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The abundance conjecture
Let X be a smoooth projective variety (over C).
The Kodaira dimension κ(X ) measures the rate of growth of
the spaces of pluricanonical divisors:

dim H0(X , mKX ) ∼ mκ(X)

The numerical Kodaira dimension ν(X ) is defined as

dim H0(X , mKX + A) ∼ mν(X),

where A is any sufficiently ample divisor on X .
Clearly, κ(X ) ≤ ν(X ).

Abundance Conjecture
One always has κ(X ) = ν(X ).



The nonvanishing conjecture
The most important case of the abundance conjecture:

Nonvanishing Conjecture
If KX is pseudo-effective (psef), then κ(X ) ≥ 0.

Abundance implies nonvanishing:
▶ Suppose that KX is psef.
▶ Then mKX + A is effective for A sufficiently ample.
▶ Therefore κ(X ) = ν(X ) ≥ 0.

According to Boucksom-Demailly-Păun-Peternell,

KX is psef ⇐⇒ X is not uniruled

Note. Hashizume has shown that this basic version implies
the more technical version (for lc pairs).



The Campana-Peternell conjecture
In 2011, Campana and Peternell proposed the following variant
of the nonvanishing conjecture.

Campana-Peternell Conjecture
Let D be an effective divisor on a smooth projective variety X .
If mKX − D is psef for some m ≥ 1, then κ(X ) ≥ κ(X , D).

In other words, the Kodaira dimension of X should be at least
as big as the Iitaka dimension of D:

dim H0(X , mD) ∼ mκ(X ,D)

The Campana-Peternell conjecture
▶ contains the nonvanishing conjecture (for D = 0)
▶ is implied by the abundance conjecture.



Relation with abundance
Another candidate for the Kodaira dimension:

µ(X ) = max
{

κ(X , D)
∣∣∣ mKX − D psef for some m ≥ 1

}
We have the following inequalities:

κ(X ) ≤ µ(X ) ≤ ν(X )

Proof of the second inequality:
▶ Suppose that mKX = D + E , with E psef.
▶ For A sufficiently ample, this gives

mrKX + A = rD + (rE + A),

and rE + A is effective for all r ≥ 1.
▶ It follows that κ(X , D) ≤ ν(X ).



Goal of the talk

Split the Campana-Peternell conjecture into two parts:
▶ The nonvanishing conjecture (very hard)
▶ A new conjecture about certain algebraic fiber spaces

(more tractable)
I am going to explain
▶ what the new conjecture is,
▶ how to prove it in certain cases.

The main tool is singular metrics.



Part I

Applications of the
Campana-Peternell conjecture



Viehweg’s hyperbolicity conjecture

The Campana-Peternell conjecture is used in the proof of
Viehweg’s hyperbolicity conjecture (by Viehweg-Zuo,
Campana-Peternell, Campana-Păun, Popa-Schnell).

Theorem (in a special case)
Let f : X → Y be a smooth algebraic fiber space with fibers of
general type. If Y is not uniruled, then the Campana-Peternell
conjecture implies the inequality κ(Y ) ≥ var(f ).

When f has maximal variation, Y is of general type
(unconditionally).



Viehweg’s hyperbolicity conjecture

In general, one needs the Campana-Peternell conjecture:
▶ Using Hodge theory, one gets an exact sequence

0 → L → (Ω1
Y )⊗N → Q → 0,

with κ(Y , L) ≥ var(f ).
▶ det Q is psef (Campana-Peternell, Campana-Păun).
▶ Therefore mKY ≡ L + det Q.
▶ The Campana-Peternell conjecture gives

κ(Y ) ≥ κ(Y , L) ≥ var(f ).



Part II

A conjecture about fiber spaces



A conjecture about fiber spaces

From the Campana-Peternell conjecture, one can extract a
part that is independent of the nonvanishing conjecture.

Conjecture A
Let f : X → Y be an algebraic fiber space with κ(F ) ≥ 0. Let
H be an ample divisor on Y . If mKX − f ∗H is psef for some
m ≥ 1, then mKX − f ∗H becomes effective for m ≫ 0.

What is the point?
▶ The nonvanishing conjecture is very hard.
▶ Conjecture A is the part of the Campana-Peternell

conjecture that looks doable with existing techniques.



Deriving Conjecture A
Let me sketch the proof. Suppose that mKX − D is psef.
Step 1. We may assume that D is base-point free.
▶ Choose n ≫ 0 so that |nD| gives the Iitaka fibration.
▶ Let µ : X ′ → X be a resolution of the linear system |nD|.
▶ Then µ∗|nD| = |G | + E , with E effective and G free.
▶ It follows that

mnKX ′ − G ≡ n · µ∗(mKX − D) + nmKX ′/X + E

is still psef.
▶ The Campana-Peternell conjecture (for G) implies that

κ(X ) = κ(X ′) ≥ κ(X ′, G) = κ(X , D).

Step 2. We may assume that D = f ∗H , where f : X → Y is
an algebraic fiber space, and H is ample on Y .



Deriving Conjecture A
Step 3. Let F be the general fiber of f : X → Y . Now the
Campana-Peternell conjecture actually predicts that

κ(X ) = κ(F ) + dim Y .

Equivalently, mKX − f ∗H is effective for m ≫ 0 (Mori).
▶ From mKX − f ∗H psef, we get KF psef.
▶ The nonvanishing conjecture implies κ(F ) ≥ 0.
▶ Pick r ≥ 1 so that rKF has sections.
▶ Therefore f∗OX (rKX ) ⊗ OY (ℓH) has sections for ℓ ≫ 0.
▶ Because rKX + f ∗(ℓH) ≥ f ∗H , we get

κ
(
X , rKX + f ∗(ℓH)

)
= κ(F ) + dim Y .

▶ But (mℓ + r)KX −
(
rKX + f ∗(ℓH)

)
= ℓ(mKX − f ∗H) is

psef, and so the Campana-Peternell conjecture implies
κ(X ) ≥ κ

(
X , rKX + f ∗(ℓH)

)
= κ(F ) + dim Y .

▶ The converse is the easy addition formula.



A conjecture about fiber spaces

In this way, we arrive at the following statement.

Conjecture A
Let f : X → Y be an algebraic fiber space with κ(F ) ≥ 0. Let
H be an ample divisor on Y . If mKX − f ∗H is psef for some
m ≥ 1, then mKX − f ∗H becomes effective for m ≫ 0.

In fact, the following two things are equivalent:
1. The Campana-Peternell conjecture
2. The nonvanishing conjecture and Conjecture A



Part III

Proof of the conjecture
(in some cases)



The main result
Notation.
▶ f : X → Y is an algebraic fiber space with κ(F ) ≥ 0
▶ H is an ample divisor on Y .

I am going to sketch the proof of the following result.

Theorem B
Assume that Y is not uniruled. If mKX − f ∗H is psef for some
m ≥ 1, then mKX − f ∗H becomes effective for m ≫ 0.

This proves Conjecture A under the assumption that

Y is not uniruled ⇐⇒ KY is psef.

Two interesting aspects:
▶ Singular metrics on pluri-adjoint bundles
▶ How does adding multiples of KX make things better?



Sketch of the proof
Here is the idea of the proof.
▶ Fix r ≥ 1 such that rKF has sections.
▶ Suppose that m0KX − f ∗H is psef for some m0 ≥ 1.
▶ The divisor

L = (k + ℓ + 1)(m0KX − f ∗H)

is psef for every k , ℓ ≥ 1.
▶ By putting things together correctly, we get

f∗OX (mrKX − f ∗H) ∼=
f∗OX (KX + Ln) ⊗ OY (kH) ⊗ OY (nKY + ℓH)

where n = mr − (k + ℓ + 1)m0 − 1 and Ln = nKX/Y + L.
▶ In fact, we have

KX + Ln = mrKX − f ∗
(
nKY − (k + ℓ + 1)H

)
.



Sketch of the proof
▶ Because mrKF is effective, the sheaf

f∗OX (KX + Ln)

is torsion-free of generic rank dim H0(F , mrKF ).
▶ By the work of Păun-Takayama, Ln has a singular metric

hn with semi-positive curvature.
▶ It induces a singular metric on

f∗
(
OX (KX + Ln) ⊗ I(hn)

)
,

with semi-positive curvature (in the sense of Griffiths).
▶ For m ≫ 0, the inclusion

f∗
(
OX (KX + Ln) ⊗ I(hn)

)
⊆ f∗OX (KX + Ln)

is generically an isomorphism.
▶ In particular, the sheaf on the left is nontrivial.



Sketch of the proof
▶ There is a Kollár-type vanishing theorem for the sheaf

f∗
(
OX (KX + Ln) ⊗ I(hn)

)
,

proved by Fujino-Matsumura.
▶ This leads to an effective nonvanishing theorem:

f∗
(
OX (KX + Ln) ⊗ I(hn)

)
⊗ OY (kH)

has sections for some 1 ≤ k ≤ dim Y + 1
▶ Y is not uniruled, so KY is psef.
▶ For suitable ℓ ≥ 1, the divisor nKY + ℓH is therefore

effective for every n ≥ 1.
▶ The conclusion is that

f∗OX (mrKX − f ∗H) ∼=
f∗OX (KX + Ln) ⊗ OY (kH) ⊗ OY (nKY + ℓH)

has sections for m ≫ 0.



Singular hermitian metrics

Let L be a line bundle on a complex manifold X .
When X is projective, the following things are equivalent:
▶ L is psef (= in the closure of the effective cone).
▶ L has a singular metric with semi-positive curvature.

This was proved by Demailly.



Singular hermitian metrics

Two ingredients for constructing singular metrics:
1. Global sections
2. Length function

A section s ∈ H0(X , L) induces a singular metric h on L:
▶ Declare that |s|h = 1; singular where s = 0.
▶ In a local trivialization, s = g s0, and |s0|2h = |g |−2.
▶ The local weight function is plurisubharmonic (psh)

|s0|2h = e−φ where φ = log|g |2.

▶ This is the definition of semi-positive curvature.
Note. The metric depends on the section (or sections).



Singular hermitian metrics
To get something intrinsic, we need a length function.
▶ Assume that X is compact.
▶ Consider V = H0(X , L).
▶ A continuous function ℓ : V → [0, +∞] such that

ℓ(λv) = |λ| ℓ(v) and ℓ(v) = 0 ⇔ v = 0

is called a length function.
We can then define a singular metric h by the rule

|ξ|h,x = inf
{

ℓ(v)
∣∣∣ v ∈ V satisfies v(x) = ξ

}
.

In a local trivialization, v = gv s0, with gv holomorphic.
The local weight function is

φ = ˆsup
{

log|gv |2
∣∣∣ v ∈ V satisfies ℓ(v) = 1

}
.

This is psh, with singularities along the base locus of V .



Singular hermitian metrics

When X is compact, a singular metric h on L gives a
(singular) inner product on H0(X , KX + L):
▶ Locally, v = g s0 ⊗ (dx1 ∧ · · · ∧ dxn) and |s0|2h = e−φ.
▶ The formula for the inner product norm is

∥v∥2 =
∫

X
|g |2e−φdµ ∈ [0, +∞].

▶ This is finite on the subspace

H0(X , OX (KX + L) ⊗ I(h)),

where I(h) is the multiplier ideal sheaf.



Results by Păun-Takayama
Let L be a psef line bundle.
▶ L admits a singular metric h with semi-positive curvature.
▶ No control over the singularities!

Let f : X → Y be an algebraic fiber space.
▶ By the work of Păun-Takayama, Lm = mKX/Y + L has a

singular metric hm with semi-positive curvature.
▶ It induces a singular metric on

f∗
(
OX (KX + Lm) ⊗ I(hm)

)
,

with semi-positive curvature (in the sense of Griffiths).
▶ For m ≫ 0, the inclusion

f∗
(
OX (KX + Lm) ⊗ I(hm)

)
⊆ f∗OX (KX + Lm)

is generically an isomorphism.



Results by Păun-Takayama
This is a relative version of the following construction.
Consider Lm = mKX + L.
If H0(X , Lm) ̸= 0, the line bundle Lm inherits a singular metric,
called the generalized Narasimhan-Simha metric:
▶ Each v ∈ H0(X , Lm) has a length ℓ(v) ∈ [0, +∞]:

ℓ(v)2/m =
∫

X
|g |2/me−φ/mdµ

▶ Locally, v = g s0 ⊗ (dx1 ∧ · · · ∧ dxn)⊗m and |s0|2h = e−φ.
▶ This length function puts a singular metric hm on Lm.
▶ The metric h(m−1)/m

m h1/m induces an inner product on

H0(X , Lm) = H0(X , KX + (m − 1)KX + L).
▶ One has ∥v∥ ≤ ℓ(v).

Key point. For m ≫ 0, all sections have finite length. The
reason is that e−φ/m becomes locally integrable for m ≫ 0.



An open problem
We have proved Conjecture A when Y is not uniruled.

Conjecture A
Let f : X → Y be an algebraic fiber space with κ(F ) ≥ 0. Let
H be an ample divisor on Y . If mKX − f ∗H is psef for some
m ≥ 1, then mKX − f ∗H becomes effective for m ≫ 0.

What is left is the case where Y is rationally connected, using
the maximally rationally connected (MRC) fibration.
Sadly, even the case Y = P1 is open!

Conjecture A over P1

Let f : X → P1 be an algebraic fiber space with κ(F ) ≥ 0.
If mKX − f ∗O(1) is psef for some m ≥ 1, then mKX − f ∗O(1)
becomes effective for m ≫ 0.



Thank you!
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