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Smoothable cycles

• X smooth projective over a field K of char. 0, dimX = n.
CHd(X) = CHc(X), c = n− d, is the group of cycles z =

∑
i niZi

modulo rational equivalence. Here ni ∈ Z, Zi ⊂ X closed algebraic
irreducible of dimension d.

Defi. CHd(X)smooth ⊂ CHd(X) subgroup of “smoothable” cycles, i.e.
generated by classes of smooth subvarieties Zi ⊂ X.

Remark. Not to be confused with smoothability in the sense of
deformation theory. Some singular subvarieties cannot be smoothed, even
locally analytically (Thom).

Question. Do we have CHd(X)smooth = CHd(X)?

• Asked by Borel-Haefliger 1961 for K = C and cycles modulo
homological equivalence, that is, for cycle classes.

• Wrong in the compact Kähler setting. Let X=compact Kähler manifold
with no effective divisor. For X ′ → X obtained by successive blow-ups, no
cohomological relation between divisor classes on X ′. Construct such an
X ′ containing a singular irreducible divisor...
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Answer

(a) Answer is yes if c = 1. By Serre, any divisor D can be written as
D = A−A′ with A, A′ very ample divisors. Then Bertini provides smooth
divisors in |A| and |A′|.

(b) 2 ≤ c ≤ d (or 2d ≥ n). There exist counterexamples for all pairs (c, d)
with c satisfying a mysterious arithmetic condition. Some history:

• c = 2 Hartshorne-Rees-Thomas (1974).
• c = 2 Debarre (1995).
• Examples with c = d (Benoist 2022).

(c) d < c. The “Whitney condition”, with reference to the easy Whitney
embedding theorem. Any compact real manifold of dimension d can be
embedded in any real manifold of dimension ≥ 2d+ 1.

Theorem A. (Kollár-Voisin 2023) One has CHd(X) = CHd(X)smooth if
d < c.
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More on negative results

• Let G = G(k, n) be the Grassmannian of vector subspaces Vk ⊂ Cn.
Then CH2(G) = H4(G,Z) = Zc2

1 + Zc2, where ci = ci(Etaut).

Thm. (Hartshorne-Rees-Thomas 1974) Assume k ≥ 3, n− k ≥ 3. Then if
Z ⊂ G is a real oriented submanifold of codimension 4, [Z] = ac2

1 + bc2,
with b even. So c2 is not smoothable.

• Let C ⊂ J(C) be a smooth projective curve of genus g. Consider the
singular subvariety Wg−2 ⊂ J(C) defined as the image of the sum map
C(g−2) → J(C).

Thm. (Debarre 1995) Assume g ≥ 7 and C very general. Then for any
smooth subvariety W ⊂ J(C), one has [W ] = aθ2 with a ∈ N. So the
cycle of Wg−2 is not smoothable (even cohomologically), since the class
[Wg−2] ∈ H4(J(C),Z) equals θ2/2.

Remark. Debarre’s example is very different because it is not topological.
Specialize J(C) to J0 := E1 × . . .× Eg. Then θ specializes to
θ1 + . . .+ θg ∈ H2(J0,Z) so θ2 specializes to
(θ1 + . . .+ θg)

2 = 2
∑

i>j θiθj ∈ H2(J0,Z), and θ2/2 becomes
smoothable on J0.
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Discussion of the condition d < c

• Z ⊂ X, X smooth projective, Z irreducible closed algebraic of
dimension d. Projective desingularization τ : Z̃ → Z; imbed Z̃ in X × PN .
Let p : X × PN → PN be the first projection.

• Chow moving lemma applied to Z̃ ⇒ Z̃ ≡ Z ′, with Z ′ in general
position (wrt p). Then apply :

Prop. A Let f : Y → X be a smooth projective morphism, and Z ′ ⊂ Y
be smooth in general position wrt f (eg: Z ′= general complete
intersection of very ample hypersurfaces). Then, if 2dimZ ′ < dimX,
f|Z′ : Z

′ → f(Z ′) is an isomorphism and f(Z ′) is smooth.

Problem. Even if Z̃ is smooth, for d ≥ 4, Chow moving lemma does not
provide a smooth Z ′ in general position.
Indeed, Chow moving lemma is obtained by liaison starting from Z̃. This
produces singularities in codimension 4 along Z̃.

• This strategy works for d ≤ 3. This is Hironaka’s strategy to prove

Thm. (Hironaka 1968) Cycles of dimension d ≤ 3 are smoothable on X if
2d < n = dimX.
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Another earlier result: rational coefficients

Thm. (Hironaka-Kleiman 1968) Cycles of dimension d on X are
smoothable with rational coefficients if 2d < n = dimX. More precisely
(c− 1)!CHd(X) ⊂ CHd(X)smooth, c = n− d if 2d < n.

• The proof has two steps. Introduce the subring CH∗(X)Ch ⊂ CH∗(X)
generated by Chern classes ci(E), E → X algebraic vector bundle.

Step A. Formula cc(OZ) = (−1)c−1(c− 1)![Z] in CHc(X) ⇒
(c− 1)!CHd(X) ⊂ CHd(X)Ch.

Step B. Prove that CHd(X)Ch ⊂ CHd(X)smooth if 2d < n.
For this, use Segre classes si(E) instead of Chern classes. They also
generate the ring CH∗(X)Ch. We have

(*) si1(E1) . . . sil(El) = π∗(h
r1−1+i1
1 . . . hrr−1+il

l ), where Ej → X has
rank rj , π : P(E1)×X . . .×X P(El)→ X, and hi := pr∗i c1(OP(Ei)(1)).

• In (*), π is smooth projective, and the class hr1−1+i1
1 . . . hrr−1+il

l is a
product of divisor classes, that can be expressed as a combination of
classes of general complete intersections, hence smooth in general
position. Then apply Prop. A. qed
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Flat pushforwards of cycles of Chern type

The starting point for the proof of Thm A is a variant of Proposition A.

Prop. B. Let f : Y → X be a flat projective morphism with Y, X
smooth, and Z ′ ⊂ Y be smooth in general position (wrt f). Then if
2dimZ ′ < dimX, f|Z′ : Z

′ → f(Z ′) is an isomorphism and f(Z ′) is
smooth.

• Recall that flat ⇔ equidimensional fibers since Y, X smooth.

Remark. We will apply this to general complete intersections of very
ample hypersurfaces.

Defi. Let CH(X)fl∗Ch ⊂ CH(X) be generated by cycles of the form f∗z,
with f : Y → X flat projective, Y smooth, and z ∈ CH(Y )Ch (or
z=product of divisor classes on Y ).

Corollary. Cycles in CHd(X)fl∗Ch are smoothable if 2d < n = dimX.

So Thm A follows from

Thm B. X smooth projective. Then for any d, CHd(X)fl∗Ch = CHd(X).
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Sketch of proof of Thm B

• Obvious facts concerning CH(X)fl∗Ch:

φ : Y → X a smooth morphism, then φ∗(CHc(X)fl∗Ch) ⊂ CHc(Y )fl∗Ch.

φ : Y → X a flat projective morphism, then
φ∗(CHd(Y )fl∗Ch) ⊂ CHd(X)fl∗Ch.

Main Proposition. Let X be smooth projective and j : Y → X be the
inclusion of a smooth hypersurface. Then
j∗(CHd(Y )fl∗Ch) ⊂ CHd(X)fl∗Ch.

Defi. We say that W ⊂ X is a complete bundle section (cbs) if W is the
zero locus of a transverse section of a vector bundle on X.

Coro. 1 Let X be smooth projective and j :W → X be the inclusion of a
smooth cbs. Then j∗(CHd(W )fl∗Ch) ⊂ CHd(X)fl∗Ch.

Coro. 2 Let X be smooth projective and j :W → X be the inclusion of a
smooth cbs. Let τ : X ′ := BlW (X)→ X be the blow-up of W . Then
τ∗(CHd(X

′)fl∗Ch) ⊂ CHd(X)fl∗Ch.
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Sketch of proof of Thm B

Coro. 3 Let Z ⊂ X be a connected component of a smooth cbs W . Then
[Z] ∈ CHd(X)fl∗Ch, d = dimZ.
Proof. Let τ : X ′ = BlW (X)→ X be the blowup of W . Let EZ →W be
the exceptional divisor over Z. Then EcZ ∈ CHd(X

′)Ch and τ∗E
c
Z = ±[Z]

in CHd(X). Hence [Z] ∈ CHd(X)fl∗Ch by Coro 2. qed

Finally one proves

Thm C. Let Z ⊂ X be smooth, with dimX ≥ 4dimZ. Then there exists
a sequence XN

τN→ . . . X1
τ1→ X0 = X of blow-ups along smooth cbs such

that the proper transform of Z is a connected component of a smooth cbs.

Coro 4. Same assumptions on Z, X ⇒ [Z] ∈ CHd(X)fl∗Ch.

Proof. By Coro. 3 one gets that Z̃ ∈ CHd(XN )fl∗Ch. By Coro. 2, one
gets : [Z] = τ∗[Z̃] ∈ CHd(X)fl∗Ch (with τ = τ1 ◦ . . . ◦ τN ). qed

Proof that Thm C ⇒ Thm B. Indeed, let Z ⊂ X, with dimZ = d.
Desingularize Z, Z̃ → Z, and embed Z̃ in X × Pr, with r large. Apply
Corollary 4 to Z̃ ⊂ X × Pr and then prX∗ . qed
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Idea of the proof of Thm C

We sketch the proof when dimZ = 1. Choose a general complete
intersection curve W containing Z as a component.

Then W = Z ∪ Z ′ where Z ′ is smooth, and the intersection Z ∩ Z ′ is
transverse at finitely many points p1, . . . , pN .
Choose a smooth 0-dimensional complete intersection
T = {p1, . . . , pN , q1, . . . , qM} containing all points pi, with qi 6∈W .

Thm C in this case reduces to:

Lemma. The proper transform of W under the blow-up of T is a smooth
cbs. qed
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Rational coefficients

Question. Is CH(X)Q = CH(X)smooth,Q ?

• Open if X = G(k, n), k ≥ 3, n− k ≥ 3. In particular:

Question. Let X = G(k, n), k ≥ 3, n− k ≥ 3. Is the class c2 smoothable
with rational coefficients ?

• If k ≥ 3, n− k ≥ 4, the Barth-van de Ven Lefschetz type theorem
combined with Serre’s construction ⇒ smooth codim. 2 subvarieties of
G(k, n) are 0-sets of sections of rank 2 vector bundles on G(k, n).

Recall Hartshorne’s conjecture on rank 2 vector bundles on PN .

Conj. There exists n0 such that rank 2 vector bundles on PN , with
N ≥ n0 are split.

Thm. (Benoist-Voisin 2024) Hartshorme’s conjecture implies that any
rank 2 vector bundle on G(k, n), k ≥ n0, n− k ≥ n0 is split, hence that
CH2(G(k, n))smooth = Zc2

1. so that
CH2(G(k, n))smooth,Q 6= CH2(G(k, n))Q.
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• Open if X = G(k, n), k ≥ 3, n− k ≥ 3. In particular:

Question. Let X = G(k, n), k ≥ 3, n− k ≥ 3. Is the class c2 smoothable
with rational coefficients ?

• If k ≥ 3, n− k ≥ 4, the Barth-van de Ven Lefschetz type theorem
combined with Serre’s construction ⇒ smooth codim. 2 subvarieties of
G(k, n) are 0-sets of sections of rank 2 vector bundles on G(k, n).

Recall Hartshorne’s conjecture on rank 2 vector bundles on PN .

Conj. There exists n0 such that rank 2 vector bundles on PN , with
N ≥ n0 are split.
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The case of abelian varieties

Defi. Let CH(X)sm∗Ch ⊂ CH(X) be generated by cycles of the form f∗z,
with f : Y → X flat projective, Y smooth, and z ∈ CH(Y )Ch (or
z=product of divisor classes on Y ).

Question. Is CHd(X)sm∗Ch = CHd(X) for any smooth projective X, any
d?

Thm. Yes if X is an abelian variety.

Proof. Let µ : X ×X → X be the sum map. For any Z ⊂ X of
dimension d, let τ : Z̃ → X be a desingularization of Z. Smooth
morphism φ := µ ◦ (τ, IdX) : Z̃ ×X → X such that

(*) φ∗(Z̃ × 0) = φ∗(pr
∗
X0) = Z in CHd(X).

If 0 ∈ CH0(X)Ch, this is finished. In general, 0 6∈ CH0(X)Ch (Debarre
2008). However, if j : C ⊂ X is a smooth complete intersection curve,
j∗ : J(C)→ Alb(X) = X is a smooth morphism. Furthermore it is known
that 0 ∈ CH0(J(C))Ch (Mattuck). Then replace φ by
φ′ = φ ◦ (Id

Z̃
, j∗) : Z̃ × J(C)→ X in (*). qed
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