On a question of Borel and Haefliger

Claire Voisin

CNRS, IMJ-PRG

Thomas Peternell's birthday conference Cetraro, July 1st, 2024

Smoothable cycles

• X smooth projective over a field K of char. 0, $\dim X = n$. $\operatorname{CH}_d(X) = \operatorname{CH}^c(X)$, c = n - d, is the group of cycles $z = \sum_i n_i Z_i$ modulo rational equivalence. Here $n_i \in \mathbb{Z}$, $Z_i \subset X$ closed algebraic irreducible of dimension d.

Defi. $CH_d(X)_{smooth} \subset CH_d(X)$ subgroup of "smoothable" cycles, i.e. generated by classes of smooth subvarieties $Z_i \subset X$.

Remark. Not to be confused with smoothability in the sense of deformation theory. Some singular subvarieties cannot be smoothed, even locally analytically (Thom).

Question. Do we have $CH_d(X)_{smooth} = CH_d(X)$?

• Asked by Borel-Haefliger 1961 for $K = \mathbb{C}$ and cycles modulo homological equivalence, that is, for cycle classes.

• Wrong in the compact Kähler setting. Let X=compact Kähler manifold with no effective divisor. For $X' \to X$ obtained by successive blow-ups, no cohomological relation between divisor classes on X'. Construct such an X' containing a singular irreducible divisor...

Smoothable cycles

• X smooth projective over a field K of char. 0, $\dim X = n$. $\operatorname{CH}_d(X) = \operatorname{CH}^c(X)$, c = n - d, is the group of cycles $z = \sum_i n_i Z_i$ modulo rational equivalence. Here $n_i \in \mathbb{Z}$, $Z_i \subset X$ closed algebraic irreducible of dimension d.

Defi. $CH_d(X)_{smooth} \subset CH_d(X)$ subgroup of "smoothable" cycles, i.e. generated by classes of smooth subvarieties $Z_i \subset X$.

Remark. Not to be confused with smoothability in the sense of deformation theory. Some singular subvarieties cannot be smoothed, even locally analytically (Thom).

Question. Do we have $CH_d(X)_{smooth} = CH_d(X)$?

• Asked by Borel-Haefliger 1961 for $K = \mathbb{C}$ and cycles modulo homological equivalence, that is, for cycle classes.

• Wrong in the compact Kähler setting. Let X=compact Kähler manifold with no effective divisor. For $X' \to X$ obtained by successive blow-ups, no cohomological relation between divisor classes on X'. Construct such an X' containing a singular irreducible divisor...

(a) Answer is yes if c = 1. By Serre, any divisor D can be written as D = A - A' with A, A' very ample divisors. Then Bertini provides smooth divisors in |A| and |A'|.

(b) $2 \le c \le d$ (or $2d \ge n$). There exist counterexamples for all pairs (c, d) with c satisfying a mysterious arithmetic condition. Some history:

- c = 2 Hartshorne-Rees-Thomas (1974).
- c = 2 Debarre (1995).
- Examples with c = d (Benoist 2022).

(c) d < c. The "Whitney condition", with reference to the easy Whitney embedding theorem. Any compact real manifold of dimension d can be embedded in any real manifold of dimension $\geq 2d + 1$.

Theorem A. (Kollár-Voisin 2023) One has $CH_d(X) = CH_d(X)_{smooth}$ if d < c.

(a) Answer is yes if c = 1. By Serre, any divisor D can be written as D = A - A' with A, A' very ample divisors. Then Bertini provides smooth divisors in |A| and |A'|.

(b) $2 \le c \le d$ (or $2d \ge n$). There exist counterexamples for all pairs (c, d) with c satisfying a mysterious arithmetic condition. Some history:

- c = 2 Hartshorne-Rees-Thomas (1974).
- c = 2 Debarre (1995).
- Examples with c = d (Benoist 2022).

(c) d < c. The "Whitney condition", with reference to the easy Whitney embedding theorem. Any compact real manifold of dimension d can be embedded in any real manifold of dimension $\geq 2d + 1$.

Theorem A. (Kollár-Voisin 2023) One has $CH_d(X) = CH_d(X)_{smooth}$ if d < c.

(a) Answer is yes if c = 1. By Serre, any divisor D can be written as D = A - A' with A, A' very ample divisors. Then Bertini provides smooth divisors in |A| and |A'|.

(b) $2 \le c \le d$ (or $2d \ge n$). There exist counterexamples for all pairs (c, d) with c satisfying a mysterious arithmetic condition. Some history:

- c = 2 Hartshorne-Rees-Thomas (1974).
- c = 2 Debarre (1995).
- Examples with c = d (Benoist 2022).

(c) d < c. The "Whitney condition", with reference to the easy Whitney embedding theorem. Any compact real manifold of dimension d can be embedded in any real manifold of dimension $\geq 2d + 1$.

Theorem A. (Kollár-Voisin 2023) One has $CH_d(X) = CH_d(X)_{smooth}$ if d < c.

More on negative results

• Let G = G(k, n) be the Grassmannian of vector subspaces $V_k \subset \mathbb{C}^n$. Then $\operatorname{CH}^2(G) = H^4(G, \mathbb{Z}) = \mathbb{Z}c_1^2 + \mathbb{Z}c_2$, where $c_i = c_i(\mathcal{E}_{\operatorname{taut}})$.

Thm. (Hartshorne-Rees-Thomas 1974) Assume $k \ge 3$, $n - k \ge 3$. Then if $Z \subset G$ is a real oriented submanifold of codimension 4, $[Z] = ac_1^2 + bc_2$, with b even. So c_2 is not smoothable.

• Let $C \subset J(C)$ be a smooth projective curve of genus g. Consider the singular subvariety $W_{g-2} \subset J(C)$ defined as the image of the sum map $C^{(g-2)} \to J(C)$.

Thm. (Debarre 1995) Assume $g \ge 7$ and C very general. Then for any smooth subvariety $W \subset J(C)$, one has $[W] = a\theta^2$ with $a \in \mathbb{N}$. So the cycle of W_{g-2} is not smoothable (even cohomologically), since the class $[W_{g-2}] \in H^4(J(C), \mathbb{Z})$ equals $\theta^2/2$.

Remark. Debarre's example is very different because it is not topological. Specialize J(C) to $J_0 := E_1 \times \ldots \times E_g$. Then θ specializes to $\theta_1 + \ldots + \theta_g \in H^2(J_0, \mathbb{Z})$ so θ^2 specializes to $(\theta_1 + \ldots + \theta_g)^2 = 2 \sum_{i>j} \theta_i \theta_j \in H^2(J_0, \mathbb{Z})$, and $\theta^2/2$ becomes smoothable on J_0 .

More on negative results

• Let G = G(k, n) be the Grassmannian of vector subspaces $V_k \subset \mathbb{C}^n$. Then $\operatorname{CH}^2(G) = H^4(G, \mathbb{Z}) = \mathbb{Z}c_1^2 + \mathbb{Z}c_2$, where $c_i = c_i(\mathcal{E}_{\operatorname{taut}})$.

Thm. (Hartshorne-Rees-Thomas 1974) Assume $k \ge 3$, $n - k \ge 3$. Then if $Z \subset G$ is a real oriented submanifold of codimension 4, $[Z] = ac_1^2 + bc_2$, with b even. So c_2 is not smoothable.

• Let $C \subset J(C)$ be a smooth projective curve of genus g. Consider the singular subvariety $W_{g-2} \subset J(C)$ defined as the image of the sum map $C^{(g-2)} \to J(C)$.

Thm. (Debarre 1995) Assume $g \ge 7$ and C very general. Then for any smooth subvariety $W \subset J(C)$, one has $[W] = a\theta^2$ with $a \in \mathbb{N}$. So the cycle of W_{g-2} is not smoothable (even cohomologically), since the class $[W_{g-2}] \in H^4(J(C), \mathbb{Z})$ equals $\theta^2/2$.

Remark. Debarre's example is very different because it is not topological. Specialize J(C) to $J_0 := E_1 \times \ldots \times E_g$. Then θ specializes to $\theta_1 + \ldots + \theta_g \in H^2(J_0, \mathbb{Z})$ so θ^2 specializes to $(\theta_1 + \ldots + \theta_g)^2 = 2 \sum_{i>j} \theta_i \theta_j \in H^2(J_0, \mathbb{Z})$, and $\theta^2/2$ becomes smoothable on J_0 .

More on negative results

• Let G = G(k, n) be the Grassmannian of vector subspaces $V_k \subset \mathbb{C}^n$. Then $\operatorname{CH}^2(G) = H^4(G, \mathbb{Z}) = \mathbb{Z}c_1^2 + \mathbb{Z}c_2$, where $c_i = c_i(\mathcal{E}_{\operatorname{taut}})$.

Thm. (Hartshorne-Rees-Thomas 1974) Assume $k \ge 3$, $n - k \ge 3$. Then if $Z \subset G$ is a real oriented submanifold of codimension 4, $[Z] = ac_1^2 + bc_2$, with b even. So c_2 is not smoothable.

• Let $C \subset J(C)$ be a smooth projective curve of genus g. Consider the singular subvariety $W_{g-2} \subset J(C)$ defined as the image of the sum map $C^{(g-2)} \to J(C)$.

Thm. (Debarre 1995) Assume $g \ge 7$ and C very general. Then for any smooth subvariety $W \subset J(C)$, one has $[W] = a\theta^2$ with $a \in \mathbb{N}$. So the cycle of W_{g-2} is not smoothable (even cohomologically), since the class $[W_{g-2}] \in H^4(J(C), \mathbb{Z})$ equals $\theta^2/2$.

Remark. Debarre's example is very different because it is not topological. Specialize J(C) to $J_0 := E_1 \times \ldots \times E_g$. Then θ specializes to $\theta_1 + \ldots + \theta_g \in H^2(J_0, \mathbb{Z})$ so θ^2 specializes to $(\theta_1 + \ldots + \theta_g)^2 = 2\sum_{i>j} \theta_i \theta_j \in H^2(J_0, \mathbb{Z})$, and $\theta^2/2$ becomes smoothable on J_0 .

Discussion of the condition d < c

• $Z \subset X$, X smooth projective, Z irreducible closed algebraic of dimension d. Projective desingularization $\tau : \widetilde{Z} \to Z$; imbed \widetilde{Z} in $X \times \mathbb{P}^N$. Let $p : X \times \mathbb{P}^N \to \mathbb{P}^N$ be the first projection.

• Chow moving lemma applied to $\widetilde{Z} \Rightarrow \widetilde{Z} \equiv Z'$, with Z' in general position (wrt p). Then apply :

Prop. A Let $f: Y \to X$ be a smooth projective morphism, and $Z' \subset Y$ be smooth in general position wrt f (eg: Z'= general complete intersection of very ample hypersurfaces). Then, if $2\dim Z' < \dim X$, $f_{|Z'}: Z' \to f(Z')$ is an isomorphism and f(Z') is smooth.

Problem. Even if Z is smooth, for $d \ge 4$, Chow moving lemma does not provide a **smooth** Z' in general position.

Indeed, Chow moving lemma is obtained by liaison starting from Z. This produces singularities in codimension 4 along $\widetilde{Z}.$

• This strategy works for $d \leq 3$. This is Hironaka's strategy to prove

Thm. (Hironaka 1968) Cycles of dimension $d \le 3$ are smoothable on X if $2d < n = \dim X$.

Discussion of the condition d < c

• $Z \subset X$, X smooth projective, Z irreducible closed algebraic of dimension d. Projective desingularization $\tau : \widetilde{Z} \to Z$; imbed \widetilde{Z} in $X \times \mathbb{P}^N$. Let $p : X \times \mathbb{P}^N \to \mathbb{P}^N$ be the first projection.

• Chow moving lemma applied to $\widetilde{Z} \Rightarrow \widetilde{Z} \equiv Z'$, with Z' in general position (wrt p). Then apply :

Prop. A Let $f: Y \to X$ be a smooth projective morphism, and $Z' \subset Y$ be smooth in general position wrt f (eg: Z'= general complete intersection of very ample hypersurfaces). Then, if $2\dim Z' < \dim X$, $f_{|Z'}: Z' \to f(Z')$ is an isomorphism and f(Z') is smooth.

Problem. Even if \widetilde{Z} is smooth, for $d \ge 4$, Chow moving lemma does not provide a **smooth** Z' in general position. Indeed, Chow moving lemma is obtained by liaison starting from \widetilde{Z} . This

produces singularities in codimension 4 along Z.

• This strategy works for $d \le 3$. This is Hironaka's strategy to prove **Thm.** (Hironaka 1968) Cycles of dimension $d \le 3$ are smoothable on X if $2d < n = \dim X$.

Discussion of the condition d < c

• $Z \subset X$, X smooth projective, Z irreducible closed algebraic of dimension d. Projective desingularization $\tau : \widetilde{Z} \to Z$; imbed \widetilde{Z} in $X \times \mathbb{P}^N$. Let $p : X \times \mathbb{P}^N \to \mathbb{P}^N$ be the first projection.

• Chow moving lemma applied to $\widetilde{Z} \Rightarrow \widetilde{Z} \equiv Z'$, with Z' in general position (wrt p). Then apply :

Prop. A Let $f: Y \to X$ be a smooth projective morphism, and $Z' \subset Y$ be smooth in general position wrt f (eg: Z'= general complete intersection of very ample hypersurfaces). Then, if $2\dim Z' < \dim X$, $f_{|Z'}: Z' \to f(Z')$ is an isomorphism and f(Z') is smooth.

Problem. Even if \widetilde{Z} is smooth, for $d \ge 4$, Chow moving lemma does not provide a **smooth** Z' in general position. Indeed, Chow moving lemma is obtained by liaison starting from \widetilde{Z} . This produces singularities in codimension 4 along \widetilde{Z} .

• This strategy works for $d \leq 3$. This is Hironaka's strategy to prove

Thm. (Hironaka 1968) Cycles of dimension $d \le 3$ are smoothable on X if $2d < n = \dim X$.

Another earlier result: rational coefficients

Thm. (Hironaka-Kleiman 1968) Cycles of dimension d on X are smoothable with rational coefficients if $2d < n = \dim X$. More precisely $(c-1)!CH_d(X) \subset CH_d(X)_{smooth}$, c = n - d if 2d < n.

• The proof has two steps. Introduce the subring $CH^*(X)_{Ch} \subset CH^*(X)$ generated by Chern classes $c_i(E)$, $E \to X$ algebraic vector bundle.

Step A. Formula $c_c(\mathcal{O}_Z) = (-1)^{c-1}(c-1)![Z]$ in $\operatorname{CH}^c(X) \Rightarrow (c-1)!\operatorname{CH}_d(X) \subset \operatorname{CH}_d(X)_{\operatorname{Ch}}$.

Step B. Prove that $CH_d(X)_{Ch} \subset CH_d(X)_{smooth}$ if 2d < n. For this, use Segre classes $s_i(E)$ instead of Chern classes. They also generate the ring $CH^*(X)_{Ch}$. We have

(*) $s_{i_1}(E_1) \dots s_{i_l}(E_l) = \pi_*(h_1^{r_1-1+i_1} \dots h_l^{r_r-1+i_l})$, where $E_j \to X$ has rank r_j , $\pi : \mathbb{P}(E_1) \times_X \dots \times_X \mathbb{P}(E_l) \to X$, and $h_i := \operatorname{pr}_i^* c_1(\mathcal{O}_{\mathbb{P}(E_i)}(1))$.

• In (*), π is smooth projective, and the class $h_1^{r_1-1+i_1} \dots h_l^{r_r-1+i_l}$ is a product of divisor classes, that can be expressed as a combination of classes of general complete intersections, hence smooth in general position. Then apply Prop. A. **qed**

Another earlier result: rational coefficients

Thm. (Hironaka-Kleiman 1968) Cycles of dimension d on X are smoothable with rational coefficients if $2d < n = \dim X$. More precisely $(c-1)!CH_d(X) \subset CH_d(X)_{smooth}$, c = n - d if 2d < n.

• The proof has two steps. Introduce the subring $CH^*(X)_{Ch} \subset CH^*(X)$ generated by Chern classes $c_i(E)$, $E \to X$ algebraic vector bundle.

Step A. Formula $c_c(\mathcal{O}_Z) = (-1)^{c-1}(c-1)![Z]$ in $\operatorname{CH}^c(X) \Rightarrow (c-1)!\operatorname{CH}_d(X) \subset \operatorname{CH}_d(X)_{\operatorname{Ch}}$.

Step B. Prove that $CH_d(X)_{Ch} \subset CH_d(X)_{smooth}$ if 2d < n. For this, use Segre classes $s_i(E)$ instead of Chern classes. They also generate the ring $CH^*(X)_{Ch}$. We have

(*) $s_{i_1}(E_1) \dots s_{i_l}(E_l) = \pi_*(h_1^{r_1-1+i_1} \dots h_l^{r_r-1+i_l})$, where $E_j \to X$ has rank r_j , $\pi : \mathbb{P}(E_1) \times_X \dots \times_X \mathbb{P}(E_l) \to X$, and $h_i := \operatorname{pr}_i^* c_1(\mathcal{O}_{\mathbb{P}(E_i)}(1))$.

• In (*), π is smooth projective, and the class $h_1^{r_1-1+i_1} \dots h_l^{r_r-1+i_l}$ is a product of divisor classes, that can be expressed as a combination of classes of general complete intersections, hence smooth in general position. Then apply Prop. A. **qed**

Another earlier result: rational coefficients

Thm. (Hironaka-Kleiman 1968) Cycles of dimension d on X are smoothable with rational coefficients if $2d < n = \dim X$. More precisely $(c-1)!CH_d(X) \subset CH_d(X)_{smooth}$, c = n - d if 2d < n.

• The proof has two steps. Introduce the subring $CH^*(X)_{Ch} \subset CH^*(X)$ generated by Chern classes $c_i(E)$, $E \to X$ algebraic vector bundle.

Step A. Formula $c_c(\mathcal{O}_Z) = (-1)^{c-1}(c-1)![Z]$ in $\operatorname{CH}^c(X) \Rightarrow (c-1)!\operatorname{CH}_d(X) \subset \operatorname{CH}_d(X)_{\operatorname{Ch}}$.

Step B. Prove that $CH_d(X)_{Ch} \subset CH_d(X)_{smooth}$ if 2d < n. For this, use Segre classes $s_i(E)$ instead of Chern classes. They also generate the ring $CH^*(X)_{Ch}$. We have

(*) $s_{i_1}(E_1) \dots s_{i_l}(E_l) = \pi_*(h_1^{r_1-1+i_1} \dots h_l^{r_r-1+i_l})$, where $E_j \to X$ has rank r_j , $\pi : \mathbb{P}(E_1) \times_X \dots \times_X \mathbb{P}(E_l) \to X$, and $h_i := \operatorname{pr}_i^* c_1(\mathcal{O}_{\mathbb{P}(E_i)}(1))$.

• In (*), π is smooth projective, and the class $h_1^{r_1-1+i_1} \dots h_l^{r_r-1+i_l}$ is a product of divisor classes, that can be expressed as a combination of classes of general complete intersections, hence smooth in general position. Then apply Prop. A. **qed**

The starting point for the proof of Thm A is a variant of Proposition A.

Prop. B. Let $f: Y \to X$ be a flat projective morphism with Y, X smooth, and $Z' \subset Y$ be smooth in general position (wrt f). Then if $2\dim Z' < \dim X$, $f_{|Z'}: Z' \to f(Z')$ is an isomorphism and f(Z') is smooth.

• Recall that flat \Leftrightarrow equidimensional fibers since Y, X smooth.

Remark. We will apply this to general complete intersections of very ample hypersurfaces.

Defi. Let $CH(X)_{fl_*Ch} \subset CH(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in CH(Y)_{Ch}$ (or z=product of divisor classes on Y).

Corollary. Cycles in $CH_d(X)_{fl_*Ch}$ are smoothable if $2d < n = \dim X$.

So Thm A follows from

Thm B. X smooth projective. Then for any d, $CH_d(X)_{fl_*Ch} = CH_d(X)$.

The starting point for the proof of Thm A is a variant of Proposition A.

Prop. B. Let $f: Y \to X$ be a flat projective morphism with Y, X smooth, and $Z' \subset Y$ be smooth in general position (wrt f). Then if $2\dim Z' < \dim X$, $f_{|Z'}: Z' \to f(Z')$ is an isomorphism and f(Z') is smooth.

• Recall that flat \Leftrightarrow equidimensional fibers since Y, X smooth.

Remark. We will apply this to general complete intersections of very ample hypersurfaces.

Defi. Let $CH(X)_{fl_*Ch} \subset CH(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in CH(Y)_{Ch}$ (or z=product of divisor classes on Y).

Corollary. Cycles in $CH_d(X)_{fl*Ch}$ are smoothable if $2d < n = \dim X$. So Thm A follows from

Thm B. X smooth projective. Then for any d, $CH_d(X)_{fl_*Ch} = CH_d(X)$.

The starting point for the proof of Thm A is a variant of Proposition A.

Prop. B. Let $f: Y \to X$ be a flat projective morphism with Y, X smooth, and $Z' \subset Y$ be smooth in general position (wrt f). Then if $2\dim Z' < \dim X$, $f_{|Z'}: Z' \to f(Z')$ is an isomorphism and f(Z') is smooth.

• Recall that flat \Leftrightarrow equidimensional fibers since Y, X smooth.

Remark. We will apply this to general complete intersections of very ample hypersurfaces.

Defi. Let $CH(X)_{fl_*Ch} \subset CH(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in CH(Y)_{Ch}$ (or z=product of divisor classes on Y).

Corollary. Cycles in $CH_d(X)_{fl_*Ch}$ are smoothable if $2d < n = \dim X$.

So Thm A follows from

Thm B. X smooth projective. Then for any d, $CH_d(X)_{fl_*Ch} = CH_d(X)$.

• Obvious facts concerning $CH(X)_{fl_*Ch}$:

 $\phi: Y \to X \text{ a smooth morphism, then } \phi^*(\mathrm{CH}^c(X)_{\mathrm{fl}_*\mathrm{Ch}}) \subset \mathrm{CH}^c(Y)_{\mathrm{fl}_*\mathrm{Ch}}.$

 $\phi: Y \to X$ a flat projective morphism, then $\phi_*(\operatorname{CH}_d(Y)_{\mathrm{fl}*\mathrm{Ch}}) \subset \operatorname{CH}_d(X)_{\mathrm{fl}*\mathrm{Ch}}.$

Main Proposition. Let X be smooth projective and $j : Y \to X$ be the inclusion of a smooth hypersurface. Then $j_*(CH_d(Y)_{fl_*Ch}) \subset CH_d(X)_{fl_*Ch}$.

Defi. We say that $W \subset X$ is a complete bundle section (cbs) if W is the zero locus of a transverse section of a vector bundle on X.

Coro. 1 Let X be smooth projective and $j : W \to X$ be the inclusion of a smooth cbs. Then $j_*(CH_d(W)_{\mathrm{fl}*Ch}) \subset CH_d(X)_{\mathrm{fl}*Ch}$.

Coro. 2 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Let $\tau: X' := Bl_W(X) \to X$ be the blow-up of W. Then $\tau_*(CH_d(X')_{f_*Ch}) \subset CH_d(X)_{f_*Ch}$.

• Obvious facts concerning $CH(X)_{fl_*Ch}$:

 $\phi: Y \to X$ a smooth morphism, then $\phi^*(\operatorname{CH}^c(X)_{\mathrm{fl}_*\mathrm{Ch}}) \subset \operatorname{CH}^c(Y)_{\mathrm{fl}_*\mathrm{Ch}}$.

 $\phi: Y \to X$ a flat projective morphism, then $\phi_*(\operatorname{CH}_d(Y)_{\mathrm{fl}_*\mathrm{Ch}}) \subset \operatorname{CH}_d(X)_{\mathrm{fl}_*\mathrm{Ch}}.$

Main Proposition. Let X be smooth projective and $j: Y \to X$ be the inclusion of a smooth hypersurface. Then $j_*(CH_d(Y)_{\mathrm{fl}*Ch}) \subset CH_d(X)_{\mathrm{fl}*Ch}$.

Defi. We say that $W \subset X$ is a complete bundle section (cbs) if W is the zero locus of a transverse section of a vector bundle on X.

Coro. 1 Let X be smooth projective and $j : W \to X$ be the inclusion of a smooth cbs. Then $j_*(CH_d(W)_{\mathrm{fl}*Ch}) \subset CH_d(X)_{\mathrm{fl}*Ch}$.

Coro. 2 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Let $\tau: X' := Bl_W(X) \to X$ be the blow-up of W. Then $\tau_*(CH_d(X')_{f_*Ch}) \subset CH_d(X)_{f_*Ch}$.

• Obvious facts concerning $CH(X)_{fl_*Ch}$:

 $\phi: Y \to X \text{ a smooth morphism, then } \phi^*(\mathrm{CH}^c(X)_{\mathrm{fl}_*\mathrm{Ch}}) \subset \mathrm{CH}^c(Y)_{\mathrm{fl}_*\mathrm{Ch}}.$

 $\phi: Y \to X$ a flat projective morphism, then $\phi_*(\operatorname{CH}_d(Y)_{\mathrm{fl}_*\mathrm{Ch}}) \subset \operatorname{CH}_d(X)_{\mathrm{fl}_*\mathrm{Ch}}.$

Main Proposition. Let X be smooth projective and $j: Y \to X$ be the inclusion of a smooth hypersurface. Then $j_*(CH_d(Y)_{\mathrm{fl}*Ch}) \subset CH_d(X)_{\mathrm{fl}*Ch}$.

Defi. We say that $W \subset X$ is a complete bundle section (cbs) if W is the zero locus of a transverse section of a vector bundle on X.

Coro. 1 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Then $j_*(CH_d(W)_{\mathrm{fl}*Ch}) \subset CH_d(X)_{\mathrm{fl}*Ch}$.

Coro. 2 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Let $\tau: X' := Bl_W(X) \to X$ be the blow-up of W. Then $\tau_*(CH_d(X')_{\mathrm{fl}_*\mathrm{Ch}}) \subset CH_d(X)_{\mathrm{fl}_*\mathrm{Ch}}$.

Sketch of proof of Thm B

Coro. 3 Let $Z \subset X$ be a connected component of a smooth cbs W. Then $[Z] \in CH_d(X)_{\mathrm{fl}_*\mathrm{Ch}}$, $d = \dim Z$.

Proof. Let $\tau : X' = \operatorname{Bl}_W(X) \to X$ be the blowup of W. Let $E_Z \to W$ be the exceptional divisor over Z. Then $E_Z^c \in \operatorname{CH}_d(X')_{\operatorname{Ch}}$ and $\tau_* E_Z^c = \pm [Z]$ in $\operatorname{CH}_d(X)$. Hence $[Z] \in \operatorname{CH}_d(X)_{\operatorname{fl}_*\operatorname{Ch}}$ by Coro 2. **qed**

Finally one proves

Thm C. Let $Z \subset X$ be smooth, with $\dim X \ge 4\dim Z$. Then there exists a sequence $X_N \xrightarrow{\tau_N} \ldots X_1 \xrightarrow{\tau_1} X_0 = X$ of blow-ups along smooth cbs such that the proper transform of Z is a connected component of a smooth cbs.

Coro 4. Same assumptions on $Z, X \Rightarrow [Z] \in CH_d(X)_{\mathrm{fl}_*Ch}$.

Proof. By Coro. 3 one gets that $\widetilde{Z} \in CH_d(X_N)_{\mathrm{fl}*Ch}$. By Coro. 2, one gets : $[Z] = \tau_*[\widetilde{Z}] \in CH_d(X)_{\mathrm{fl}*Ch}$ (with $\tau = \tau_1 \circ \ldots \circ \tau_N$). qed

Proof that Thm C \Rightarrow **Thm B**. Indeed, let $Z \subset X$, with dim Z = d. Desingularize $Z, \widetilde{Z} \rightarrow Z$, and embed \widetilde{Z} in $X \times \mathbb{P}^r$, with r large. Apply Corollary 4 to $\widetilde{Z} \subset X \times \mathbb{P}^r$ and then pr_{X*} . **qed**

Sketch of proof of Thm B

Coro. 3 Let $Z \subset X$ be a connected component of a smooth cbs W. Then $[Z] \in CH_d(X)_{\mathrm{fl}_*\mathrm{Ch}}$, $d = \dim Z$.

Proof. Let $\tau : X' = \operatorname{Bl}_W(X) \to X$ be the blowup of W. Let $E_Z \to W$ be the exceptional divisor over Z. Then $E_Z^c \in \operatorname{CH}_d(X')_{\operatorname{Ch}}$ and $\tau_* E_Z^c = \pm [Z]$ in $\operatorname{CH}_d(X)$. Hence $[Z] \in \operatorname{CH}_d(X)_{\operatorname{fl}_*\operatorname{Ch}}$ by Coro 2. **qed**

Finally one proves

Thm C. Let $Z \subset X$ be smooth, with $\dim X \ge 4\dim Z$. Then there exists a sequence $X_N \stackrel{\tau_N}{\to} \ldots X_1 \stackrel{\tau_1}{\to} X_0 = X$ of blow-ups along smooth cbs such that the proper transform of Z is a connected component of a smooth cbs.

Coro 4. Same assumptions on $Z, X \Rightarrow [Z] \in CH_d(X)_{\mathrm{fl}_*\mathrm{Ch}}$.

Proof. By Coro. 3 one gets that $\widetilde{Z} \in CH_d(X_N)_{\mathrm{fl}*Ch}$. By Coro. 2, one gets : $[Z] = \tau_*[\widetilde{Z}] \in CH_d(X)_{\mathrm{fl}*Ch}$ (with $\tau = \tau_1 \circ \ldots \circ \tau_N$). **qed**

Proof that Thm C \Rightarrow **Thm B**. Indeed, let $Z \subset X$, with dim Z = d. Desingularize $Z, \widetilde{Z} \to Z$, and embed \widetilde{Z} in $X \times \mathbb{P}^r$, with r large. Apply Corollary 4 to $\widetilde{Z} \subset X \times \mathbb{P}^r$ and then pr_{X_*} . **qed**

Idea of the proof of Thm C

We sketch the proof when $\dim Z = 1$. Choose a general complete intersection curve W containing Z as a component.

Then $W = Z \cup Z'$ where Z' is smooth, and the intersection $Z \cap Z'$ is transverse at finitely many points p_1, \ldots, p_N . Choose a smooth 0-dimensional complete intersection $T = \{p_1, \ldots, p_N, q_1, \ldots, q_M\}$ containing all points p_i , with $q_i \notin W$.

Thm C in this case reduces to:

Lemma. The proper transform of W under the blow-up of T is a smooth cbs. qed

Idea of the proof of Thm C

We sketch the proof when $\dim Z = 1$. Choose a general complete intersection curve W containing Z as a component.

Then $W = Z \cup Z'$ where Z' is smooth, and the intersection $Z \cap Z'$ is transverse at finitely many points p_1, \ldots, p_N . Choose a smooth 0-dimensional complete intersection $T = \{p_1, \ldots, p_N, q_1, \ldots, q_M\}$ containing all points p_i , with $q_i \notin W$.

Thm C in this case reduces to:

Lemma. The proper transform of W under the blow-up of T is a smooth *cbs.* **qed**

Question. Is $CH(X)_{\mathbb{Q}} = CH(X)_{smooth,\mathbb{Q}}$?

• Open if X = G(k, n), $k \ge 3$, $n - k \ge 3$. In particular:

Question. Let X = G(k, n), $k \ge 3$, $n - k \ge 3$. Is the class c_2 smoothable with rational coefficients ?

• If $k \ge 3$, $n - k \ge 4$, the Barth-van de Ven Lefschetz type theorem combined with Serre's construction \Rightarrow smooth codim. 2 subvarieties of G(k, n) are 0-sets of sections of rank 2 vector bundles on G(k, n).

Recall Hartshorne's conjecture on rank 2 vector bundles on \mathbb{P}^N .

Conj. There exists n_0 such that rank 2 vector bundles on \mathbb{P}^N , with $N \ge n_0$ are split.

Thm. (Benoist-Voisin 2024) Hartshorme's conjecture implies that any rank 2 vector bundle on G(k,n), $k \ge n_0$, $n-k \ge n_0$ is split, hence that $CH^2(G(k,n))_{smooth} = \mathbb{Z}c_1^2$. so that $CH^2(G(k,n))_{smooth,\mathbb{Q}} \neq CH^2(G(k,n))_{\mathbb{Q}}$.

Question. Is $CH(X)_{\mathbb{Q}} = CH(X)_{smooth,\mathbb{Q}}$?

• Open if X = G(k, n), $k \ge 3$, $n - k \ge 3$. In particular:

Question. Let X = G(k, n), $k \ge 3$, $n - k \ge 3$. Is the class c_2 smoothable with rational coefficients ?

• If $k \ge 3$, $n - k \ge 4$, the Barth-van de Ven Lefschetz type theorem combined with Serre's construction \Rightarrow smooth codim. 2 subvarieties of G(k, n) are 0-sets of sections of rank 2 vector bundles on G(k, n).

Recall Hartshorne's conjecture on rank 2 vector bundles on \mathbb{P}^N .

Conj. There exists n_0 such that rank 2 vector bundles on \mathbb{P}^N , with $N \ge n_0$ are split.

Thm. (Benoist-Voisin 2024) Hartshorme's conjecture implies that any rank 2 vector bundle on G(k,n), $k \ge n_0$, $n-k \ge n_0$ is split, hence that $CH^2(G(k,n))_{smooth} = \mathbb{Z}c_1^2$. so that $CH^2(G(k,n))_{smooth,\mathbb{Q}} \neq CH^2(G(k,n))_{\mathbb{Q}}$.

Defi. Let $CH(X)_{sm_*Ch} \subset CH(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in CH(Y)_{Ch}$ (or z=product of divisor classes on Y).

Question. Is $CH_d(X)_{sm_*Ch} = CH_d(X)$ for any smooth projective X, any d?

Thm. Yes if X is an abelian variety.

Proof. Let $\mu: X \times X \to X$ be the sum map. For any $Z \subset X$ of dimension d, let $\tau: \widetilde{Z} \to X$ be a desingularization of Z. Smooth morphism $\phi := \mu \circ (\tau, Id_X) : \widetilde{Z} \times X \to X$ such that

(*) $\phi_*(\widetilde{Z} \times 0) = \phi_*(\mathrm{pr}_X^* 0) = Z$ in $\mathrm{CH}_d(X)$.

If $0 \in CH_0(X)_{Ch}$, this is finished. In general, $0 \notin CH_0(X)_{Ch}$ (Debarre 2008). However, if $j : C \subset X$ is a smooth complete intersection curve, $j_* : J(C) \rightarrow Alb(X) = X$ is a smooth morphism. Furthermore it is known that $0 \in CH_0(J(C))_{Ch}$ (Mattuck). Then replace ϕ by $\phi' = \phi \circ (Id_{\widetilde{Z}}, j_*) : \widetilde{Z} \times J(C) \rightarrow X$ in (*). qed

Defi. Let $CH(X)_{sm_*Ch} \subset CH(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in CH(Y)_{Ch}$ (or z=product of divisor classes on Y).

Question. Is $CH_d(X)_{sm_*Ch} = CH_d(X)$ for any smooth projective X, any d?

Thm. Yes if X is an abelian variety.

Proof. Let $\mu: X \times X \to X$ be the sum map. For any $Z \subset X$ of dimension d, let $\tau: \widetilde{Z} \to X$ be a desingularization of Z. Smooth morphism $\phi := \mu \circ (\tau, Id_X): \widetilde{Z} \times X \to X$ such that

(*) $\phi_*(\widetilde{Z} \times 0) = \phi_*(\operatorname{pr}_X^* 0) = Z$ in $\operatorname{CH}_d(X)$.

If $0 \in CH_0(X)_{Ch}$, this is finished. In general, $0 \notin CH_0(X)_{Ch}$ (Debarre 2008). However, if $j : C \subset X$ is a smooth complete intersection curve, $j_* : J(C) \rightarrow Alb(X) = X$ is a smooth morphism. Furthermore it is known that $0 \in CH_0(J(C))_{Ch}$ (Mattuck). Then replace ϕ by $\phi' = \phi \circ (Id_{\widetilde{Z}}, j_*) : \widetilde{Z} \times J(C) \rightarrow X$ in (*). qed

Defi. Let $CH(X)_{sm_*Ch} \subset CH(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in CH(Y)_{Ch}$ (or z=product of divisor classes on Y).

Question. Is $CH_d(X)_{sm_*Ch} = CH_d(X)$ for any smooth projective X, any d?

Thm. Yes if X is an abelian variety.

Proof. Let $\mu: X \times X \to X$ be the sum map. For any $Z \subset X$ of dimension d, let $\tau: \widetilde{Z} \to X$ be a desingularization of Z. Smooth morphism $\phi := \mu \circ (\tau, Id_X): \widetilde{Z} \times X \to X$ such that

(*) $\phi_*(\widetilde{Z} \times 0) = \phi_*(\operatorname{pr}_X^* 0) = Z$ in $\operatorname{CH}_d(X)$.

If $0 \in CH_0(X)_{Ch}$, this is finished. In general, $0 \notin CH_0(X)_{Ch}$ (Debarre 2008). However, if $j : C \subset X$ is a smooth complete intersection curve, $j_* : J(C) \to Alb(X) = X$ is a smooth morphism. Furthermore it is known that $0 \in CH_0(J(C))_{Ch}$ (Mattuck). Then replace ϕ by $\phi' = \phi \circ (Id_{\widetilde{Z}}, j_*) : \widetilde{Z} \times J(C) \to X$ in (*). qed