φ is Lipschitz, in particular continuous, on Ω . Thus, Φ is a (continuous) plurisubharmonic function on Ω . Restricting to Z, we have $\Phi(z) = 0$ whenever $z \in Hx \cap Z \subset E$ and $\Phi(z_0) \neq 0$ for some $z_0 \in Z - E$.

Since *G* acts algebraically on *M*, the stabilizer $H_0 \subset G_0$ of *Z* is algebraic. Since $\operatorname{Card}(\check{\Gamma}) = \infty$, $\dim(H_0) > 0$. **Suppose** $\overline{Hx} \neq \widehat{Z}$. Then, there exists an algebraic subvariety $E \subsetneq Z$ such that $E \supset Hx \cap Z$. There exists a projective subvariety $\widehat{E} \subset M$ such that *E* is a finite union of irreducible components of $\widehat{E} \cap \Omega$. Let now $P(z_1, \dots, z_N)$ be a complex polynomial on \mathbb{C}^N ($N = \dim(\Omega)$) such that $P|_{\widehat{E} \cap \mathbb{C}^N} \equiv 0$ and such that $P|_{\widehat{Z} \cap \mathbb{C}^N} \not\equiv 0$. We proceed to derive a contradiction.

Define $\Phi(z) := \sup\{|P(\gamma z)| : \gamma \in \check{\Gamma}\}$. Write $f_{\gamma}(z) := P(\gamma z)$ for $z \in \Omega$. We have $|f_{\gamma}(z)| \leq \sup(|P||_{\overline{\Omega}}) < \infty$ uniformly. From Cauchy estimates, $\{f_{\gamma}\}_{\gamma \in \check{\Gamma}}$ is uniformly Lipschitz on any compact subset of Ω , hence Φ is Lipschitz, in particular continuous, on Ω . Thus, Φ is a (continuous) plurisubharmonic function on Ω . Restricting to Z, we have $\Phi(z) = 0$ whenever $z \in Hx \cap Z \subset E$ and $\Phi(z_0) \neq 0$ for some $z_0 \in Z - E$. Φ descends to a **nonconstant** plurisubharmonic function on the projective manifold $Z = Y/\check{\Gamma}$, a plain contradiction. \Box

Theorem (Nadel, Ann. Math. (1990))

Let X be a compact Kähler manifold with ample canonical line bundle, and denote by $\pi : \widetilde{X} \to X$ the uniformization map. Then, $\operatorname{Aut}_0(\widetilde{X})$ is a semisimple Lie group without compact factors.

Theorem (Nadel, Ann. Math. (1990))

Let X be a compact Kähler manifold with ample canonical line bundle, and denote by $\pi : \widetilde{X} \to X$ the uniformization map. Then, $\operatorname{Aut}_0(\widetilde{X})$ is a semisimple Lie group without compact factors.

Lemma Let $Z \subset \Omega$ be an algebraic subset, and let $\Omega' \subset \Omega$ be the smallest totally geodesic complex submanifold containing Z. Suppose $\gamma \in Aut(\Omega')$ such that $\gamma|_Z = id_Z$. Then, $\gamma = id_{\Omega'}$. (Below we replace Ω by Ω' .)

Theorem (Nadel, Ann. Math. (1990))

Let X be a compact Kähler manifold with ample canonical line bundle, and denote by $\pi: \widetilde{X} \to X$ the uniformization map. Then, $\operatorname{Aut}_0(\widetilde{X})$ is a semisimple Lie group without compact factors.

Lemma Let $Z \subset \Omega$ be an algebraic subset, and let $\Omega' \subset \Omega$ be the smallest totally geodesic complex submanifold containing Z. Suppose $\gamma \in Aut(\Omega')$ such that $\gamma|_Z = id_Z$. Then, $\gamma = id_{\Omega'}$. (Below we replace Ω by Ω' .)

Proposition

Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $Y := Z/\check{\Gamma}$ is compact. Let $H_0 \subset \operatorname{Aut}(\Omega)$ be the identity component of the subgroup of $\operatorname{Aut}(\Omega)$ which stabilizes Z. Then, $H_0 \subset \operatorname{Aut}(\Omega)$ is a semisimple Lie group without compact factors.

Maps inducing the representation $\theta : \check{\Gamma} \hookrightarrow H_0 \subset G_0 = \operatorname{Aut}_0(\Omega)$ Write $X_{\check{\Gamma}} := \check{\Gamma} \setminus \Omega = \check{\Gamma} \setminus G/K$. Without loss of generality we assume that $\imath_* \pi_1(Y) = \check{\Gamma} \subset H_0, \ \imath : Y \hookrightarrow X_{\check{\Gamma}}$, where $\imath := \imath_Y$. By Nadel's Theorem, H_0 is a semisimple Lie group without compact factors which acts on Ω . Maps inducing the representation $\theta : \check{\Gamma} \hookrightarrow H_0 \subset G_0 = \operatorname{Aut}_0(\Omega)$ Write $X_{\check{\Gamma}} := \check{\Gamma} \setminus \Omega = \check{\Gamma} \setminus G/K$. Without loss of generality we assume that $\imath_* \pi_1(Y) = \check{\Gamma} \subset H_0, \ \imath : Y \hookrightarrow X_{\check{\Gamma}}$, where $\imath := \imath_Y$. By Nadel's Theorem, H_0 is a semisimple Lie group without compact factors which acts on Ω . The homomorphism $\theta : \check{\Gamma} \hookrightarrow H_0 \subset G_0$ is discrete. Maps inducing the representation $\theta : \check{\Gamma} \hookrightarrow H_0 \subset G_0 = \operatorname{Aut}_0(\Omega)$ Write $X_{\check{\Gamma}} := \check{\Gamma} \setminus \Omega = \check{\Gamma} \setminus G/K$. Without loss of generality we assume that $\imath_* \pi_1(Y) = \check{\Gamma} \subset H_0$, $\imath : Y \hookrightarrow X_{\check{\Gamma}}$, where $\imath := \imath_Y$. By Nadel's Theorem, H_0 is a semisimple Lie group without compact factors which acts on Ω . The homomorphism $\theta : \check{\Gamma} \hookrightarrow H_0 \subset G_0$ is discrete. Write $L \subset H_0$ for a maximal compact subgroup. Let $f : Y \to \check{\Gamma} \setminus H_0/L =: S_{\check{\Gamma}}$ be any smooth map which induces the representation θ .

Maps inducing the representation $\theta: \check{\Gamma} \hookrightarrow H_0 \subset G_0 = \operatorname{Aut}_0(\Omega)$ Write $X_{\check{r}} := \check{\Gamma} \setminus \Omega = \check{\Gamma} \setminus G/K$. Without loss of generality we assume that $i_*\pi_1(Y) = \check{\Gamma} \subset H_0, i: Y \hookrightarrow X_{\check{\Gamma}}$, where $i := i_Y$. By Nadel's Theorem, H_0 is a semisimple Lie group without compact factors which acts on Ω. The homomorphism θ : $\check{\Gamma} \hookrightarrow H_0 \subset G_0$ is discrete. Write $L \subset H_0$ for a maximal compact subgroup. Let $f: Y \to \check{\Gamma} \setminus H_0/L =: S_{\check{\Gamma}}$ be any smooth map which induces the representation θ . Since (Ω, ds_{Ω}^2) is a Cartan-Hadamard manifold, i.e., a simply connected complete Riemannian manifold of nonpositive sectional curvature, the center of gravity argument gives a point $x \in \Omega$ which is fixed by L.

Maps inducing the representation $\theta: \check{\Gamma} \hookrightarrow H_0 \subset G_0 = \operatorname{Aut}_0(\Omega)$ Write $X_{\check{r}} := \check{\Gamma} \setminus \Omega = \check{\Gamma} \setminus G/K$. Without loss of generality we assume that $i_*\pi_1(Y) = \check{\Gamma} \subset H_0, \ i : Y \hookrightarrow X_{\check{\Gamma}}, \text{ where } i := i_Y.$ By Nadel's Theorem, H_0 is a semisimple Lie group without compact factors which acts on Ω. The homomorphism θ : $\check{\Gamma} \hookrightarrow H_0 \subset G_0$ is discrete. Write $L \subset H_0$ for a maximal compact subgroup. Let $f: Y \to \check{\Gamma} \setminus H_0/L =: S_{\check{\Gamma}}$ be any smooth map which induces the representation θ . Since (Ω, ds_{Ω}^2) is a Cartan-Hadamard manifold, i.e., a simply connected complete Riemannian manifold of nonpositive sectional curvature, the center of gravity argument gives a point $x \in \Omega$ which is fixed by L. Regard H_0/L as the orbit $H_0 x \subset \Omega = G_0/K$, $L \subset K$, the isotropy subgroup of (Ω, ds_{Ω}^2) at $x \in \Omega$. We have $S_{\check{\Gamma}} \hookrightarrow X_{\check{\Gamma}}$.

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $f, \iota : Y \to X_{\check{\Gamma}}$ inducing the representation θ are homotopic. Recall that $L \subset H_0$ is a maximal compact subgroup, hence dim_{\mathbb{R}} $(S_{\check{\Gamma}})$ is minimal among H_0 -orbits on Ω .

Denote by ω the Kähler form of the canonical Kähler-Einstein metric on $X_{\check{r}}$. H_0 acts on Ω and preserves Z.

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $f, \iota : Y \to X_{\check{\Gamma}}$ inducing the representation θ are homotopic. Recall that $L \subset H_0$ is a maximal compact subgroup, hence dim_{\mathbb{R}} $(S_{\check{\Gamma}})$ is minimal among H_0 -orbits on Ω .

Denote by ω the Kähler form of the canonical Kähler-Einstein metric on $X_{\check{\Gamma}}$. H_0 acts on Ω and preserves Z. For any $x \in Z$, we have

 $\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$

23 / 46

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $f, \iota : Y \to X_{\check{\Gamma}}$ inducing the representation θ are homotopic. Recall that $L \subset H_0$ is a maximal compact subgroup, hence dim_{\mathbb{R}} $(S_{\check{\Gamma}})$ is minimal among H_0 -orbits on Ω .

Denote by ω the Kähler form of the canonical Kähler-Einstein metric on $X_{\check{\Gamma}}$. H_0 acts on Ω and preserves Z. For any $x \in Z$, we have

 $\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$

By homotopy, $\int_{Y} (i^* \omega)^m = \int_{Y} (f^* \omega)^m$. The first integral gives $m! \operatorname{Vol}(Y, \omega|_Y) > 0$.

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $f, \iota : Y \to X_{\check{\Gamma}}$ inducing the representation θ are homotopic. Recall that $L \subset H_0$ is a maximal compact subgroup, hence dim_{\mathbb{R}} $(S_{\check{\Gamma}})$ is minimal among H_0 -orbits on Ω .

Denote by ω the Kähler form of the canonical Kähler-Einstein metric on $X_{\check{\Gamma}}$. H_0 acts on Ω and preserves Z. For any $x \in Z$, we have

 $\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$

By homotopy, $\int_{Y} (i^* \omega)^m = \int_{Y} (f^* \omega)^m$. The first integral gives $m! \operatorname{Vol}(Y, \omega|_Y) > 0$. A contradiction would arise if we had strict inequality of dimensions, which implies $\int_{Y} (f^* \omega)^m = 0$. Hence, equality holds, Z is homogeneous under H_0 , and H_0 is of Hermitian type.

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $f, \iota : Y \to X_{\check{\Gamma}}$ inducing the representation θ are homotopic. Recall that $L \subset H_0$ is a maximal compact subgroup, hence dim_{\mathbb{R}} $(S_{\check{\Gamma}})$ is minimal among H_0 -orbits on Ω .

Denote by ω the Kähler form of the canonical Kähler-Einstein metric on $X_{\check{\Gamma}}$. H_0 acts on Ω and preserves Z. For any $x \in Z$, we have

 $\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$

By homotopy, $\int_{Y} (i^* \omega)^m = \int_{Y} (f^* \omega)^m$. The first integral gives $m! \operatorname{Vol}(Y, \omega|_Y) > 0$. A contradiction would arise if we had strict inequality of dimensions, which implies $\int_{Y} (f^* \omega)^m = 0$. Hence, equality holds, Z is homogeneous under H_0 , and H_0 is of Hermitian type. Thus, $Z \subset \Omega$ is the image of an equivariant holomorphic map between bounded symmetric domains.

Ngaiming Mok (HKU)

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $f, \iota : Y \to X_{\check{\Gamma}}$ inducing the representation θ are homotopic. Recall that $L \subset H_0$ is a maximal compact subgroup, hence dim_{\mathbb{R}} $(S_{\check{\Gamma}})$ is minimal among H_0 -orbits on Ω .

Denote by ω the Kähler form of the canonical Kähler-Einstein metric on $X_{\check{\Gamma}}$. H_0 acts on Ω and preserves Z. For any $x \in Z$, we have

 $\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$

By homotopy, $\int_{Y} (i^* \omega)^m = \int_{Y} (f^* \omega)^m$. The first integral gives $m! \operatorname{Vol}(Y, \omega|_Y) > 0$. A contradiction would arise if we had strict inequality of dimensions, which implies $\int_{Y} (f^* \omega)^m = 0$. Hence, equality holds, Z is homogeneous under H_0 , and H_0 is of Hermitian type. Thus, $Z \subset \Omega$ is the image of an equivariant holomorphic map between bounded symmetric domains. By Chan-Mok, $Z \subset \Omega$ is totally geodesic.

Ngaiming Mok (HKU)

Moduli space of elliptic curves

An elliptic curve is complex-analytically a compact Riemann surface *S* of genus 1. In other words, $S := \mathbb{C}/L$ for some lattice $L \subset \mathbb{C}$. Replacing *L* by λL for some $\lambda \in \mathbb{C} - \{0\}$, without loss of generality we may assume $L_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$, $\operatorname{Im}(\tau) > 0$, i.e., $\tau \in \mathcal{H}$, where $\mathcal{H} := \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$, the upper half plane. Write $S_{\tau} := \mathbb{C}/L_{\tau}$.

Moduli space of elliptic curves

An elliptic curve is complex-analytically a compact Riemann surface *S* of genus 1. In other words, $S := \mathbb{C}/L$ for some lattice $L \subset \mathbb{C}$. Replacing *L* by λL for some $\lambda \in \mathbb{C} - \{0\}$, without loss of generality we may assume $L_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$, $\operatorname{Im}(\tau) > 0$, i.e., $\tau \in \mathcal{H}$, where $\mathcal{H} := \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$, the upper half plane. Write $S_{\tau} := \mathbb{C}/L_{\tau}$.

For $\tau, \tau' \in \mathcal{H}$, we have $S_{\tau} \cong S_{\tau'}$ if and only if there exists $\lambda \in \mathbb{C}$, $\lambda \neq 0$, such that $L_{\tau'} = \lambda L_{\tau}$, i.e., if and only if $\tau' = \frac{a\tau+b}{c\tau+d}$ where $ad - bc \neq 0$. Thus, the set of equivalence classes of \mathbb{C}/L is in one-to-one correspondence with $X = X(1) := \mathcal{H}/\mathbb{P}SL(2,\mathbb{Z})$. $\mathbb{P}SL(2,\mathbb{Z})$ acts discretely on \mathcal{H} with fixed points. We have the *j*-function $j: X(1) \xrightarrow{\cong} \mathbb{C}$, and $\overline{X(1)} = \mathbb{P}^1$.

Moduli space of elliptic curves

An elliptic curve is complex-analytically a compact Riemann surface *S* of genus 1. In other words, $S := \mathbb{C}/L$ for some lattice $L \subset \mathbb{C}$. Replacing *L* by λL for some $\lambda \in \mathbb{C} - \{0\}$, without loss of generality we may assume $L_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$, $\operatorname{Im}(\tau) > 0$, i.e., $\tau \in \mathcal{H}$, where $\mathcal{H} := \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$, the upper half plane. Write $S_{\tau} := \mathbb{C}/L_{\tau}$.

For $\tau, \tau' \in \mathcal{H}$, we have $S_{\tau} \cong S_{\tau'}$ if and only if there exists $\lambda \in \mathbb{C}$, $\lambda \neq 0$, such that $L_{\tau'} = \lambda L_{\tau}$, i.e., if and only if $\tau' = \frac{a\tau+b}{c\tau+d}$ where $ad - bc \neq 0$. Thus, the set of equivalence classes of \mathbb{C}/L is in one-to-one correspondence with $X = X(1) := \mathcal{H}/\mathbb{P}SL(2,\mathbb{Z})$. $\mathbb{P}SL(2,\mathbb{Z})$ acts discretely on \mathcal{H} with fixed points. We have the *j*-function $j: X(1) \xrightarrow{\cong} \mathbb{C}$, and $\overline{X(1)} = \mathbb{P}^1$.

A suitable finite-index subgroup $\Gamma \subset \mathbb{P}SL(2,\mathbb{Z})$ acts on \mathcal{H} without fixed points and $X_{\Gamma} := \mathcal{H}/\Gamma$ can be compactified to a compact Riemann surface.

The *j*-function

On the upper half-plane $\mathcal{H} = \{\tau : \operatorname{Im}(\tau) > 0\}$ define

$$j(\tau) = 1728 \frac{g_2(\tau)^3}{g_2(\tau)^3 - 27g_3(\tau)^2} = 1728 \frac{g_2(\tau)^3}{\Delta(\tau)}$$

where
$$g_2(\tau) = 60 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-4}; g_3(\tau) = 140 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-6}.$$

and $\Delta(\tau) := g_2(\tau)^3 - 27g_3(\tau)^2$ is the modular discriminant.

The *j*-function

On the upper half-plane $\mathcal{H} = \{\tau : \operatorname{Im}(\tau) > 0\}$ define

$$j(\tau) = 1728 \frac{g_2(\tau)^3}{g_2(\tau)^3 - 27g_3(\tau)^2} = 1728 \frac{g_2(\tau)^3}{\Delta(\tau)}$$

where
$$g_2(\tau) = 60 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-4}; g_3(\tau) = 140 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-6}.$$

and $\Delta(\tau) := g_2(\tau)^3 - 27g_3(\tau)^2$ is the modular discriminant.

The *j*-function establishes a biholomorphism $j : \mathcal{H}/SL(2,\mathbb{Z}) \xrightarrow{\cong} \mathbb{C}$.

Ngaiming Mok (HKU)

The André-Oort Conjecture

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a **special point** (in which case $[\mathbb{Q}(\tau) : \mathbb{Q}] = 2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma} = \Omega/\Gamma$, and the **André-Oort Conjecture** ascertains that the **Zariski closure of any set of special points on** X_{Γ} is a finite union of Shimura subvarieties $X'_{\Gamma'} \hookrightarrow X_{\Gamma}$.
The André-Oort Conjecture

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a **special point** (in which case $[\mathbb{Q}(\tau) : \mathbb{Q}] = 2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma} = \Omega/\Gamma$, and the **André-Oort Conjecture** ascertains that the **Zariski closure of any set of special points on** X_{Γ} is a finite union of Shimura subvarieties $X'_{\Gamma'} \hookrightarrow X_{\Gamma}$.

The Pila-Zannier strategy

Pila-Zannier (2010) proposed a strategy for finiteness and characterization problems concerning distinguished points in different arithmetic contexts (e.g., torsion points on abelian varieties, special points on Shimura varieties).

The André-Oort Conjecture

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a **special point** (in which case $[\mathbb{Q}(\tau) : \mathbb{Q}] = 2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma} = \Omega/\Gamma$, and the **André-Oort Conjecture** ascertains that the **Zariski closure of any set of special points on** X_{Γ} is a finite union of Shimura subvarieties $X'_{\Gamma'} \hookrightarrow X_{\Gamma}$.

The Pila-Zannier strategy

Pila-Zannier (2010) proposed a strategy for finiteness and characterization problems concerning distinguished points in different arithmetic contexts (e.g., torsion points on abelian varieties, special points on Shimura varieties). For the André-Oort Conjecture on a Shimura variety $X_{\Gamma} = \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$, it breaks down into (a) an **arithmetic component** consisting of **lower estimates on the size of Galois orbits of special points** and

The André-Oort Conjecture

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a **special point** (in which case $[\mathbb{Q}(\tau) : \mathbb{Q}] = 2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma} = \Omega/\Gamma$, and the **André-Oort Conjecture** ascertains that the **Zariski closure of any set of special points on** X_{Γ} is a finite union of Shimura subvarieties $X'_{\Gamma'} \hookrightarrow X_{\Gamma}$.

The Pila-Zannier strategy

Pila-Zannier (2010) proposed a strategy for finiteness and characterization problems concerning distinguished points in different arithmetic contexts (e.g., torsion points on abelian varieties, special points on Shimura varieties). For the André-Oort Conjecture on a Shimura variety $X_{\Gamma} = \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$, it breaks down into (a) an **arithmetic component** consisting of **lower estimates on the size of Galois orbits of special points** and (b) a **geometric component** consisting of the characterization of **Zariski closures of** $\pi(Z) \subset X_{\Gamma}$ for an algebraic subset $Z \subset \Omega$.

Lindemann-Weierstrass Theorem (1882)

Suppose $\alpha_1, \dots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent. Then, $e^{\alpha_1}, \dots, e^{\alpha_n}$ are algebraically independent.

Lindemann-Weierstrass Theorem (1882)

Suppose $\alpha_1, \dots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent. Then, $e^{\alpha_1}, \dots, e^{\alpha_n}$ are algebraically independent.

Schanuel Conjecture (1960s)

Suppose $\alpha_1, \dots, \alpha_n \in \mathbb{C}$ are \mathbb{Q} -linearly independent. Then, trans.deg. $\mathbb{Q}\mathbb{Q}(\alpha_1, \dots, \alpha_n; e^{\alpha_1}, \dots, e^{\alpha_n}) \geq n$.

The Lindemann-Weierstrass Theorem answers in the affirmative the special case of the Schanuel Conjecture where $\alpha_1, \dots, \alpha_n \in \overline{\mathbb{Q}}$.

Lindemann-Weierstrass Theorem (1882)

Suppose $\alpha_1, \dots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent. Then, $e^{\alpha_1}, \dots, e^{\alpha_n}$ are algebraically independent.

Schanuel Conjecture (1960s)

Suppose $\alpha_1, \dots, \alpha_n \in \mathbb{C}$ are \mathbb{Q} -linearly independent. Then, trans.deg. $\mathbb{Q}\mathbb{Q}(\alpha_1, \dots, \alpha_n; e^{\alpha_1}, \dots, e^{\alpha_n}) \ge n$.

The Lindemann-Weierstrass Theorem answers in the affirmative the special case of the Schanuel Conjecture where $\alpha_1, \dots, \alpha_n \in \overline{\mathbb{Q}}$.

Baker's Theorem (1975)

Suppose $x_1, \dots, x_n \in \overline{\mathbb{Q}}$, and $\log(x_1), \dots \log(x_n)$ are linearly independent over \mathbb{Q} . Then $1, \log(x_1), \dots, \log(x_n)$ are linearly independent over $\overline{\mathbb{Q}}$.

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev, Publ. Math. I.H.E.S. (2016))

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map.

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev, Publ. Math. I.H.E.S. (2016))

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} .

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev, Publ. Math. I.H.E.S. (2016))

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev, Publ. Math. I.H.E.S. (2016))

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Key arguments are from model theory (counting theorem Pila-Wilkie) and complex differential geometry (volume estimates of Hwang-To).

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev, Publ. Math. I.H.E.S. (2016))

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Key arguments are from model theory (counting theorem Pila-Wilkie) and complex differential geometry (volume estimates of Hwang-To).

Using the above, Tsimerman (2018) proved the André-Oort Conjecture for Siegel modular varieties $\mathcal{A}_g = \mathcal{H}_g/\mathrm{Sp}(g;\mathbb{Z})$. Recently, Pila, Shankar and Tsimerman have made available a preprint in the arXiv resolving the full André-Oort Conjecture in the affirmative.

Ngaiming Mok (HKU)

Theorem (Mok, *Compositio Math.* (2019))

Let $n \geq 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a **not necessarily arithmetic** torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and $\mathscr{Z} := \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ be the Zariski closure of $\pi(Z)$. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Theorem (Mok, *Compositio Math.* (2019))

Let $n \geq 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and $\mathscr{Z} := \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ be the Zariski closure of $\pi(Z)$. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Sketch of proof

(a) We have $\mathbb{B}^n \subset \mathbb{P}^n$, $Z^{\text{open}} \subset \widehat{Z} \subset \mathbb{P}^n$.

Theorem (Mok, *Compositio Math.* (2019))

Let $n \geq 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a **not necessarily arithmetic** torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and $\mathscr{Z} := \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ be the Zariski closure of $\pi(Z)$. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Sketch of proof

(a) We have $\mathbb{B}^n \subset \mathbb{P}^n$, $Z^{\text{open}} \subset \widehat{Z} \subset \mathbb{P}^n$. Consider $[\widehat{Z}]$ as a member of an irreducible component \mathcal{K} of $\text{Chow}(\mathbb{P}^n)$, with universal family $\mu : \mathcal{U} \to \mathbb{P}^n$.

Theorem (Mok, *Compositio Math.* (2019))

Let $n \ge 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and $\mathscr{Z} := \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ be the Zariski closure of $\pi(Z)$. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Sketch of proof

(a) We have $\mathbb{B}^n \subset \mathbb{P}^n$, $Z^{\text{open}} \subset \widehat{Z} \subset \mathbb{P}^n$. Consider $[\widehat{Z}]$ as a member of an irreducible component \mathcal{K} of $\text{Chow}(\mathbb{P}^n)$, with universal family $\mu : \mathcal{U} \to \mathbb{P}^n$. Restrict \mathcal{U} to \mathbb{B}^n and take quotients wrt Γ to get $\mu_{\Gamma} : \mathcal{U}_{\Gamma} \to X_{\Gamma}$, tautologically foliated by \mathscr{F} .

Theorem (Mok, *Compositio Math.* (2019))

Let $n \geq 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and $\mathscr{Z} := \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ be the Zariski closure of $\pi(Z)$. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Sketch of proof

(a) We have $\mathbb{B}^n \subset \mathbb{P}^n$, $Z^{\text{open}} \subset \widehat{Z} \subset \mathbb{P}^n$. Consider $[\widehat{Z}]$ as a member of an irreducible component \mathcal{K} of $\text{Chow}(\mathbb{P}^n)$, with universal family $\mu : \mathcal{U} \to \mathbb{P}^n$. Restrict \mathcal{U} to \mathbb{B}^n and take quotients wrt Γ to get $\mu_{\Gamma} : \mathcal{U}_{\Gamma} \to X_{\Gamma}$, tautologically foliated by \mathscr{F} . Proved algebraicity of \mathcal{U}_{Γ} and \mathscr{F} by means of L^2 -estimates of $\overline{\partial}$ (Mok-Zhong, Ann. Math. (1989)) and Kähler geometry.

Theorem (Mok, *Compositio Math.* (2019))

Let $n \ge 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and $\mathscr{Z} := \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ be the Zariski closure of $\pi(Z)$. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Sketch of proof

(a) We have $\mathbb{B}^n \subset \mathbb{P}^n$, $Z^{\text{open}} \subset \widehat{Z} \subset \mathbb{P}^n$. Consider $[\widehat{Z}]$ as a member of an irreducible component \mathcal{K} of $\text{Chow}(\mathbb{P}^n)$, with universal family $\mu : \mathcal{U} \to \mathbb{P}^n$. Restrict \mathcal{U} to \mathbb{B}^n and take quotients wrt Γ to get $\mu_{\Gamma} : \mathcal{U}_{\Gamma} \to X_{\Gamma}$, tautologically foliated by \mathscr{F} . Proved algebraicity of \mathcal{U}_{Γ} and \mathscr{F} by means of L^2 -estimates of $\overline{\partial}$ (Mok-Zhong, Ann. Math. (1989)) and Kähler geometry.

(b) Let \mathscr{Z} be an irreducible component of $\pi_{\Gamma}^{-1}(\mathscr{Z})$.

Theorem (Mok, *Compositio Math.* (2019))

Let $n \geq 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and $\mathscr{Z} := \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ be the Zariski closure of $\pi(Z)$. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Sketch of proof

(a) We have $\mathbb{B}^n \subset \mathbb{P}^n$, $Z^{\text{open}} \subset \widehat{Z} \subset \mathbb{P}^n$. Consider $[\widehat{Z}]$ as a member of an irreducible component \mathcal{K} of $\text{Chow}(\mathbb{P}^n)$, with universal family $\mu : \mathcal{U} \to \mathbb{P}^n$. Restrict \mathcal{U} to \mathbb{B}^n and take quotients wrt Γ to get $\mu_{\Gamma} : \mathcal{U}_{\Gamma} \to X_{\Gamma}$, tautologically foliated by \mathscr{F} . Proved algebraicity of \mathcal{U}_{Γ} and \mathscr{F} by means of L^2 -estimates of $\overline{\partial}$ (Mok-Zhong, *Ann. Math.* (1989)) and Kähler geometry.

(b) Let $\widetilde{\mathscr{Z}}$ be an irreducible component of $\pi_{\Gamma}^{-1}(\mathscr{Z})$. Then, at a good point $b \in \partial \widetilde{\mathscr{Z}}, \widetilde{\mathscr{Z}}$ extends across b as the union of an analytic family of algebraic subvarieties of \mathbb{P}^n .

Theorem (Mok, *Compositio Math.* (2019))

Let $n \ge 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and $\mathscr{Z} := \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ be the Zariski closure of $\pi(Z)$. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Sketch of proof

(a) We have $\mathbb{B}^n \subset \mathbb{P}^n$, $Z^{\text{open}} \subset \widehat{Z} \subset \mathbb{P}^n$. Consider $[\widehat{Z}]$ as a member of an irreducible component \mathcal{K} of $\text{Chow}(\mathbb{P}^n)$, with universal family $\mu : \mathcal{U} \to \mathbb{P}^n$. Restrict \mathcal{U} to \mathbb{B}^n and take quotients wrt Γ to get $\mu_{\Gamma} : \mathcal{U}_{\Gamma} \to X_{\Gamma}$, tautologically foliated by \mathscr{F} . Proved algebraicity of \mathcal{U}_{Γ} and \mathscr{F} by means of L^2 -estimates of $\overline{\partial}$ (Mok-Zhong, Ann. Math. (1989)) and Kähler geometry.

(b) Let $\widetilde{\mathscr{T}}$ be an irreducible component of $\pi_{\Gamma}^{-1}(\mathscr{Z})$. Then, at a good point $b \in \partial \widetilde{\mathscr{T}}, \widetilde{\mathscr{T}}$ extends across *b* as the union of an analytic family of algebraic subvarieties of \mathbb{P}^n . Prove by a rescaling argument and Kähler geometry that *Z* is a holomorphically isometric copy of some \mathbb{B}^m .

Theorem (Mok, *Compositio Math.* (2019))

Let $n \ge 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and $\mathscr{Z} := \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ be the Zariski closure of $\pi(Z)$. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Sketch of proof

(a) We have $\mathbb{B}^n \subset \mathbb{P}^n$, $Z^{\text{open}} \subset \widehat{Z} \subset \mathbb{P}^n$. Consider $[\widehat{Z}]$ as a member of an irreducible component \mathcal{K} of $\text{Chow}(\mathbb{P}^n)$, with universal family $\mu : \mathcal{U} \to \mathbb{P}^n$. Restrict \mathcal{U} to \mathbb{B}^n and take quotients wrt Γ to get $\mu_{\Gamma} : \mathcal{U}_{\Gamma} \to X_{\Gamma}$, tautologically foliated by \mathscr{F} . Proved algebraicity of \mathcal{U}_{Γ} and \mathscr{F} by means of L^2 -estimates of $\overline{\partial}$ (Mok-Zhong, *Ann. Math.* (1989)) and Kähler geometry.

(b) Let $\widetilde{\mathscr{T}}$ be an irreducible component of $\pi_{\Gamma}^{-1}(\mathscr{Z})$. Then, at a good point $b \in \partial \widetilde{\mathscr{T}}, \widetilde{\mathscr{T}}$ extends across *b* as the union of an analytic family of algebraic subvarieties of \mathbb{P}^n . Prove by a rescaling argument and Kähler geometry that *Z* is a holomorphically isometric copy of some \mathbb{B}^m . Then, a result of Umemura using the diastasis implies total geodesy of $Z \subset \mathbb{B}^n$.

Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman, Ann. Math. (2019))

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic lattice, and write $X_{\Gamma} := \Omega/\Gamma$, as a quasi-projective variety. Let $W \subset \Omega \times X_{\Gamma}$ be an algebraic subvariety. Let $D \subset \Omega \times X_{\Gamma}$ be the graph of the uniformization map $\pi_{\Gamma} : \Omega \to X_{\Gamma}$, and U be an irreducible component of $W \cap D$ whose dimension is larger than expected,

Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman, Ann. Math. (2019))

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic lattice, and write $X_{\Gamma} := \Omega/\Gamma$, as a quasi-projective variety. Let $W \subset \Omega \times X_{\Gamma}$ be an algebraic subvariety. Let $D \subset \Omega \times X_{\Gamma}$ be the graph of the uniformization map $\pi_{\Gamma} : \Omega \to X_{\Gamma}$, and U be an irreducible component of $W \cap D$ whose dimension is larger than expected, *i.e.*,

 $\operatorname{codim} U < \operatorname{codim}(W) + \operatorname{codim}(D),$

the codimensions being in $\Omega \times X_{\Gamma}$, or, equivalently,

 $\dim(U) > \dim(W) - \dim(X_{\Gamma}).$

30 / 46

Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman, Ann. Math. (2019))

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic lattice, and write $X_{\Gamma} := \Omega/\Gamma$, as a quasi-projective variety. Let $W \subset \Omega \times X_{\Gamma}$ be an algebraic subvariety. Let $D \subset \Omega \times X_{\Gamma}$ be the graph of the uniformization map $\pi_{\Gamma} : \Omega \to X_{\Gamma}$, and U be an irreducible component of $W \cap D$ whose dimension is larger than expected, *i.e.*,

 $\operatorname{codim} U < \operatorname{codim}(W) + \operatorname{codim}(D),$

the codimensions being in $\Omega \times X_{\Gamma}$, or, equivalently,

 $\dim(U) > \dim(W) - \dim(X_{\Gamma}).$

Then, the projection of U to X_{Γ} is contained in a totally geodesic subvariety $Y \subsetneq X_{\Gamma}$.

Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice $\Gamma \subset \operatorname{Aut}(\Omega), \pi : \Omega \to X_{\Gamma}$. In what follows modular functions are Γ -invariant meromorphic functions on Ω descending to rational functions on X_{Γ} .

Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice $\Gamma \subset \operatorname{Aut}(\Omega), \pi : \Omega \to X_{\Gamma}$. In what follows modular functions are Γ -invariant meromorphic functions on Ω descending to rational functions on X_{Γ} .

Theorem (Mok-Pila-Tsimerman, Ann. Math. (2019))

Let $V \subset \Omega$ be an irreducible complex analytic subvariety, **not contained** in any weakly special subvariety $E \subsetneq \Omega$. Let $(z_i)_{1 \le i \le n}$ be algebraic coordinates on Ω , $\{\varphi_1, \ldots, \varphi_N\}$ be a basis of modular functions. Then, trans.deg. $\mathbb{C}\mathbb{C}(\{z_i\}, \{\varphi_i\}) \ge n + \dim V$,

where all φ_i are assumed defined at some point on V and restricted to V.

Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice $\Gamma \subset \operatorname{Aut}(\Omega), \pi : \Omega \to X_{\Gamma}$. In what follows modular functions are Γ -invariant meromorphic functions on Ω descending to rational functions on X_{Γ} .

Theorem (Mok-Pila-Tsimerman, Ann. Math. (2019))

Let $V \subset \Omega$ be an irreducible complex analytic subvariety, **not contained** in any weakly special subvariety $E \subsetneq \Omega$. Let $(z_i)_{1 \le i \le n}$ be algebraic coordinates on Ω , $\{\varphi_1, \ldots, \varphi_N\}$ be a basis of modular functions. Then,

trans.deg. $\mathbb{C}(\{z_i\}, \{\varphi_j\}) \ge n + \dim V$,

where all φ_j are assumed defined at some point on V and restricted to V.

- We may take the algebraic coordinates (z₁, · · · , z_n) to be the Harish-Chandra coordinates on Ω ∈ Cⁿ ⊂ Ω.
- e Here a weakly special subvariety *E* ⊂ Ω is a totally geodesic submanifold *E* ⊂ Ω such that $π(E) ⊂ X_Γ$ is quasi-projective.

The Abel-Jacobi map $\alpha: C \rightarrow Jac(C)$ $\alpha(\mathbf{x})$ C of genus g $\omega_1, \dots, \omega_q$ basis of holomorphic 1-forms V_1, \dots, V_{2q} basis of $H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{29}$ $=\left(\int_{-\infty}^{\infty}\omega_{1},\ldots,\int_{-\infty}^{\infty}\omega_{q}\right)$ mold $\varepsilon \mathbb{C}^{g}/\Lambda = : \operatorname{Jac}(\mathbb{C})$ $\mathcal{V}_{j} := \left(\int_{\mathcal{V}} \omega_{1}, \cdots, \int_{\mathcal{V}} \omega_{q} \right) \in \mathbb{C}^{\mathfrak{F}}$ €% $\Lambda = \mathbb{Z}v_1 + \dots + \mathbb{Z}v_{2g} \subset \mathbb{C}^g$ lattice X ×

Applications of Ax-Schanuel on Shimura varieties

Mok-Pila-Tsimerman has been generalized by Bakker-Tsimerman (2019) to period domains, and by Gao (2020) to mixed Shimura varieties. There have been many applications, to the **Zilber-Pink Conjecture** (beyond André-Oort), to the **Betti map for abelian schemes**, etc.

Applications of Ax-Schanuel on Shimura varieties

Mok-Pila-Tsimerman has been generalized by Bakker-Tsimerman (2019) to period domains, and by Gao (2020) to mixed Shimura varieties. There have been many applications, to the **Zilber-Pink Conjecture** (beyond André-Oort), to the **Betti map for abelian schemes**, etc.

The Uniform Mordell-Lang Conjecture

Faltings (1983) proved the Mordell Conjecture, i.e., for a smooth projective algebraic curve C of genus $g \ge 2$ defined over a number field K, there are at most a finite number of K-rational points.

Applications of Ax-Schanuel on Shimura varieties

Mok-Pila-Tsimerman has been generalized by Bakker-Tsimerman (2019) to period domains, and by Gao (2020) to mixed Shimura varieties. There have been many applications, to the **Zilber-Pink Conjecture** (beyond André-Oort), to the **Betti map for abelian schemes**, etc.

The Uniform Mordell-Lang Conjecture

Faltings (1983) proved the Mordell Conjecture, i.e., for a smooth projective algebraic curve C of genus $g \ge 2$ defined over a number field K, there are at most a finite number of K-rational points.

Let *C* be embedded in its Jacobian J(C). Dimitrov-Gao-Habegger (2021), together with a later contribution by Kühne concerning *K*-rational points of small height, established the **Uniform Mordell-Lang Conjecture for curves**, proving that **the set** C(K) of *K*-rational points on *C* is of size <u>uniformly</u> bounded in terms of *g*, $d = [K : \mathbb{Q}]$ and the Mordell-Weil rank ρ of J(C).

Mok-Pila-Tsimerman has been generalized by Bakker-Tsimerman (2019) to period domains, and by Gao (2020) to mixed Shimura varieties. There have been many applications, to the **Zilber-Pink Conjecture** (beyond André-Oort), to the **Betti map for abelian schemes**, etc.

The Uniform Mordell-Lang Conjecture

Faltings (1983) proved the Mordell Conjecture, i.e., for a smooth projective algebraic curve C of genus $g \ge 2$ defined over a number field K, there are at most a finite number of K-rational points.

Let *C* be embedded in its Jacobian J(C). Dimitrov-Gao-Habegger (2021), together with a later contribution by Kühne concerning *K*-rational points of small height, established the **Uniform Mordell-Lang Conjecture for curves**, proving that **the set** C(K) of *K*-rational points on *C* is of size <u>uniformly</u> bounded in terms of *g*, $d = [K : \mathbb{Q}]$ and the Mordell-Weil rank ρ of J(C).

The proof has many ingredients, but it uses in an essential way Gao's work on the degeneracy of the Betti map, which in turn relies on **Ax-Schanuel** on mixed Shimura varieties.

Ngaiming Mok (HKU)

Let $\ell \subset \mathbb{B}^n$ be the geodesic on $(\mathbb{B}^n, ds_{\mathbb{B}^n}^2)$ joining the point $(-i, 0, \dots, 0)$ to $(i; 0, \dots, 0)$. Let $0 \leq t < 1$ and $\varphi_t \in Aut(\mathbb{B}^n)$ be the transvection along ℓ mapping 0 to $(0, \dots, 0, -it)$.

Let $\ell \subset \mathbb{B}^n$ be the geodesic on $(\mathbb{B}^n, ds_{\mathbb{B}^n}^2)$ joining the point $(-i, 0, \cdots, 0)$ to $(i; 0, \cdots, 0)$. Let $0 \leq t < 1$ and $\varphi_t \in \operatorname{Aut}(\mathbb{B}^n)$ be the transvection along ℓ mapping 0 to $(0, \cdots, 0, -it)$. Let α_t be the complex affine transformation on \mathbb{C} such that $d\alpha'(0, \cdots, 0, -it) = 2(\varphi_t(0))^{-1}$, and $\alpha_t(0, \cdots, 0, -it) = (0, \cdots, 0, it)$ so that, defining $\Phi_t = \alpha_t \circ \varphi_t$ we have $\Phi_t(0) = (0, \cdots, 0, it)$ and $d\Phi_t(0) = 2I_n$.

Let $\ell \subset \mathbb{B}^n$ be the geodesic on $(\mathbb{B}^n, ds_{\mathbb{B}^n}^2)$ joining the point $(-i, 0, \cdots, 0)$ to $(i; 0, \cdots, 0)$. Let $0 \leq t < 1$ and $\varphi_t \in \operatorname{Aut}(\mathbb{B}^n)$ be the transvection along ℓ mapping 0 to $(0, \cdots, 0, -it)$. Let α_t be the complex affine transformation on \mathbb{C} such that $d\alpha'(0, \cdots, 0, -it) = 2(\varphi_t(0))^{-1}$, and $\alpha_t(0, \cdots, 0, -it) = (0, \cdots, 0, it)$ so that, defining $\Phi_t = \alpha_t \circ \varphi_t$ we have $\Phi_t(0) = (0, \cdots, 0, it)$ and $d\Phi_t(0) = 2I_n$.

$$\begin{aligned} \varphi_t(z_1, \cdots, z_{n-1}; z_n) &= \left(\frac{\sqrt{1 - t^2} z_1}{1 + itz_n}, \cdots, \frac{\sqrt{1 - t^2} z_{n-1}}{1 + itz_n}; \frac{z_n - it}{1 + itz_n} \right) \\ d\varphi_t(0, \cdots, 0; z_n) &= \operatorname{diag} \left(\frac{\sqrt{1 - t^2}}{1 + itz_n}, \cdots, \frac{\sqrt{1 - t^2}}{1 + itz_n}; \frac{1 - t^2}{(1 + itz_n)^2} \right); \\ d\varphi_t(0, \cdots, 0; 0) &= \operatorname{diag} \left(\sqrt{1 - t^2}, \cdots, \sqrt{1 - t^2}; 1 - t^2 \right). \end{aligned}$$

The inverse Cayley transform on \mathbb{B}^n

$$\alpha_t(w) = \left(\frac{2w_1}{\sqrt{1-t^2}}, \cdots, \frac{2w_{n-1}}{\sqrt{1-t^2}}, \frac{2(w_n+it)}{1-t^2}\right) + (0, \cdots, 0, it).$$

Expanding $\Phi_t(z) = lpha_t(arphi_t(z))$ and taking limits as t o 1 we have
$$\alpha_t(w) = \left(\frac{2w_1}{\sqrt{1-t^2}}, \cdots, \frac{2w_{n-1}}{\sqrt{1-t^2}}, \frac{2(w_n+it)}{1-t^2}\right) + (0, \cdots, 0, it).$$

Expanding $\Phi_t(z) = lpha_t(arphi_t(z))$ and taking limits as t o 1 we have

$$\begin{split} \Phi_t(z) &= \left(\frac{2}{\sqrt{1-t^2}} \frac{\sqrt{1-t^2}z_1}{1+itz_n}, \cdots, \frac{2}{\sqrt{1-t^2}} \frac{\sqrt{1-t^2}z_{n-1}}{1+itz_n}, \\ &\frac{2}{1-t^2} \left(\frac{z_n-it}{1+itz_n}+it\right)+it\right) \\ &= \left(\frac{2z_1}{1+itz_n}, \cdots, \frac{2z_{n-1}}{1+itz_n}; \frac{2z_n}{1+itz_n}+it\right); \\ \Phi(z) &= \lim_{t \to 1} \Phi_t(z) = \lim_{t \to 1} \left(\frac{2z_1}{1+iz_n}, \cdots, \frac{2z_{n-1}}{1+iz_n}; \frac{2z_n}{1+itz_n}+it\right) \\ &= \left(\frac{2z_1}{1+iz_n}, \cdots, \frac{2z_{n-1}}{1+iz_n}; \frac{z_n+i}{1+iz_n}\right) =: \mathfrak{c}(z). \end{split}$$

Ngaiming Mok (HKU)

Siegel domain representation of the complex unit ball

Write $\mathfrak{c}(z) =: \tau = (\tau_1, \cdots, \tau_n)$. As in the case of n = 1 we have $z_n = \frac{\tau_n - i}{1 - i\tau_n}$. For $1 \le k \le n - 1$ we have $\tau_k = \frac{2z_k}{1 + iz_n}$,

$$z_k = \frac{\tau_k}{2}(1+iz_n) = \frac{\tau_k}{2}\left(1+i\left(\frac{\tau_n-i}{1-i\tau_n}\right)\right) = \frac{\tau_k}{1-i\tau_n}.$$

Siegel domain representation of the complex unit ball

Write
$$\mathfrak{c}(z) =: \tau = (\tau_1, \cdots, \tau_n)$$
. As in the case of $n = 1$ we have $z_n = \frac{\tau_n - i}{1 - i\tau_n}$. For $1 \le k \le n - 1$ we have $\tau_k = \frac{2z_k}{1 + iz_n}$,

$$z_k = \frac{\tau_k}{2}(1+iz_n) = \frac{\tau_k}{2}\left(1+i\left(\frac{\tau_n-i}{1-i\tau_n}\right)\right) = \frac{\tau_k}{1-i\tau_n}.$$

Under the inverse Cayley transform ${\mathfrak c}$ we have

$$c(\mathbb{B}^{n}) = \left\{ \tau = (\tau_{1}, \cdots, \tau_{n}) \in \mathbb{C}^{n} : \\ \left(\left| \frac{\tau_{1}}{1 - i\tau_{n}} \right|^{2} + \cdots + \left| \frac{\tau_{n-1}}{1 - i\tau_{n}} \right|^{2} \right) + \left| \frac{\tau_{n} - i}{1 - i\tau_{n}} \right|^{2} < 1 \right\} \\ = \left\{ \tau : (|\tau_{1}|^{2} + \cdots + |\tau_{n-1}|^{2}) + |\tau_{n} - i|^{2} < |\tau_{n} + i|^{2} \right\} \\ = \left\{ \tau : \operatorname{Im}(\tau_{n}) > \frac{1}{4} \left(|\tau_{1}|^{2} + \cdots + |\tau_{n-1}|^{2} \right) \right\} =: \mathscr{D}_{n}$$

The partial inverse Cayley transform on Ω

Write $\alpha = \frac{\partial}{\partial z_1}$ and let $\mathbb{C}^N = \mathbb{C}\alpha \oplus \mathcal{H}_\alpha \oplus \mathcal{N}_\alpha$, $\mathcal{H}_\alpha \cong \mathbb{C}^p$, $\mathcal{N}_\alpha \cong \mathbb{C}^q$, for the eigenspace decomposition corresponding to the eigenvalues -2, -1 resp. 0 of $\mathcal{H}_\alpha(\xi, \eta) := R_{\alpha \overline{\alpha} \overline{\xi} \overline{\eta}}(0)$. We have $c = (i; 0, \dots, 0; b)$.

The partial inverse Cayley transform on Ω

Write $\alpha = \frac{\partial}{\partial z_1}$ and let $\mathbb{C}^N = \mathbb{C}\alpha \oplus \mathcal{H}_\alpha \oplus \mathcal{N}_\alpha$, $\mathcal{H}_\alpha \cong \mathbb{C}^p$, $\mathcal{N}_\alpha \cong \mathbb{C}^q$, for the eigenspace decomposition corresponding to the eigenvalues -2, -1 resp. 0 of $\mathcal{H}_\alpha(\xi, \eta) := R_{\alpha \overline{\alpha} \overline{\xi} \overline{\eta}}(0)$. We have $c = (i; 0, \dots, 0; b)$.

Lemma

Let $x \in \partial \Delta \times \{0\} \subset \operatorname{Reg}(\partial \Omega)$. Let Λ be a minimal rational curve passing through x. Then, $\Lambda \cap \Omega = \emptyset$ if and only if, writing $T_x(\Lambda) = \mathbb{C}\eta$, we have $\eta \in \mathcal{H}_{\alpha} \oplus \mathcal{N}_{\alpha}$.

The partial inverse Cayley transform on Ω

Write $\alpha = \frac{\partial}{\partial z_1}$ and let $\mathbb{C}^N = \mathbb{C}\alpha \oplus \mathcal{H}_\alpha \oplus \mathcal{N}_\alpha$, $\mathcal{H}_\alpha \cong \mathbb{C}^p$, $\mathcal{N}_\alpha \cong \mathbb{C}^q$, for the eigenspace decomposition corresponding to the eigenvalues -2, -1 resp. 0 of $\mathcal{H}_\alpha(\xi, \eta) := R_{\alpha \overline{\alpha} \overline{\xi} \overline{\eta}}(0)$. We have $c = (i; 0, \dots, 0; b)$.

Lemma

Let $x \in \partial \Delta \times \{0\} \subset \operatorname{Reg}(\partial \Omega)$. Let Λ be a minimal rational curve passing through x. Then, $\Lambda \cap \Omega = \emptyset$ if and only if, writing $T_x(\Lambda) = \mathbb{C}\eta$, we have $\eta \in \mathcal{H}_{\alpha} \oplus \mathcal{N}_{\alpha}$.

Proposition (Cayley projection)

Let $\Theta \subset \operatorname{Reg}(\partial \Omega)$ be a maximal boundary component. Then, for each point $z \in \Omega$ there exists a unique point $x \in \Theta$ such that $z \in \mathcal{V}_x$. Furthermore, writing $\varphi : \Omega \to \Theta$ for the continuous map defined by setting $\varphi(z) = x$ if and only if $z \in \Omega, x \in \Theta$ and $z \in \mathcal{V}_x$. Then, $\varphi : \Omega \to \Theta$ is a holomorphic submersion.

Proposition (Cayley projection in Siegel coordinates)

Write $\mathscr{D} := \mathfrak{c}(\Omega) \subset \mathbb{C}^N$, and let $\varpi : \mathscr{D} \to \Omega'$ be the Cayley projection map in Siegel coordinates, $\varpi(z_1; z_2, \cdots, z_{p+1}; z_{p+2}, \cdots, z_N) := (z_{p+2}, \cdots, z_N)$. Then, $\mathcal{F}_b = \{(w_1, \cdots, w_{p+1}; b) : \operatorname{Im}(w_1) > \lambda(w_2, \cdots, w_{p+1}; b)\}$, where $\lambda : \mathbb{C}^p \times \Omega' \to \mathbb{R}$ is a nonnegative real analytic function. Moreover, for each minimal rational curve ℓ on $\widehat{\Omega}$ such that $\ell \cap \Theta$ consists of a single point $(i; 0; b) \in \Theta$, $\mathfrak{c}(\ell \cap \Omega)$ is an upper half-plane given by

Proposition (Cayley projection in Siegel coordinates)

Write $\mathscr{D} := \mathfrak{c}(\Omega) \subset \mathbb{C}^N$, and let $\varpi : \mathscr{D} \to \Omega'$ be the Cayley projection map in Siegel coordinates, $\varpi(z_1; z_2, \cdots, z_{p+1}; z_{p+2}, \cdots, z_N) := (z_{p+2}, \cdots, z_N)$. Then, $\mathcal{F}_b = \{(w_1, \cdots, w_{p+1}; b) : \operatorname{Im}(w_1) > \lambda(w_2, \cdots, w_{p+1}; b)\}$, where $\lambda : \mathbb{C}^p \times \Omega' \to \mathbb{R}$ is a nonnegative real analytic function. Moreover, for each minimal rational curve ℓ on $\widehat{\Omega}$ such that $\ell \cap \Theta$ consists of a single point $(i; 0; b) \in \Theta$, $\mathfrak{c}(\ell \cap \Omega)$ is an upper half-plane given by

 $\mathfrak{c}(\ell \cap \Omega) = \big\{ (w_1; a; b) \in \mathbb{C}\alpha \times \mathcal{H}_\alpha \times \Omega' :, \mathrm{Im}(w_1) > \lambda(a; b) \geq 0 \big\}$

for some $a = (a_2, \dots, a_{p+1}) \in \mathbb{C}^p \cong \mathcal{H}_\alpha$ and for some $b \in \Omega'$. Conversely, for each $(a; b) \in \mathcal{H}_\alpha \times \Omega'$, $\mathscr{D} \cap (\mathbb{C} \times \{(a; b)\} = \mathfrak{c}(\ell \cap \Omega)$ for some minimal rational curve ℓ passing through $(i; 0; b) \in \Theta$.

Denote by $\mathbf{O}(2)$, $\mathbf{O}(1)$ resp. \mathbf{O} the restriction of $\mathcal{O}(2)$, $\mathcal{O}(1)$ resp. \mathcal{O} to the minimal disk $\Lambda \cap \Omega \cong \Delta$, $T_{\Omega}|_{\Lambda \cap \Omega} = \mathbf{O}(2) \oplus \mathbf{O}(1)^{p} \oplus \mathbf{O}^{q}$.

Denote by $\mathbf{O}(2)$, $\mathbf{O}(1)$ resp. \mathbf{O} the restriction of $\mathcal{O}(2)$, $\mathcal{O}(1)$ resp. \mathcal{O} to the minimal disk $\Lambda \cap \Omega \cong \Delta$, $T_{\Omega}|_{\Lambda \cap \Omega} = \mathbf{O}(2) \oplus \mathbf{O}(1)^{p} \oplus \mathbf{O}^{q}$.

We have $(T_{\Omega},g)|_{\Lambda} = (\mathbf{O}(2), h_2) \oplus (\mathbf{O}(1), h_1)^p \oplus (\mathbf{O}, h_0)^q$, where $(\mathbf{O}(2), h_2) \cong (\mathbf{O}(1), h_1)^{\otimes 2}$ and h_0 is flat.

Denote by $\mathbf{O}(2)$, $\mathbf{O}(1)$ resp. \mathbf{O} the restriction of $\mathcal{O}(2)$, $\mathcal{O}(1)$ resp. \mathcal{O} to the minimal disk $\Lambda \cap \Omega \cong \Delta$, $T_{\Omega}|_{\Lambda \cap \Omega} = \mathbf{O}(2) \oplus \mathbf{O}(1)^{p} \oplus \mathbf{O}^{q}$.

We have $(T_{\Omega}, g)|_{\Lambda} = (\mathbf{O}(2), h_2) \oplus (\mathbf{O}(1), h_1)^p \oplus (\mathbf{O}, h_0)^q$, where $(\mathbf{O}(2), h_2) \cong (\mathbf{O}(1), h_1)^{\otimes 2}$ and h_0 is flat.

Geometric construction via dilatations

$$d\varphi_t(z_1; \mathbf{0}; \mathbf{0}) = \operatorname{diag}\left(\frac{1-t^2}{(1+itz_1)^2}; \frac{\sqrt{1-t^2}}{1+itz_1}, \cdots, \frac{\sqrt{1-t^2}}{1+itz_1}; 1, \cdots, 1\right); \\ d\varphi_t(0; \mathbf{0}; \mathbf{0}) = \operatorname{diag}\left(1-t^2; \sqrt{1-t^2}, \cdots, \sqrt{1-t^2}; \mathbf{0}\right).$$

Denote by $\mathbf{O}(2)$, $\mathbf{O}(1)$ resp. \mathbf{O} the restriction of $\mathcal{O}(2)$, $\mathcal{O}(1)$ resp. \mathcal{O} to the minimal disk $\Lambda \cap \Omega \cong \Delta$, $T_{\Omega}|_{\Lambda \cap \Omega} = \mathbf{O}(2) \oplus \mathbf{O}(1)^{p} \oplus \mathbf{O}^{q}$.

We have $(T_{\Omega},g)|_{\Lambda} = (\mathbf{O}(2),h_2) \oplus (\mathbf{O}(1),h_1)^p \oplus (\mathbf{O},h_0)^q$, where $(\mathbf{O}(2),h_2) \cong (\mathbf{O}(1),h_1)^{\otimes 2}$ and h_0 is flat.

Geometric construction via dilatations

$$d\varphi_t(z_1; \mathbf{0}; \mathbf{0}) = \operatorname{diag}\left(\frac{1-t^2}{(1+itz_1)^2}; \frac{\sqrt{1-t^2}}{1+itz_1}, \cdots, \frac{\sqrt{1-t^2}}{1+itz_1}; 1, \cdots, 1\right); \\ d\varphi_t(0; \mathbf{0}; \mathbf{0}) = \operatorname{diag}\left(1-t^2; \sqrt{1-t^2}, \cdots, \sqrt{1-t^2}; \mathbf{0}\right).$$

We define now

$$\alpha_t(w) = \left(\frac{2(w_1 + it)}{1 - t^2} + it; \frac{2w_2}{\sqrt{1 - t^2}}, \cdots, \frac{2w_{p+1}}{\sqrt{1 - t^2}}; 2w_{p+2}, \cdots, 2w_N\right);$$

$$\Phi_t(z) = \alpha_t(\varphi_t(s))$$
Ngaiming Mok (HKU)
RESCALING
(w) = 0.024
(39)

Denote by $\mathbf{O}(2)$, $\mathbf{O}(1)$ resp. \mathbf{O} the restriction of $\mathcal{O}(2)$, $\mathcal{O}(1)$ resp. \mathcal{O} to the minimal disk $\Lambda \cap \Omega \cong \Delta$, $T_{\Omega}|_{\Lambda \cap \Omega} = \mathbf{O}(2) \oplus \mathbf{O}(1)^{p} \oplus \mathbf{O}^{q}$.

We have $(T_{\Omega},g)|_{\Lambda} = (\mathbf{O}(2),h_2) \oplus (\mathbf{O}(1),h_1)^p \oplus (\mathbf{O},h_0)^q$, where $(\mathbf{O}(2),h_2) \cong (\mathbf{O}(1),h_1)^{\otimes 2}$ and h_0 is flat.

Geometric construction via dilatations

$$d\varphi_t(z_1; \mathbf{0}; \mathbf{0}) = \operatorname{diag}\left(\frac{1-t^2}{(1+itz_1)^2}; \frac{\sqrt{1-t^2}}{1+itz_1}, \cdots, \frac{\sqrt{1-t^2}}{1+itz_1}; 1, \cdots, 1\right); \\ d\varphi_t(0; \mathbf{0}; \mathbf{0}) = \operatorname{diag}\left(1-t^2; \sqrt{1-t^2}, \cdots, \sqrt{1-t^2}; \mathbf{0}\right).$$

We define now

$$\alpha_t(w) = \left(\frac{2(w_1 + it)}{1 - t^2} + it; \frac{2w_2}{\sqrt{1 - t^2}}, \cdots, \frac{2w_{p+1}}{\sqrt{1 - t^2}}; 2w_{p+2}, \cdots, 2w_N\right);$$

$$\Phi_t(z) = \alpha_t(\varphi_t(s))$$
Ngaiming Mok (HKU)
RESCALING
(w) = 0.024
(39)

For each
$$t \in (0, 1)$$
, $\Phi_t(\Lambda_{\xi})$ is a minimal rational curve Λ_{ξ}^t passing through
 $c_t := \Phi_t(c) = \left(\frac{2i}{1-t}; 0, \cdots, 0; 0, \cdots, 0\right)$ such that
 $\mathcal{T}_{c_t}\left(\Lambda_{\xi}^t\right) = \mathbb{C}d\Phi_t(c)(\alpha_{\xi}).$

40 / 46

For each $t \in (0, 1)$, $\Phi_t(\Lambda_{\xi})$ is a minimal rational curve Λ_{ξ}^t passing through $c_t := \Phi_t(c) = \left(\frac{2i}{1-t}; 0, \cdots, 0; 0, \cdots, 0\right)$ such that $T_{c_t}\left(\Lambda_{\xi}^t\right) = \mathbb{C}d\Phi_t(c)(\alpha_{\xi}).$

$$d\Phi_t(c)(\alpha_{\xi}) = \frac{2\alpha}{(1-t)^2} + \frac{2\xi}{1-t} + 2\mathfrak{q}(\xi)$$
$$= \frac{2}{(1-t)^2} \left(\alpha + (1-t)\xi + (1-t)^2 \mathfrak{q}(\xi) \right).$$

For each $t \in (0, 1)$, $\Phi_t(\Lambda_{\xi})$ is a minimal rational curve Λ_{ξ}^t passing through $c_t := \Phi_t(c) = \left(\frac{2i}{1-t}; 0, \cdots, 0; 0, \cdots, 0\right)$ such that $T_{c_t}\left(\Lambda_{\xi}^t\right) = \mathbb{C}d\Phi_t(c)(\alpha_{\xi}).$ $d\Phi_t(c)(\alpha_t) = \frac{2\alpha}{1-t} + \frac{2\xi}{1-t} + 2g(\xi)$

$$d\Phi_t(c)(\alpha_{\xi}) = \frac{1}{(1-t)^2} + \frac{1}{1-t} + 2\mathfrak{q}(\xi)$$
$$= \frac{2}{(1-t)^2} \left(\alpha + (1-t)\xi + (1-t)^2 \mathfrak{q}(\xi) \right).$$

Fix a point $x_{\xi} \neq c$ lying on the affine line $\Lambda_{\xi} \cap \mathbb{C}^{N}$. As $t \to 1$, $\Phi_{t}(z)$ converges to $\mathfrak{c}(z)$) and thus Λ_{ξ}^{t} converges to a minimal rational curve $\mathfrak{c}(\Lambda_{\xi})$ passing through $\mathfrak{c}(x_{\xi}) \in \mathbb{C}^{N}$ such that $T_{\mathfrak{c}(x_{\xi})} = \mathbb{C}\alpha$. In particular, all affine lines $\mathfrak{c}(\Lambda_{\xi}) \cap \mathbb{C}^{N}$ are parallel to Λ .

Write $\Omega \subset \widehat{\Omega}$ for the Borel embedding. Let $\pi : \Omega \to X_{\Gamma} := \Omega/\Gamma$ be the uniformization map, $Z \subset \Omega$ be an irreducible algebraic subset. Write $\mathscr{Z} \subset X_{\Gamma}$ for the Zariski closure of $\pi(Z)$ in X_{Γ} . We have constructed $\mu_{\Gamma} : \mathcal{U}_{\Gamma} \to X_{\Gamma}$ arising from an irreducible component \mathcal{U} universal family of the Chow scheme of the Hermitian symmetric space $\widehat{\Omega}$, by restriction to Ω and by taking quotients with respect to Γ . (In the noncocompact case Mok-Zhong applies to prove quasi-projectivity of \mathcal{U}_{Γ} .)

Write $\Omega \subset \widehat{\Omega}$ for the Borel embedding. Let $\pi : \Omega \to X_{\Gamma} := \Omega/\Gamma$ be the uniformization map, $Z \subset \Omega$ be an irreducible algebraic subset. Write $\mathscr{Z} \subset X_{\Gamma}$ for the Zariski closure of $\pi(Z)$ in X_{Γ} . We have constructed $\mu_{\Gamma} : \mathcal{U}_{\Gamma} \to X_{\Gamma}$ arising from an irreducible component \mathcal{U} universal family of the Chow scheme of the Hermitian symmetric space $\widehat{\Omega}$, by restriction to Ω and by taking quotients with respect to Γ . (In the noncocompact case Mok-Zhong applies to prove quasi-projectivity of \mathcal{U}_{Γ} .)

 $(\mathcal{U}_{\Gamma}, \mathscr{F})$ is tautologically foliated. Lift $\pi(Z)$ to \mathcal{U}_{Γ} , take its Zariski closure in \mathcal{U}_{Γ} , lift to \mathcal{U} and project to Ω to obtain an irreducible component \widetilde{Z} of $\pi^{-1}(\mathcal{Z})$ containing Z. We have a multifoliated structure on some neighborhood of a general boundary point b on $\partial \widetilde{Z}$. Thus, there exists some open neighborhood U of b and a complex submanifold $S \subset U$ such that $\pi(S) \subset X_{\Gamma}$ contains a nonempty open subset of \mathcal{Z} in the complex topology. For illustration consider the case where $\operatorname{rank}(\Omega) = 2$.

(1) Take a general boundary point $b \in \partial \widetilde{Z} \cap U$, $b \in \operatorname{Reg}(\partial \Omega)$. The point b lies on a unique boundary component Θ of rank 1 on $\operatorname{Reg}(\partial \Omega)$. Pick a minimal rational curve Λ passing through b such that $\Lambda \cap \Omega \neq \emptyset$, consider a one-parameter group $\{\varphi_t : -\infty < t < +\infty\}$ corresponding to a hyperbolic flow on the geodesic disk $D := \Lambda \cap \Omega$, fixing b (and any point on Θ) and pushing D to an opposite point $b' \in \Theta'$, an opposite boundary component on $\operatorname{Reg}(\partial \Omega)$.

(1) Take a general boundary point $b \in \partial \widetilde{Z} \cap U$, $b \in \text{Reg}(\partial \Omega)$. The point b lies on a unique boundary component Θ of rank 1 on $\operatorname{Reg}(\partial\Omega)$. Pick a minimal rational curve Λ passing through b such that $\Lambda \cap \Omega \neq \emptyset$, consider a one-parameter group $\{\varphi_t : -\infty < t < +\infty\}$ corresponding to a hyperbolic flow on the geodesic disk $D := \Lambda \cap \Omega$, fixing b (and any point on Θ) and pushing D to an opposite point $b' \in \Theta'$, an opposite boundary component on $\operatorname{Reg}(\partial\Omega)$. Write $\check{\Gamma}$ for the image of $\pi_1(\mathcal{Z})$ in Γ . Applying estimates on intrinsic metrics, there exists $\gamma_n \in \check{\Gamma}$ such that $\gamma_n = \kappa_n \circ \varphi_n$ with $\{\kappa_n\}$ lying on a compact $Q \in G_0 := \operatorname{Aut}_0(\Omega)$. Then, $(\gamma_n)_* Z = Z$, $\kappa_{\sigma(n)} \to \kappa \in G_0$, and $\widetilde{Z} = (\gamma_n)_* \widetilde{Z} = (\kappa_n)_* (\varphi_n)_* \widetilde{Z}$ subconverges to $\kappa_* W$, where W is the limit of $(\varphi_n)_* Z$. Near b, W decomposes into a disjoint union of holomorphic isometric copies of some \mathbb{B}^m .

(1) Take a general boundary point $b \in \partial Z \cap U$, $b \in \text{Reg}(\partial \Omega)$. The point b lies on a unique boundary component Θ of rank 1 on $\operatorname{Reg}(\partial\Omega)$. Pick a minimal rational curve Λ passing through b such that $\Lambda \cap \Omega \neq \emptyset$, consider a one-parameter group $\{\varphi_t : -\infty < t < +\infty\}$ corresponding to a hyperbolic flow on the geodesic disk $D := \Lambda \cap \Omega$, fixing b (and any point on Θ) and pushing D to an opposite point $b' \in \Theta'$, an opposite boundary component on $\operatorname{Reg}(\partial\Omega)$. Write $\check{\Gamma}$ for the image of $\pi_1(\mathcal{Z})$ in Γ . Applying estimates on intrinsic metrics, there exists $\gamma_n \in \check{\Gamma}$ such that $\gamma_n = \kappa_n \circ \varphi_n$ with $\{\kappa_n\}$ lying on a compact $Q \in G_0 := \operatorname{Aut}_0(\Omega)$. Then, $(\gamma_n)_* Z = Z$, $\kappa_{\sigma(n)} \to \kappa \in G_0$, and $Z = (\gamma_n)_* Z = (\kappa_n)_* (\varphi_n)_* Z$ subconverges to $\kappa_* W$, where W is the limit of $(\varphi_n)_* \widetilde{Z}$. Near b, W decomposes into a disjoint union of holomorphic isometric copies of some \mathbb{B}^m .

(2) When \widetilde{Z} is strictly pseudoconvex at *b*, rescaling gives a holomorphic isometric embedding of \mathbb{B}^m into Ω , $m = \dim(\widetilde{Z})$. By Mok (2012), $\widetilde{Z} \subset \Omega$ is algebraic, hence bi-algebraic, thus totally geodesic by Chan-Mok. In general, $\widetilde{Z} = \kappa_* W$ decomposes into a disjoint union of images of holomorphic isometric embeddings of some \mathbb{B}^m .

Ngaiming Mok (HKU)

(3) Recall that $\Theta \subset \operatorname{Reg}(\partial\Omega)$ is the boundary component passing through b, and $S \subset U$ analytically continues \widetilde{Z} across $b \in \partial \widetilde{Z}$. In general S intersects Θ to give a complex analytic subvariety $E \subset \Theta \cap U$. We may assume that E is smooth at b and decompose \widetilde{Z} near b into a disjoint union of nonsingular strictly pseudoconvex subsets \widetilde{Z}_t parametrized holomorphically by $b_t \in E$.

(3) Recall that $\Theta \subset \operatorname{Reg}(\partial\Omega)$ is the boundary component passing through b, and $S \subset U$ analytically continues \widetilde{Z} across $b \in \partial \widetilde{Z}$. In general S intersects Θ to give a complex analytic subvariety $E \subset \Theta \cap U$. We may assume that E is smooth at b and decompose \widetilde{Z} near b into a disjoint union of nonsingular strictly pseudoconvex subsets \widetilde{Z}_t parametrized holomorphically by $b_t \in E$.

(4) We have a totally geodesic embedded complex submanifold $\Delta \times \Theta \subset \Omega$, where $\Delta \times \{b\}$ corresponds to $D = \Lambda \cap \Omega$.

(3) Recall that $\Theta \subset \operatorname{Reg}(\partial\Omega)$ is the boundary component passing through b, and $S \subset U$ analytically continues \widetilde{Z} across $b \in \partial \widetilde{Z}$. In general S intersects Θ to give a complex analytic subvariety $E \subset \Theta \cap U$. We may assume that E is smooth at b and decompose \widetilde{Z} near b into a disjoint union of nonsingular strictly pseudoconvex subsets \widetilde{Z}_t parametrized holomorphically by $b_t \in E$.

(4) We have a totally geodesic embedded complex submanifold $\Delta \times \Theta \subset \Omega$, where $\Delta \times \{b\}$ corresponds to $D = \Lambda \cap \Omega$. Now proceed with rescaling simultaneously \widetilde{Z}_t , and we end up with identifying \widetilde{Z} , up to an automorphism, with a union W (in the notation of (1)) of holomorphically and isometrically embedded \mathbb{B}^m such that W is invariant with respect to a real 1-parameter family Φ of translations.

(3) Recall that $\Theta \subset \operatorname{Reg}(\partial\Omega)$ is the boundary component passing through b, and $S \subset U$ analytically continues \widetilde{Z} across $b \in \partial \widetilde{Z}$. In general S intersects Θ to give a complex analytic subvariety $E \subset \Theta \cap U$. We may assume that E is smooth at b and decompose \widetilde{Z} near b into a disjoint union of nonsingular strictly pseudoconvex subsets \widetilde{Z}_t parametrized holomorphically by $b_t \in E$.

(4) We have a totally geodesic embedded complex submanifold $\Delta \times \Theta \subset \Omega$, where $\Delta \times \{b\}$ corresponds to $D = \Lambda \cap \Omega$. Now proceed with rescaling simultaneously \widetilde{Z}_t , and we end up with identifying \widetilde{Z} , up to an automorphism, with a union W (in the notation of (1)) of holomorphically and isometrically embedded \mathbb{B}^m such that W is invariant with respect to a real 1-parameter family Φ of translations.

Sidney Frankel first made use of 1-parameter families of translations in the study of convex domains in \mathbb{C}^N which cover compact complex manifolds.

Theorem (Ax-Lindemann-Weierstrass for cocompact Γ)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free cocompact lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map.

Theorem (Ax-Lindemann-Weierstrass for cocompact Γ)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free cocompact lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ the Zariski closure of the image of Z under the uniformization map in the projective manifold X_{Γ} .

Theorem (Ax-Lindemann-Weierstrass for cocompact Γ)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free cocompact lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ the Zariski closure of the image of Z under the uniformization map in the projective manifold X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Theorem (Ax-Lindemann-Weierstrass for cocompact Γ)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free cocompact lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\operatorname{Zar}} \subset X_{\Gamma}$ the Zariski closure of the image of Z under the uniformization map in the projective manifold X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Let \widetilde{Z} be an irreducible component of $\pi^{-1}(Z)$. Assume wlog $0 \in \widetilde{Z}$. Denote by $\Omega' \subset \Omega$ the smallest totally geodesic complex submanifold containing \widetilde{Z} , $\Omega' \Subset \mathbb{C}^{N'}$ its Harish-Chandra realization. Starting with the real 1-parameter group $\Phi \subset G'_0 := \operatorname{Aut}_0(\Omega')$ of translations and considering a maximal algebraic subgroup $H_0 \subset G'_0$ containing Φ , we prove that $H_0 \subset G'_0$ is normal. We claim that $H_0 = G'_0$, hence $\widetilde{Z} = \Omega'$, proving Thm. To this end we argue that $H_0 \neq G'_0$ would lead to a contradiction. The assumption $H_0 \neq G'_0$ would allow us to enhance the dimension of leaves extending beyond $\partial \Omega'$ of some holomorphic foliation \mathscr{F} defined on $U \cap \Omega'$ for some open neighborhood U of a good boundary point $p \in \partial \widetilde{Z} \subset \partial \Omega'$ on $\mathbb{C}^{N'}$. Applying the rescaling method for subvarieties at p, we would obtain an algebraic subgroup $H_0^{\sharp} \supsetneq H_0$ of G'_0 contradicting the maximality of $H_0 \subset G'_0$ as an algebraic subgroup containing Φ . The assumption $H_0 \neq G'_0$ would allow us to enhance the dimension of leaves extending beyond $\partial \Omega'$ of some holomorphic foliation \mathscr{F} defined on $U \cap \Omega'$ for some open neighborhood U of a good boundary point $p \in \partial \widetilde{Z} \subset \partial \Omega'$ on $\mathbb{C}^{N'}$. Applying the rescaling method for subvarieties at p, we would obtain an algebraic subgroup $H_0^{\sharp} \supseteq H_0$ of G'_0 contradicting the maximality of $H_0 \subset G'_0$ as an algebraic subgroup containing Φ .

Strengthening of characterization of bialgebraic varieties replacing algebraicity on $Z \subset \Omega$ by an analytic condition

Theorem (Generalization of Chan-Mok (2022)) Let $\Omega \in \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization. Let $\Omega^{\sharp} \supseteq \Omega$ be a bounded domain containing the topological closure $\overline{\Omega}$, $Z^{\sharp} \subset \Omega^{\sharp}$ be an irreducible complex-analytic subvariety, and $Z \subset \Omega$ be an irreducible component of $Z^{\sharp} \cap \Omega$. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}_0(\Omega)$ leaving Z invariant as a set such that $Y := Z/\check{\Gamma}$ is compact. Then, $Z \subset \Omega$ is a totally geodesic submanifold, hence $Y \hookrightarrow X_{\check{\Gamma}} := \Omega/\check{\Gamma}$ is a totally geodesic subset.

Alles Gute zum Geburtstag,

Thomas!!