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The abundance conjecture

Let X be a smoooth projective variety (over C).

The Kodaira dimension k(X) measures the rate of growth of
the spaces of pluricanonical divisors:

dim H(X, mKx) ~ m"*)
The numerical Kodaira dimension v(X) is defined as
dim H°(X, mKx + A) ~ m"X),

where A is any sufficiently ample divisor on X.
Clearly, x(X) < v(X).

Abundance Conjecture
One always has x(X) = v(X).



The nonvanishing conjecture

The most important case of the abundance conjecture:

Nonvanishing Conjecture

If Kx is pseudo-effective (psef), then x(X) > 0.

Abundance implies nonvanishing:

» Suppose that Kx is psef.
» Then mKx + A is effective for A sufficiently ample.
» Therefore k(X) = v(X) > 0.

According to Boucksom-Demailly-P3aun-Peternell,

Kx is psef <= X is not uniruled

Note. Hashizume has shown that this basic version implies
the more technical version (for Ic pairs).



The Campana-Peternell conjecture

In 2011, Campana and Peternell proposed the following variant
of the nonvanishing conjecture.

Campana-Peternell Conjecture

Let D be an effective divisor on a smooth projective variety X.
If mKx — D is psef for some m > 1, then x(X) > r(X, D).

In other words, the Kodaira dimension of X should be at least
as big as the litaka dimension of D:

dim H(X, mD) ~ m"(X:P)

The Campana-Peternell conjecture

> contains the nonvanishing conjecture (for D = 0)

» is implied by the abundance conjecture.



Relation with abundance

Another candidate for the Kodaira dimension:
u(X) = max{ k(X, D) ‘ mKx — D psef for some m > 1}
We have the following inequalities:
K(X) < p(X) < v(X)

Proof of the second inequality:

» Suppose that mKx = D + E, with E psef.
» For A sufficiently ample, this gives

mrKx + A= rD + (rE + A),

and rE + A is effective for all r > 1.
» It follows that (X, D) < v(X).



Goal of the talk

Split the Campana-Peternell conjecture into two parts:

» The nonvanishing conjecture (very hard)

» A new conjecture about certain algebraic fiber spaces
(more tractable)

| am going to explain
» what the new conjecture is,
» how to prove it in certain cases.

The main tool is singular metrics.
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Applications of the
Campana-Peternell conjecture



Viehweg's hyperbolicity conjecture

The Campana-Peternell conjecture is used in the proof of
Viehweg's hyperbolicity conjecture (by Viehweg-Zuo,
Campana-Peternell, Campana-P3un, Popa-Schnell).

Theorem (in a special case)

Let f: X — Y be a smooth algebraic fiber space with fibers of
general type. If Y is not uniruled, then the Campana-Peternell
conjecture implies the inequality x(Y) > var(f).

When f has maximal variation, Y is of general type
(unconditionally).



Viehweg's hyperbolicity conjecture

In general, one needs the Campana-Peternell conjecture:

» Using Hodge theory, one gets an exact sequence
0—=L— ()N - Q —0,

with x(Y, L) > var(f).
» det Q is psef (Campana-Peternell, Campana-P3un).
» Therefore mKy = L + det Q.

» The Campana-Peternell conjecture gives

k(Y) > k(Y, L) > var(f).



Part I

A conjecture about fiber spaces



A conjecture about fiber spaces

From the Campana-Peternell conjecture, one can extract a
part that is independent of the nonvanishing conjecture.

Conjecture A

Let f: X — Y be an algebraic fiber space with x(F) > 0. Let
H be an ample divisor on Y. If mKx — f*H is psef for some
m > 1, then mKx — f*H becomes effective for m > 0.

What is the point?

» The nonvanishing conjecture is very hard.

» Conjecture A is the part of the Campana-Peternell
conjecture that looks doable with existing techniques.



Deriving Conjecture A
Let me sketch the proof. Suppose that mKx — D is psef.
Step 1. We may assume that D is base-point free.
» Choose n>> 0 so that |nD| gives the litaka fibration.
» Let u: X’ — X be a resolution of the linear system |nD].
» Then p*|nD| = |G| + E, with E effective and G free.
» It follows that

mnKx — G = n- p*(mKx — D) + nmKx)x + E

is still psef.
» The Campana-Peternell conjecture (for G) implies that

k(X) = k(X') > k(X', G) = (X, D).

Step 2. We may assume that D = f*H, where f: X — Y is
an algebraic fiber space, and H is ample on Y.



Deriving Conjecture A

Step 3. Let F be the general fiber of f: X — Y. Now the
Campana-Peternell conjecture actually predicts that

k(X) = k(F) +dimY.

Equivalently, mKx — f*H is effective for m > 0 (Mori).

>

vvyy

From mKx — f*H psef, we get K¢ psef.

The nonvanishing conjecture implies x(F) > 0.

Pick r > 1 so that rKF has sections.

Therefore f.Ox(rKx) ® Oy({H) has sections for ¢ > 0.
Because rKx + *(¢H) > f*H, we get

k(X rKx + £ (CH)) = K(F) + dim Y.

But (ml + r)Kx — (rKx + f*(tH)) = ((mKx — f*H) is
psef, and so the Campana-Peternell conjecture implies

R(X) > (X, rKx + £(CH)) = 5(F) + dim Y.

The converse is the easy addition formula.



A conjecture about fiber spaces

In this way, we arrive at the following statement.

Conjecture A

Let f: X — Y be an algebraic fiber space with x(F) > 0. Let
H be an ample divisor on Y. If mKx — f*H is psef for some
m > 1, then mKx — f*H becomes effective for m > 0.

In fact, the following two things are equivalent:

1. The Campana-Peternell conjecture
2. The nonvanishing conjecture and Conjecture A
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Proof of the conjecture
(in some cases)



The main result
Notation.

» f: X — Y is an algebraic fiber space with x(F) >0
» H is an ample divisor on Y.
| am going to sketch the proof of the following result.

Theorem B

Assume that Y is not uniruled. If mKx — f*H is psef for some
m > 1, then mKx — f*H becomes effective for m > 0.

This proves Conjecture A under the assumption that

Y is not uniruled <= Ky is psef.

Two interesting aspects:

» Singular metrics on pluri-adjoint bundles
» How does adding multiples of Kx make things better?



Sketch of the proof

Here is the idea of the proof.

>
>
>

Fix r > 1 such that rKr has sections.
Suppose that mgKx — f*H is psef for some mg > 1.
The divisor

L= (k+0+1)(moKx — F*H)

is psef for every k, ¢ > 1.
By putting things together correctly, we get

f;ﬁx(mrKX — f*H) =
f*ﬁx(KX + Ln) & ﬁy(kH) X ﬁy(nKY + gH)

where n=mr — (k+{+1)mg— 1 and L, = nKx,y + L.
In fact, we have

Kx + Ly = mrKx — f*(nKy — (k + { + 1)H).



Sketch of the proof
» Because mrKE is effective, the sheaf
f.Ox(Kx + L)

is torsion-free of generic rank dim H°(F, mrKg).

» By the work of Paun-Takayama, L, has a singular metric
h, with semi-positive curvature.
» It induces a singular metric on

(Ox(Kx + Lo) @ Z(hy)),

with semi-positive curvature (in the sense of Griffiths).
» For m > 0, the inclusion

o (Ox(Kx + Lo) @ Z(hy)) € £.Ox(Kx + L)

is generically an isomorphism.
» In particular, the sheaf on the left is nontrivial.



Sketch of the proof

» There is a Kollar-type vanishing theorem for the sheaf
f.(Ox(Kx + Lo) © Z(hy)),

proved by Fujino-Matsumura.
» This leads to an effective nonvanishing theorem:

£.(Ox(Kx + Ly) ® I(h,)) ® Oy (kH)

has sections for some 1 < k < dimY +1

» Y is not uniruled, so Ky is psef.

» For suitable ¢ > 1, the divisor nKy + ¢H is therefore
effective for every n > 1.

» The conclusion is that

f*ﬁx(mrKX - f*H) =
f:kﬁx(KX + Ln) & ﬁy(kH) & ﬁy(nKy + fH)

has sections for m > 0.



Singular hermitian metrics

Let L be a line bundle on a complex manifold X.
When X is projective, the following things are equivalent:

» L is psef (= in the closure of the effective cone).

» [ has a singular metric with semi-positive curvature.

This was proved by Demailly.



Singular hermitian metrics

Two ingredients for constructing singular metrics:

1. Global sections

2. Length function

A section s € H°(X, L) induces a singular metric h on L:
» Declare that |s|, = 1; singular where s = 0.
» In a local trivialization, s = g 50, and |5|? = |g| 2.
» The local weight function is plurisubharmonic (psh)

so|7 = e ¥ where = log|g|®.

» This is the definition of semi-positive curvature.

Note. The metric depends on the section (or sections).



Singular hermitian metrics
To get something intrinsic, we need a length function.

» Assume that X is compact.
» Consider V = H(X, L).
» A continuous function ¢: V — [0, +00] such that

((Av) =|A\{l(v) and {(v)=0<v=0

is called a length function.

We can then define a singular metric h by the rule
1€hx = inf{ {(v) ‘ v € V satisfies v(x) = ¢ }

In a local trivialization, v = g, sp, with g, holomorphic.
The local weight function is

Y= sﬁp{ log|g, |2 ’ v € V satisfies /(v) = 1}.

This is psh, with singularities along the base locus of V.



Singular hermitian metrics

When X is compact, a singular metric h on L gives a
(singular) inner product on H°(X, Kx + L):

> Locally, v=gso® (dxi A--- Adx,) and |s|7 = e7%.
» The formula for the inner product norm is

IvIi? = [ lgl?e™#dp € [0, +oc].
» This is finite on the subspace
HO(X, Ox(Kx + L) ® Z(h)),

where Z(h) is the multiplier ideal sheaf.



Results by Paun-Takayama
Let L be a psef line bundle.

» [ admits a singular metric h with semi-positive curvature.
» No control over the singularities!

Let f: X — Y be an algebraic fiber space.

» By the work of Paun-Takayama, L, = mKx,y + L has a
singular metric h,, with semi-positive curvature.

» It induces a singular metric on
f.(Ox(Kx + Lm) © Z(hn)).

with semi-positive curvature (in the sense of Griffiths).
» For m > 0, the inclusion

f*(ﬁX(KX + L) ®I(hm)) C £.Ox(Kx + Lm)

is generically an isomorphism.



Results by Paun-Takayama
This is a relative version of the following construction.
Consider L,, = mKx + L.

If H°(X, L,,) # 0, the line bundle L,, inherits a singular metric,
called the generalized Narasimhan-Simha metric:

» Each v € H°(X, L) has a length £(v) € [0, +o0]:
(v = [ lgPime#/mdp
X

» Locally, v =gso® (dxg A -+ Adx,)®" and |s|2 = e %,
» This length function puts a singular metric h,, on L,,.
» The metric h("=1)/mh/m induces an inner product on

H°(X, L) = HY(X, Kx + (m — 1)Kx + L).
» One has ||v|| < {(v).

Key point. For m > 0, all sections have finite length. The
reason is that e=#/™ becomes locally integrable for m >> 0.



An open problem
We have proved Conjecture A when Y is not uniruled.

Conjecture A

Let f: X — Y be an algebraic fiber space with x(F) > 0. Let
H be an ample divisor on Y. If mKx — f*H is psef for some
m > 1, then mKx — f*H becomes effective for m > 0.

What is left is the case where Y is rationally connected, using
the maximally rationally connected (MRC) fibration.

Sadly, even the case Y = P! is open!

Conjecture A over P!

Let f: X — P! be an algebraic fiber space with x(F) > 0.
If mKx — f*0(1) is psef for some m > 1, then mKx — f*0'(1)
becomes effective for m > 0.



Thank you!
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