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Abstract: There are two parts in the Fujita conjecture. One is the freeness
part which since 1995 has been proved with various weaker bounds.

The other is the very ampleness part, which remains open even with weaker
bounds.

In this talk we will present a proof of the very ampleness part of the Fujita
conjecture with a weaker bound by the method of multiplier ideal sheaves of
higher order and other new techniques.

Statement of Fujita Conjecture (1987). Let X be a compact complex man-
ifold of complex dimension n and L be a holomorphic line bundle which is
positive (i.e., ample) in the sense that there exists a smooth metric e~¥ for
the fibers of L with the complex Hessian 00y strictly positive at every point
of X.

Freeness Part. If m > n+1, then mL+ Kx is globally free on X in the sense
that for every point P in X some global holomorphic section of mL + Kx on
X is nonzero at P.

Very Ampleness Part. If m > n + 2, then mL + Ky is very ample on X in
the sense that a C-basis of the section space I'(X, mL + Kx) can be used as
homogeneous components for a holomorphic embedding of X into Py, where
N + 1 is the complex dimension of I'(X, mL + Kx).

One reason for the conjectured bounds is that the bad case is when K is
negative, with the worst situation of Kx = Op, (—(n+1)) when X =P, and
L = Op, (1), in which the smallest m is n + 1 and n + 2 in both parts.

Known Solution of Freeness Part with Weaker Bound. Over the years many
mathematicians worked on the freeness part of the Fujita conjecture and
obtained results for low dimensions.



For general dimension, Angehrn-Siu (1995) obtained freeness of mL + Kx
for m > fn(n+1)+ 1.

Heier (2002) improved the bound to m > (e + %) ni -+ %ng + 1.

Work on Very Ampleness Part. For the double adjoint situation, the very
amplenss of mL 4+ 2Ky with an effective lower bound for m in terms of n
was first done by Demailly, using the Monge-Ampere equation in 1992 and
then redone by Siu a little later with vanishing theorems.

The very ampleness part of mL + Kx (in original single adjoint situation) in
the Fujita conjecture for general dimension, even for weaker bounds, is still
open.

My paper in the 1999 Ohio Conference Proceedings, I outlined a method for
very ampleness of mL + Kx for some value of m depending only on n but
gave the details only for the case n = 2. Here we present the proof of the
case of general dimension.

We will start out with the general techniques for handling such problems by
producing global sections by L? estimates.

Then we explain the hitherto-insurmountable difficulties of using such tech-
niques to prove the very ampleness part.

Finally, we tell you the new ways to overcome the difficulties.

Vanishing Theorems from L? Estimates. The starting point is Cramer’s rule
for solving a finite number of linear equations with a finite number of un-
knowns. In matrix notations, to solve for the unknown z in Tx = b with
Sb = 0, the minimum solution is zpy, = T*(TT*+ 5*S)~'b, which is reduced
to the usual Cramer’s rule z = T~!b in the case of no compatibility condition
S = 0. The key point is the invertibility of T7T™ + S*S.

For the case of a holomorphic line bundle L with smooth metric e™#% of
strictly positive Hessian 00y, on a compact complex algebraic manifold X,
the vanishing theorem for H'(X, L 4+ Kx) comes from the L? estimate

1T gll5, + 1Sgll, > cllglls,



for some ¢ > 0 (where T' and S are densely defined O operators on test L-
valued (n, 1)-form g on X) to give the solvability for u in Tu = f for given
O-closed L-valued (n,1)-form f with the estimate

1
Julle, < 721l

The metric e™#% for L defines the norm ||g||,, for L-valued (n,1)-form g,

which is a section of L + Kx. That is the reason why the canonical line
bundle Kx comes in. The vanishing of H?(X, L+ Kx) for p > 1 is Kodaira’s
vanishing theorem (1954).

When ¢ in the metric e=% of L is only plurisubharmonic (and not smooth)
with the complex Hessian 00y dominating a smooth strictly positive (1, 1)-
form on X in the sense of generalized functions, the vanishing of

HY(X,Z,(L+ Kx)) for p>1

holds, where Z,, is the multiplier ideal sheaf of ™% defined as the set of all
local holomorphic function germs f with |f|?e~% locally integrable. This is
known as Nadel’s vanishing theorem (1989). In algebraic geometric setting
it is known as the vanishing theorem of Kawamata-Viehweg (1982).

Global Sections from Vanishing Theorems for Metric with Desired Singular-
ity. Let V,, be the multiplier ideal subspace for e~¥ whose structure sheaf is
Ox /Z,. Then the vanishing of H*(X,Z,(L+ Kx)) implies that any holomor-
phic section of L+ Kx defined on V,, can be extended to a global holomorphic
section of L+ Kx on X. In particular, if for every point F, there exists such
a metric e”¥" with V,,, isolated at Fp, then L + Ky is globally free.

The proof of Kodaira’s embedding theorem locally constructs e~¥*o« with

1
P = ST
so that Zy,, = m; p, and then uses a partition of unity to get a metric e ¥
for mL with a sufficiently large, noneffective m which is equal to ¢p, 4 for
prescribed points Py and ¢ = 1,2. This means that there are global sections



of mL + Kx assuming prescribed g¢-jets at points Fy and mL + Kx is very
ample. Kodaira’s original paper uses the blowing up of F, instead of

1
P = =R
Metric from Multi-Valued Global Sections. For an ample line bundle L over
X of complex dimension n, by the theorem of Riemann-Roch

Cl(L)n m"

dimc T'(X, mL) = m" +O0(m" 1) > — + O(m™1') as m — oco.
n!

n!
Because of the lower order terms in O(m™™!), we cannot get a global section
with vanishing order > n + ¢ at Py for an effective m. However, for any
rational € > 0 and Py we can get an element sy in I'(X, N(q + ¢)L) with
vanishing order > Ng. The multivalued global holomorphic section (s N)% of
(¢ + €) L would have vanishing order > ¢q at Fy. It defines a metric

1
12
(sn)™
for the Q-bundle (g + ¢) L.
In general, for multi-valued sections si,--- , s, of Q-bundles ayL, - axL
respectively with (fractional) vanishing order > ¢, we have a metric
1
k 2
Zj:l |08
of aL with o = max(ay,--- ,a;), where o; is a nowhere zero multi-valued

section of (v — o) L.

To guarantee the condition of dominating a smooth positive (1, 1)-form
for the complex Hessian, for any 6 > 0 we can use the metric
e_é‘pL

k
2 j=1 lojss?

of (av+ 9)L for some smooth metric



of the ample line bundle L with strictly positive curvature (where 7, is a
multivalued section of L).

We can also take the metric raised to a (fractional) S power to get a metric of
Bla+0)L. A technique of Shokurov (1985) of slightly perturbing the metric
e~ % to make an appropriate component of V,, irreducible.

For the freeness part, the goal is to make the multiplier subspace isolated at
a prescribed point.

For the very ampleness part, the multiplier subspace is not only required to be
isolated at prescribed points, but should also have higher-order multiplicity
there.

Cutting Down Dimension of Multiplier Subspace by Extending Multi- Valued
Sections from Subspace. For the metric

B 1
2. Isil?

of aL defined by multivalued sections s; of al, to cut down the positive
dimension of V,, at I}, by using the theorem of Riemann-Roch on V,,, one
can use multivalued sections ¢, of 3L on V,, with a prescribed vanishing order
at Py and extend ¢, to a multivalued section t, of L on X to form a new
metric

e ¥

1
2y ~ 2
> L8l + 20 el ?

of vL for some v > max(«, f3).

Note that, unlike a global sections, a global multivalued section of an ample
Q-line bundle can always be extended to all of X by raising it first to a
sufficiently high power.

In order to make  (and other similar numbers) effective, in the use of the
theorem of Riemann-Roch on V,,, one needs an effective bound on the mul-
tiplicity of V,, at F.



Such a multiplicity is not under control, as one can see from the following
computation of the multiplier ideal sheaf of a metric defined by global multi-
valued sections, because the multiplicity of 7(E;) given and defined below is
not under control.

Multiplier Ideal Sheaf from Normal-Crossing Hypersurfaces after Monoidal
Transformations. Let J be a coherent ideals sheaf on a local complex man-
ifold X and N € N. Consider the metric

1
=,
M

e ¥

where |7|> means the sum of the absolute value squares of any set of local
holomorphic generators of the ideal sheaf 7.

Let 7 : X — X be a holomorphic modification by a finite number of suc-
cessive monoidal transformations with nonsingular centers and {E,}, be a
family of nonsingular complex hypersurfaces in X with normal crossing such
that

(i) =T 1§ equal to the ideal sheaf ) ryE, for some nonnegative integer
T an
m

(i) Ky —m"Kx =}, b,E, for some nonnegative integer b,.

Let r, = % Let Zd(W) denote the ideal sheaf of a subvariety W. For r € R
let || be the largest integer not exceeding 7. Then the multiplier ideal sheaf
1, is

ﬂId( [ru = bu] T(EL)),

m

which means that f € Ox belongs to the multiplier ideal sheaf 7, if and only
if f vanishes at least to the order

[y — byl

across the irreducible subvariety £, for every p.



Difficulty is the noneffective multiplicity of w(E,) at the point under consid-
eration, as mentioned earlier, to be handled by the following semicontinuity
argument for multiplier ideal sheaves.

Semicontinuity of Multiplier Ideal Sheaf from Ohsawa-Takigoshi-Type Exten-
sion. Let P be the point of the multiplier subspace V,, under consideration,

where
1

D2 18517
is a metric of aL defined by multivalued sections s; of alL. At a regular point
P of the multiplier subspace V,,, choose a multivalued section sp of SL on

V., whose extension to X vanishes to order > n + ¢ at P, where m and ¢ are
effective. One adds sp to form a new metric

e ¥

1
e P 2
Soilsile +321spl?

with v = max(«, 5). As P — P,, one ends up with a metric

e ¥pP

1
= 7
Silsils + 3 1spl 7

whose multiplier subspace contains P and is of lower dimension than V,,.

e PPy —

For this step we need the semicontinuity of multiplier ideal sheaves from
Ohsawa-Takigoshi-type extension (1987). For a natural local projection 7 :
C"P — CP with m(P,7) = 7 and a multiplier ideal sheaf Z,, on C"*? as a
germ at (P, 7) = (0,0), a section of Zy, _,) on the fiber C" as a germ at P = 0
can be extended to a section of Z,, on C"*? as a germ at (P, 7) = (0,0).

This proves the freeness part of the Fujita conjecture with weaker bound.
The reason for the weaker bound is that the dimension of V,, has to be cut
down one dimension at a time and for the step when dim¢ V,, = k, we need a
multivalued section of (k+¢) to end up finally with m > (1+2+---4+n)+1
with last 1 from contributions of € > 0 of each step (in the 1995 result of
Angehrn-Siu).

Theorem of Ohsawa-Takegoshi. Let 2 be a bounded smooth pseudoconvex
domain in C"*! with coordinates zi,- - -, z,, w. Let H be defined by w = 0.
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Let ¢ be a smooth plurisubharmonic function on 2. There exists a constant
Cq depending only on €2 such that for any holomorphic function f on QN H

with
/ |f\2e’“0 < 00
HAQ

there exists a holomorphic function F' on ) extending f with the property

that
[Ipeee<co [ e
Q HNQ

Remark. Recently there have been a lot of activities concerning the optimal
constant Cg and its application.

Higher Multiplicity (Vanishing Order) Needed for Very Ampleness Part (Han-
dled in Two New Techniques). For a multiplier subspace V,, with higher
multiplicity, the cutting of dimension has to be done on each stratum of mul-
tiplicity 1. The lower dimensional multiplier subspace in each stratum still
needs higher multiplicity.

The cutting down of dimension has to be performed in lexicographical man-
ner. A new technique of lexicographical multiplier ideal sheaves of higher
order is needed.

For P in a regular part of V, with multiplicity, the multivalued section sp
on V,, used to construct the next-step metric e”#” needs to have vanishing
order > n + q at P.

One trouble is the problem of semicontinuity of multiplier ideal sheaf for
higher vanishing order. To solve the problem, another new technique of get-
ting higher vanishing order in the limit of multiplier ideal sheaves is needed.

First Step in Construction of Lexicographical Multiplier Ideal Sheaves. The
point of X under consideration is F and the high multiplicity or vanishing
order is an effective q.

We construct a metric from multivalued sections of an effective multiple of
L whose multiplier ideal sheaf M j, is contained in (mx p,)?.



By using fractional powers of the metric and Shokurov’s technique of slight
perturbation, we get a sequence of multiplier ideal sheaves

Ox=MyDM;D---DM;, DMj;1D--- DMy

such that the ideal sheaf M, ; at F is the intersection of the ideal sheaf M,
at Py and the full ideal sheaf Zy, of some positive-dimensional irreducible
subvariety Y} in X with generic multiplicity 1.

Second Step in Construction of Lexicographical Multiplier Ideal Sheaves. For
the second step, we fix 1 < j; < J; and use Y}, to replace X to set a sequence
of multiplier ideal sheaves

Mjl = Mjh() ) Mjl,l DD Mjhjz ) Mj1,j2+1 DD Mthjl

such that the ideal sheaf M;, ;.11 at Fy is the intersection of the ideal sheaf
M, j, at Py and the full ideal sheaf Zy, . = of some positive-dimensional
irreducible subvariety Yj;, ;, in X with generic multiplicity 1 and

Mthjl - (mX,P0>q + Mj1+1'

The term M, 4, is to provide the vanishing in the normal direction across
Y.

Note that the vanishing on Y}, is added to M, to yield M, 1, which means
that Y, is inside the variety Yj, 11 of M; 1. The vanishing of the restriction
of the multivalued section on Y}, plus the vanishing along the normal direction
of Y}, yields (mx p,)? modulo M; 4.

After the first step, the problem of the noneffective multiplicity of Y;, at
Py arises, which has to be solved by the new technique of getting higher
vanishing order in the limit of multiplier ideal sheaves, because the argu-
ment of using Riemann-Roch to construct multivalued sections with effective
vanishing order at a point works only when the multiplicity at the point is
effective.

Now we discuss how lexicographical multiplier ideal sheaves help us get holo-
morphic sections of mL + Ky for an effective m to make mL + Kx very
ample. So far we have seen only the first two steps in the construction of



lexicographical multiplier ideal sheaves. We now write down the complete
set of lexicographical multiplier ideal sheaves.

Formalism of Lexicographical Multiplier Ideal Sheaves. Suppose X is a com-
pact complex algebraic manifold of complex dimension n and L is an ample
line bundle over X. Let Py € X. Suppose that for a sequence

j17j27"' 7js

of nonnegative integers 0 < j, < Jj, .. j, with 1 < s < .S we have a coherent

ideal sheaf

¢

Mj17j27"'7js
over X such that the following four conditions hold. When ¢ = 0 and the set
{71, ,Je} is vacuous, we use the symbol J to denote Jj, ... j,.

(0) Vanishing Cohomology.
H? (X, M}, jy. jo (ML + Kx)) =0 for p > 1 and m > my.
In addition we assume that we have the following properties.
(1) Inclusion Relations.
Mo e © My kg oo ke
if (ky, ks, -+, k) precedes (ji,ja, - ,Js) in lexicographical ordering.
(2) Vanishing Order.

Mjlv"' 7.j5727j5717J

q . . .
ey © Mx py T+ MGy o doago1+1

When s = 1, the condition reads
./\/lj C mggpo.
(3) Notational Convention.

Mjl,jm"szfho = Mj1,j27"'7j571>
M(] - Ox.
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(4) Sheaf of Longest Word Agreeing With That of Second Longest Word Out-
side Py. The number J;, ... ;o , is equal to 1 and

S—1
M s ngs—10 = M js_ags a1 on X — Py,
Descending induction on 1 < s < § yields the following.
Induction Statement. The cohomology group
HP (X, (M oy ot + 0% 5 ) DMy, i) (ML + Kx))

vanishes for p > 1 and m > mgand 1 < s < S.

End Result of Induction. The cohomology group
Hr (X, m;PO (mL + KX))
vanishes for p > 1 and m > my.

Multiplier Ideal Sheaves of Higher Order. The above induction argument
needs the use of multiplier ideal sheaves of higher order. The vanishing
theorem for multiplier ideal sheaves Z gives us

H? (X, Z(mL+ Kx))=0 forp>1

when m is no less than some effective integer mg (Z) associated to Z. A
higher-order multiplier ideal sheaf J is defined so that there is an exact
sequence of ideal sheaves

07 -J—=1I"—=0,

where both Z' and Z” are multiplier ideal sheaves (of lower order) with asso-
ciated positive integers mg (Z') and mg (Z”). Then for

mo (J) = max (mg (Z) , mo (27))
we have the vanishing theorem
HP (X,J (mL+Kx))=0 forp>1
when m > mg (J).

Lllustrative Simple Fxample to Handle Semicontinuity of Multiplier Ideal
Sheaf of Higher Vanishing Order (Property (2) on Vanishing Order). On
C? with coordinates z,w, as a germ at Py = 0 let C' be a complex curve
defined by z = (P, w = (" with p < r relatively prime, both noneffectively
larger than the effective given order q.

11



The curve C' is like Y; above which occurs as a stratum. Let go = 2" — w?
be the defining equation for C. Consider the metric

1
el
which yields the full ideal sheaf Zd(C) of C' as its multiplier ideal sheaf.
To cut down the dimension of its multiplier subspace C', we use a multivalued

holomorphic function germ fp on C? at 0 whose restriction to C' vanishes to
order more than an effective number a times ¢ at a regular point P of C.

We construct the metric

e~PP — 1
lgc>== (lgc** + | fpI?)

for some appropriate ¢ > 0 and o > 2 and 3 > 2.

We hope that as P — Fy, we end up with e~%% whose multiplier ideal sheaf

satisfies
I, C (m(cz,o)q + Zd(C).

Ypy

The trouble is that in terms of ¢ the condition of (fp)|c vanishing at P to
order > aq only means

[(FP)le)] 2 1€ = C(P)[*

near P. The limiting situation is

[(Fro)le)| 2 1€1*

near Fy = 0.

On the other hand, the restriction of a monomial z#w” (with p+ v > 1)
to C' is (""" with up + vr noneffective, far greater than ag, making the
argument useless for the purpose of concluding

I, C (me20)!+Zd(C).

Yp

The key new technique to handle the difficulty is to first observe that
holomorphic function germs in Z,, ,  are automatically convergent power series
. 0
in z,w.

12



The condition we want can be formulated in terms of an effective number
of linear equations. These linear equations are the vanishing of the coefficients
of ¢FPHV" with u+ v < g.

Secondly, instead of fp which vanishes to high order at P, we choose
hp whose restriction to C' vanishes (without specification of multiplicity)
at an appropriately chosen, effectively large number of points on C. The
coefficient matrix for the system of linear equations is similar to the matrix
of a Vandemonde determinant.

We now give more details of arithmetic computation of this key technique.

More Arithmetic Details of Key Argument. Suppose for (, we have a holo-
morphic function germ

he(z,w) = Z afﬁz“w”
[TR%

on C? at 0, which vanishes at (,e01 -+ (, ek with 0 < O, < -+ < Opp <
27 and k effective.

We assume that h, converges to the holomorphic function germ

heo(z,w) = affj)z“w”

w,v

on C? at 0 as ¢, — 0 when o — oc.

We would like to prove that h., € (mczp)q when 0 < 0,1 < -+ <0, <
2m are appropriately chosen.

We have
P (6o 1) (Goe)) = 3 a2 (G )™ (o)
v
=26 ( 2 “) .
A pptrr=>X

New Notations. We denote (, by X and denote A by m;, where m; < my <
mg < --- with m; = pp; +rv;. Let



such that as ¢ — oo, g, approaches

e}

j=1

Fix ¢. Choose integers a; = j for 1 < j < ¢ (or some other similar effec-
tive increasing sequence of integers of length ¢). Choose nonzero X, with
decreasing absolute value approaching 0 as ¢ — oc.

Lemma. If g,(a; X,) = 0 for every o and every 1 < j < ¢, then a§°°) =0 for
1<j<Ut

Proof. Fix o and consider the system of ¢ equations g,(o;X,) = 0 for

1 < j </ in the ¢ unknowns a,(f)Xg”k for 1 < k < {. Rewrite ¢ equations
9-(jX,) =0 as

l S

(@) mp ymy _ (o) ,Mp ym
E a, o P X = — E ay’ o X
k=1 p=_+1

for 1 < j < ¢. We solve this by Cramer’s rule where the matrix of coefficients
is

ot af®? ay"
agt an®? ag't
W(mlam27"' 7m€) = .
a”t Q) ay”
Note that m; < mgy < -+ < my are not effective. The determinant W (my,--- ,my)
becomes the Vandemonde determinant
2 ¢
1 x xg azg
1 = x% :1:%
Loay g o my = ] (2 —w)
S 0<i<j<t
2 ¢
1z xp -+
when zp = 0 and z; = «; and (mq,--- ,my) = (1,---,¢), and is therefore

nonzero for generic a; and m; (which we assume to be the case).

14



From Cramer’s rule, the unknowns a,(:)X Mk for 1 < k < ¢ are now linear
functions of the right-hand sides

— (@) x™
Z ay’a; " X

p=0+1

with coefficients which are the cofactors A;; of the matrix of coefficients.

That is,

_ZA’W Z Y memp

p=(+1
for 1 < k </, which upon d1v1d1ng by X' yields

ZAM Z a memP i

p={+1

for1<k:<€ By 0 = oo, from X, — 0 and m, > my, for k </ < (+1 <p,
Wegetak J=0for1<k<¢. Q.E.D.

Though my; < my < --+ < my are not effective, we need to limit aq, -, ap
to an effective range to make sure that o, X, — 0as X, - 0for 1 <k < /.

Remark. In summary, the main point here is that the semicontinuity for
higher order vanishing is not to use a sequence of higher order vanishing
ideals at points which approach the limit point in question, but to use a
well-situated collection of points with vanishing order only > 1 each. A
Vandermonde type determinant is then used for the argument.

The key is that though none of the terms in the finite sequence my, mo, - -+, my
is effective, the number of terms ¢ in the sequence is effective.

We only need to require the total vanishing order of the multi-valued sections
at the ¢ regular points to be effective. This means that the multiple of the
given line bundle required to yield such a multi-valued section is effective.

15



This is only happening on the curve C' defined by z = (P, w = (" with p < ¢
relatively prime, which means that the result is modulo the ideal sheaf of C,
as formulated in Property (2) on Vanishing Order.

HAPPY BIRTHDAY, THOMAS!
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