On a question of Borel and Haefliger

Claire Voisin

CNRS, IMJ-PRG

Thomas Peternell's birthday conference Cetraro, July 1st, 2024

Smoothable cycles

• X smooth projective over a field K of char. 0, $\dim X = n$. $\operatorname{CH}_d(X)=\operatorname{CH}^c(X)$, $c=n-d$, is the group of cycles $z=\sum_in_iZ_i$ modulo rational equivalence. Here $n_i \in \mathbb{Z}$, $Z_i \subset X$ closed algebraic irreducible of dimension d .

Defi. CH_d(X)_{smooth} \subset CH_d(X) subgroup of "smoothable" cycles, i.e. generated by classes of smooth subvarieties $Z_i \subset X$.

Remark. Not to be confused with smoothability in the sense of deformation theory. Some singular subvarieties cannot be smoothed, even locally analytically (Thom).

Question. Do we have $\text{CH}_d(X)_{\text{smooth}} = \text{CH}_d(X)$?

• Asked by Borel-Haefliger 1961 for $K = \mathbb{C}$ and cycles modulo homological equivalence, that is, for cycle classes.

• Wrong in the compact Kähler setting. Let $X=$ compact Kähler manifold with no effective divisor. For $X' \to X$ obtained by successive blow-ups, no cohomological relation between divisor classes on X' . Construct such an X' containing a singular irreducible divisor...

Smoothable cycles

• X smooth projective over a field K of char. 0, $\dim X = n$. $\operatorname{CH}_d(X)=\operatorname{CH}^c(X)$, $c=n-d$, is the group of cycles $z=\sum_in_iZ_i$ modulo rational equivalence. Here $n_i \in \mathbb{Z}$, $Z_i \subset X$ closed algebraic irreducible of dimension d .

Defi. $\text{CH}_d(X)_{\text{smooth}} \subset \text{CH}_d(X)$ subgroup of "smoothable" cycles, i.e. generated by classes of smooth subvarieties $Z_i \subset X$.

Remark. Not to be confused with smoothability in the sense of deformation theory. Some singular subvarieties cannot be smoothed, even locally analytically (Thom).

Question. Do we have $\text{CH}_d(X)_{\text{smooth}} = \text{CH}_d(X)$?

• Asked by Borel-Haefliger 1961 for $K = \mathbb{C}$ and cycles modulo homological equivalence, that is, for cycle classes.

• Wrong in the compact Kähler setting. Let $X=$ compact Kähler manifold with no effective divisor. For $X' \to X$ obtained by successive blow-ups, no cohomological relation between divisor classes on X' . Construct such an X' containing a singular irreducible divisor...

(a) Answer is yes if $c = 1$. By Serre, any divisor D can be written as $D = A - A'$ with A, A' very ample divisors. Then Bertini provides smooth divisors in $|A|$ and $|A'|$.

(b) $2 \leq c \leq d$ (or $2d \geq n$). There exist counterexamples for all pairs (c, d) with c satisfying a mysterious arithmetic condition. Some history:

- $c = 2$ Hartshorne-Rees-Thomas (1974).
- $c = 2$ Debarre (1995).
- Examples with $c = d$ (Benoist 2022).

(c) $d < c$. The "Whitney condition", with reference to the easy Whitney embedding theorem. Any compact real manifold of dimension d can be embedded in any real manifold of dimension $\geq 2d + 1$.

Theorem A. (Kollár-Voisin 2023) One has $\text{CH}_d(X) = \text{CH}_d(X)_{\text{smooth}}$ if

(a) Answer is yes if $c = 1$. By Serre, any divisor D can be written as $D = A - A'$ with A, A' very ample divisors. Then Bertini provides smooth divisors in $|A|$ and $|A'|$.

(b) $2 \leq c \leq d$ (or $2d \geq n$). There exist counterexamples for all pairs (c, d) with c satisfying a mysterious arithmetic condition. Some history:

- $c = 2$ Hartshorne-Rees-Thomas (1974).
- $c = 2$ Debarre (1995).
- Examples with $c = d$ (Benoist 2022).

(c) $d < c$. The "Whitney condition", with reference to the easy Whitney embedding theorem. Any compact real manifold of dimension d can be embedded in any real manifold of dimension $\geq 2d + 1$.

Theorem A. (Kollár-Voisin 2023) One has $\text{CH}_d(X) = \text{CH}_d(X)_{\text{smooth}}$ if

(a) Answer is yes if $c = 1$. By Serre, any divisor D can be written as $D = A - A'$ with A, A' very ample divisors. Then Bertini provides smooth divisors in $|A|$ and $|A'|$.

(b) $2 \leq c \leq d$ (or $2d \geq n$). There exist counterexamples for all pairs (c, d) with c satisfying a mysterious arithmetic condition. Some history:

- $c = 2$ Hartshorne-Rees-Thomas (1974).
- $c = 2$ Debarre (1995).
- Examples with $c = d$ (Benoist 2022).

(c) $d < c$. The "Whitney condition", with reference to the easy Whitney embedding theorem. Any compact real manifold of dimension d can be embedded in any real manifold of dimension $\geq 2d+1$.

Theorem A. (Kollár-Voisin 2023) One has $\text{CH}_d(X) = \text{CH}_d(X)_{\text{smooth}}$ if $d < c$.

More on negative results

• Let $G = G(k, n)$ be the Grassmannian of vector subspaces $V_k \subset \mathbb{C}^n$. Then $\mathrm{CH}^2(G)=H^4(G,\mathbb{Z})=\mathbb{Z} c_1^2+\mathbb{Z} c_2$, where $c_i=c_i(\mathcal{E}_{\mathrm{taut}})$.

Thm. (Hartshorne-Rees-Thomas 1974) Assume $k \geq 3$, $n - k \geq 3$. Then if $Z \subset G$ is a real oriented submanifold of codimension 4 , $[Z] = ac_1^2 + bc_2$, with b even. So c_2 is not smoothable.

• Let $C \subset J(C)$ be a smooth projective curve of genus q. Consider the singular subvariety $W_{q-2} \subset J(C)$ defined as the image of the sum map $C^{(g-2)} \to J(C).$

Thm. (Debarre 1995) Assume $q > 7$ and C very general. Then for any smooth subvariety $W \subset J(C)$, one has $[W] = a\theta^2$ with $a \in \mathbb{N}$. So the cycle of W_{q-2} is not smoothable (even cohomologically), since the class $[W_{g-2}]\in H^4(J(C),\mathbb{Z})$ equals $\theta^2/2.$

Remark. Debarre's example is very different because it is not topological. Specialize $J(C)$ to $J_0 := E_1 \times \ldots \times E_q$. Then θ specializes to $\overline{\theta_1} + \ldots + \overline{\theta_g} \in H^2(J_0,\mathbb{Z})$ so θ^2 specializes to $(\theta_1+\ldots+\theta_g)^2=2\sum_{i>j}\theta_i\theta_j\in H^2(J_0,\mathbb{Z})$, and $\theta^2/2$ becomes

More on negative results

• Let $G = G(k, n)$ be the Grassmannian of vector subspaces $V_k \subset \mathbb{C}^n$. Then $\mathrm{CH}^2(G)=H^4(G,\mathbb{Z})=\mathbb{Z} c_1^2+\mathbb{Z} c_2$, where $c_i=c_i(\mathcal{E}_{\mathrm{taut}})$.

Thm. (Hartshorne-Rees-Thomas 1974) Assume $k \geq 3$, $n - k \geq 3$. Then if $Z \subset G$ is a real oriented submanifold of codimension 4 , $[Z] = ac_1^2 + bc_2$, with b even. So c_2 is not smoothable.

• Let $C \subset J(C)$ be a smooth projective curve of genus q. Consider the singular subvariety $W_{q-2} \subset J(C)$ defined as the image of the sum map $C^{(g-2)} \to J(C)$.

Thm. (Debarre 1995) Assume $q > 7$ and C very general. Then for any smooth subvariety $W \subset J(C)$, one has $[W] = a\theta^2$ with $a \in \mathbb{N}$. So the cycle of W_{q-2} is not smoothable (even cohomologically), since the class $[W_{g-2}]\in \check{H}^4(J(C),\mathbb{Z})$ equals $\theta^2/2.$

Remark. Debarre's example is very different because it is not topological. Specialize $J(C)$ to $J_0 := E_1 \times \ldots \times E_q$. Then θ specializes to $\overline{\theta_1} + \ldots + \overline{\theta_g} \in H^2(J_0,\mathbb{Z})$ so θ^2 specializes to $(\theta_1+\ldots+\theta_g)^2=2\sum_{i>j}\theta_i\theta_j\in H^2(J_0,\mathbb{Z})$, and $\theta^2/2$ becomes

More on negative results

• Let $G = G(k, n)$ be the Grassmannian of vector subspaces $V_k \subset \mathbb{C}^n$. Then $\mathrm{CH}^2(G)=H^4(G,\mathbb{Z})=\mathbb{Z} c_1^2+\mathbb{Z} c_2$, where $c_i=c_i(\mathcal{E}_{\mathrm{taut}})$.

Thm. (Hartshorne-Rees-Thomas 1974) Assume $k \geq 3$, $n - k \geq 3$. Then if $Z \subset G$ is a real oriented submanifold of codimension 4 , $[Z] = ac_1^2 + bc_2$, with b even. So c_2 is not smoothable.

• Let $C \subset J(C)$ be a smooth projective curve of genus q. Consider the singular subvariety $W_{q-2} \subset J(C)$ defined as the image of the sum map $C^{(g-2)} \to J(C)$.

Thm. (Debarre 1995) Assume $q \ge 7$ and C very general. Then for any smooth subvariety $W \subset J(C)$, one has $[W] = a\theta^2$ with $a \in \mathbb{N}$. So the cycle of W_{g-2} is not smoothable (even cohomologically), since the class $[W_{g-2}]\in \check{H}^4(J(C),\mathbb{Z})$ equals $\theta^2/2.$

Remark. Debarre's example is very different because it is not topological. Specialize $J(C)$ to $J_0 := E_1 \times \ldots \times E_q$. Then θ specializes to $\overline{\theta_1} + \ldots + \overline{\theta_g} \in H^2(J_0,\mathbb{Z})$ so θ^2 specializes to $(\theta_1 + \ldots + \theta_g)^2 = 2 \sum_{i>j} \theta_i \theta_j \in H^2(J_0, \mathbb{Z})$, and $\theta^2/2$ becomes smoothable on J_0 .

Discussion of the condition $d < c$

• $Z \subset X$, X smooth projective, Z irreducible closed algebraic of dimension d . Projective desingularization $\tau : \widetilde{Z} \to Z$; imbed \widetilde{Z} in $X \times \mathbb{P}^N$. Let $p:X\times \mathbb{P}^N\to \mathbb{P}^N$ be the first projection.

• Chow moving lemma applied to $\overline{Z} \Rightarrow \overline{Z} \equiv Z'$, with Z' in general position (wrt p). Then apply :

Prop. A Let $f: Y \to X$ be a smooth projective morphism, and $Z' \subset Y$ be smooth in general position wrt f (eg: Z' = general complete intersection of very ample hypersurfaces). Then, if $2\text{dim } Z' < \text{dim } X$, $f_{|Z'} : Z' \to f(Z')$ is an isomorphism and $f(Z')$ is smooth.

Problem. Even if Z is smooth, for $d > 4$, Chow moving lemma does not provide a smooth Z' in general position. Indeed, Chow moving lemma is obtained by liaison starting from Z . This

produces singularities in codimension 4 along Z .

• This strategy works for $d \leq 3$. This is Hironaka's strategy to prove

Thm. (Hironaka 1968) Cycles of dimension $d \leq 3$ are smoothable on X if $2d < n = \dim X$.

Discussion of the condition $d < c$

• $Z \subset X$, X smooth projective, Z irreducible closed algebraic of dimension d . Projective desingularization $\tau : \widetilde{Z} \to Z$; imbed \widetilde{Z} in $X \times \mathbb{P}^N$. Let $p:X\times \mathbb{P}^N\to \mathbb{P}^N$ be the first projection.

• Chow moving lemma applied to $\overline{Z} \Rightarrow \overline{Z} \equiv Z'$, with Z' in general position (wrt p). Then apply :

Prop. A Let $f: Y \to X$ be a smooth projective morphism, and $Z' \subset Y$ be smooth in general position wrt f (eg: Z' = general complete intersection of very ample hypersurfaces). Then, if $2\text{dim } Z' < \text{dim } X$, $f_{|Z'} : Z' \to f(Z')$ is an isomorphism and $f(Z')$ is smooth.

Problem. Even if \overline{Z} is smooth, for $d > 4$, Chow moving lemma does not provide a smooth Z' in general position. Indeed, Chow moving lemma is obtained by liaison starting from Z . This produces singularities in codimension 4 along Z .

• This strategy works for $d \leq 3$. This is Hironaka's strategy to prove **Thm.** (Hironaka 1968) Cycles of dimension $d \leq 3$ are smoothable on X if $2d < n = \dim X$.

Discussion of the condition $d < c$

• $Z \subset X$, X smooth projective, Z irreducible closed algebraic of dimension d . Projective desingularization $\tau : \widetilde{Z} \to Z$; imbed \widetilde{Z} in $X \times \mathbb{P}^N$. Let $p:X\times \mathbb{P}^N\to \mathbb{P}^N$ be the first projection.

• Chow moving lemma applied to $\overline{Z} \Rightarrow \overline{Z} \equiv Z'$, with Z' in general position (wrt p). Then apply :

Prop. A Let $f: Y \to X$ be a smooth projective morphism, and $Z' \subset Y$ be smooth in general position wrt f (eg: Z' = general complete intersection of very ample hypersurfaces). Then, if $2\text{dim } Z' < \text{dim } X$, $f_{|Z'} : Z' \to f(Z')$ is an isomorphism and $f(Z')$ is smooth.

Problem. Even if \overline{Z} is smooth, for $d > 4$, Chow moving lemma does not provide a smooth Z' in general position. Indeed, Chow moving lemma is obtained by liaison starting from Z . This produces singularities in codimension 4 along Z .

• This strategy works for $d \leq 3$. This is Hironaka's strategy to prove **Thm.** (Hironaka 1968) Cycles of dimension $d \leq 3$ are smoothable on X if $2d < n = \dim X$.

Another earlier result: rational coefficients

Thm. (Hironaka-Kleiman 1968) Cycles of dimension d on X are smoothable with rational coefficients if $2d < n = \dim X$. More precisely $(c-1)!CH_d(X) \subset CH_d(X)_{\text{smooth}}, c = n-d$ if $2d < n$.

 \bullet The proof has two steps. Introduce the subring $\operatorname{CH}^*(X)_{\operatorname{Ch}}\subset \operatorname{CH}^*(X)$ generated by Chern classes $c_i(E)$, $E \to X$ algebraic vector bundle.

Step A. Formula $c_c(\mathcal{O}_Z) = (-1)^{c-1}(c-1)![Z]$ in $\mathrm{CH}^c(X) \Rightarrow$ $(c-1)!CH_d(X) \subset CH_d(X)_{Ch}.$

Step B. Prove that $\text{CH}_d(X)_{\text{Ch}} \subset \text{CH}_d(X)_{\text{smooth}}$ if $2d < n$. For this, use Segre classes $s_i(E)$ instead of Chern classes. They also generate the ring $\operatorname{CH}^*(X)_{\operatorname{Ch}}$. We have

 $(\texttt{\text{*}})$ $s_{i_1}(E_1)\ldots s_{i_l}(E_l)=\pi_*(h_1^{r_1-1+i_1}\ldots h_l^{r_r-1+i_l}),$ where $E_j\rightarrow X$ has $\text{\rm rank}\,\, r_j,\, \pi: \mathbb{P}(E_1)\times_X\ldots\times_X\mathbb{P}(E_l)\to X$, and $h_i:=\text{\rm pr}_i^*c_1(\mathcal{O}_{\mathbb{P}(E_i)}(1)).$

 \bullet In (*), π is smooth projective, and the class $h_1^{r_1-1+i_1}\ldots h_l^{r_r-1+i_l}$ is a product of divisor classes, that can be expressed as a combination of classes of general complete intersections, hence smooth in general position. Then apply Prop. A. qed

Another earlier result: rational coefficients

Thm. (Hironaka-Kleiman 1968) Cycles of dimension d on X are smoothable with rational coefficients if $2d < n = \dim X$. More precisely $(c-1)!CH_d(X) \subset CH_d(X)_{\text{smooth}}, c = n-d$ if $2d < n$.

 \bullet The proof has two steps. Introduce the subring $\operatorname{CH}^*(X)_{\operatorname{Ch}}\subset \operatorname{CH}^*(X)$ generated by Chern classes $c_i(E)$, $E \to X$ algebraic vector bundle.

Step A. Formula $c_c(\mathcal{O}_Z) = (-1)^{c-1}(c-1)![Z]$ in $\mathrm{CH}^c(X) \Rightarrow$ $(c-1)!CH_d(X) \subset CH_d(X)_{Ch}.$

Step B. Prove that $\text{CH}_d(X)_{\text{Ch}} \subset \text{CH}_d(X)_{\text{smooth}}$ if $2d < n$. For this, use Segre classes $s_i(E)$ instead of Chern classes. They also generate the ring $\operatorname{CH}^*(X)_{\operatorname{Ch}}$. We have

 $(\texttt{\text{*}})$ $s_{i_1}(E_1)\ldots s_{i_l}(E_l)=\pi_*(h_1^{r_1-1+i_1}\ldots h_l^{r_r-1+i_l}),$ where $E_j\rightarrow X$ has $\text{\rm rank}\,\, r_j,\, \pi: \mathbb{P}(E_1)\times_X\ldots\times_X\mathbb{P}(E_l)\to X$, and $h_i:=\text{\rm pr}_i^*c_1(\mathcal{O}_{\mathbb{P}(E_i)}(1)).$

 \bullet In (*), π is smooth projective, and the class $h_1^{r_1-1+i_1}\ldots h_l^{r_r-1+i_l}$ is a product of divisor classes, that can be expressed as a combination of classes of general complete intersections, hence smooth in general position. Then apply Prop. A. qed

Another earlier result: rational coefficients

Thm. (Hironaka-Kleiman 1968) Cycles of dimension d on X are smoothable with rational coefficients if $2d < n = \dim X$. More precisely $(c-1)!CH_d(X) \subset CH_d(X)_{\text{smooth}}, c = n-d$ if $2d < n$.

 \bullet The proof has two steps. Introduce the subring $\operatorname{CH}^*(X)_{\operatorname{Ch}}\subset \operatorname{CH}^*(X)$ generated by Chern classes $c_i(E)$, $E \to X$ algebraic vector bundle.

Step A. Formula $c_c(\mathcal{O}_Z) = (-1)^{c-1}(c-1)![Z]$ in $\mathrm{CH}^c(X) \Rightarrow$ $(c-1)!CH_d(X) \subset CH_d(X)_{Ch}.$

Step B. Prove that $\text{CH}_d(X)_{\text{Ch}} \subset \text{CH}_d(X)_{\text{smooth}}$ if $2d < n$. For this, use Segre classes $s_i(E)$ instead of Chern classes. They also generate the ring $\operatorname{CH}^*(X)_{\operatorname{Ch}}$. We have

 $(\textbf{\texttt{*}})$ $s_{i_1}(E_1)\ldots s_{i_l}(E_l)=\pi_*(h_1^{r_1-1+i_1}\ldots h_l^{r_r-1+i_l}),$ where $E_j\rightarrow X$ has $\textsf{rank}\,\, r_j,\, \pi: \mathbb{P}(E_1)\times_X\ldots\times_X\mathbb{P}(E_l)\to X$, and $h_i:=\text{pr}_i^*c_1(\mathcal{O}_{\mathbb{P}(E_i)}(1)).$

 \bullet In (*), π is smooth projective, and the class $h_1^{r_1-1+i_1}\ldots h_l^{r_r-1+i_l}$ is a product of divisor classes, that can be expressed as a combination of classes of general complete intersections, hence smooth in general position. Then apply Prop. A. qed

The starting point for the proof of Thm A is a variant of Proposition A.

Prop. B. Let $f: Y \to X$ be a flat projective morphism with Y, X smooth, and $Z' \subset Y$ be smooth in general position (wrt f). Then if $2 {\mathrm{dim}}\, Z' < \dim X$, $f_{|Z'}: Z' \to f(Z')$ is an isomorphism and $f(Z')$ is smooth.

• Recall that flat \Leftrightarrow equidimensional fibers since Y, X smooth.

Remark. We will apply this to general complete intersections of very ample hypersurfaces.

Defi. Let $CH(X)_{\text{fl·Ch}} \subset CH(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in \text{CH}(Y)_{\text{Ch}}$ (or

Corollary. Cycles in $\text{CH}_d(X)_{\text{fl}*Ch}$ are smoothable if $2d < n = \dim X$.

So Thm A follows from

Thm B. X smooth projective. Then for any d, $\text{CH}_d(X)_{\text{fl} \cdot \text{Ch}} = \text{CH}_d(X)$.

The starting point for the proof of Thm A is a variant of Proposition A.

Prop. B. Let $f: Y \to X$ be a flat projective morphism with Y, X smooth, and $Z' \subset Y$ be smooth in general position (wrt f). Then if $2 {\mathrm{dim}}\, Z' < \dim X$, $f_{|Z'}: Z' \to f(Z')$ is an isomorphism and $f(Z')$ is smooth.

• Recall that flat \Leftrightarrow equidimensional fibers since Y, X smooth.

Remark. We will apply this to general complete intersections of very ample hypersurfaces.

Defi. Let $CH(X)_{\text{fl} \times \text{Ch}} \subset CH(X)$ be generated by cycles of the form $f_* z$, with $f: Y \to X$ flat projective, Y smooth, and $z \in \text{CH}(Y)_{\text{Ch}}$ (or $z =$ product of divisor classes on Y).

Corollary. Cycles in $\text{CH}_d(X)_{\text{fl}*Ch}$ are smoothable if $2d < n = \dim X$.

So Thm A follows from

Thm B. X smooth projective. Then for any d, $\text{CH}_d(X)_{\text{fl} \cdot \text{Ch}} = \text{CH}_d(X)$.

The starting point for the proof of Thm A is a variant of Proposition A.

Prop. B. Let $f: Y \to X$ be a flat projective morphism with Y, X smooth, and $Z' \subset Y$ be smooth in general position (wrt f). Then if $2 {\mathrm{dim}}\, Z' < \dim X$, $f_{|Z'}: Z' \to f(Z')$ is an isomorphism and $f(Z')$ is smooth.

• Recall that flat \Leftrightarrow equidimensional fibers since Y, X smooth.

Remark. We will apply this to general complete intersections of very ample hypersurfaces.

Defi. Let $CH(X)_{\text{fl} \times \text{Ch}} \subset CH(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in \text{CH}(Y)_{\text{Ch}}$ (or $z =$ product of divisor classes on Y).

Corollary. Cycles in $\text{CH}_d(X)_{\text{fl}*Ch}$ are smoothable if $2d < n = \dim X$.

So Thm A follows from

Thm B. X smooth projective. Then for any d, $CH_d(X)_{\text{fl}_\in\text{Ch}} = CH_d(X)$.

• Obvious facts concerning $CH(X)_{\text{fl}_*Ch}$:

 $\phi:Y\to X$ a smooth morphism, then $\phi^*(\mathrm{CH}^c(X)_{\mathrm{fl}_*\mathrm{Ch}})\subset \mathrm{CH}^c(Y)_{\mathrm{fl}_*\mathrm{Ch}}.$

 $\phi: Y \to X$ a flat projective morphism, then $\phi_*(\text{CH}_d(Y)_{\text{fl}_*\text{Ch}}) \subset \text{CH}_d(X)_{\text{fl}_*\text{Ch}}.$

Main Proposition. Let X be smooth projective and $j: Y \rightarrow X$ be the inclusion of a smooth hypersurface. Then $j_*(\text{CH}_d(Y)_{\text{fl}_*\text{Ch}}) \subset \text{CH}_d(X)_{\text{fl}_*\text{Ch}}.$

Defi. We say that $W \subset X$ is a complete bundle section (cbs) if W is the zero locus of a transverse section of a vector bundle on X .

Coro. 1 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Then $j_*(\mathrm{CH}_d(W)_{\mathsf{fl}_*Ch}) \subset \mathrm{CH}_d(X)_{\mathsf{fl}_*Ch}$.

Coro. 2 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Let $\tau : X' := Bl_W(X) \to X$ be the blow-up of $W.$ Then $\tau_*({\rm CH}_d(X')_{\rm fl_*Ch}) \subset {\rm CH}_d(X)_{\rm fl_*Ch}.$

• Obvious facts concerning $CH(X)_{\text{fl}_*Ch}$:

 $\phi:Y\to X$ a smooth morphism, then $\phi^*(\mathrm{CH}^c(X)_{\mathrm{fl}_*\mathrm{Ch}})\subset \mathrm{CH}^c(Y)_{\mathrm{fl}_*\mathrm{Ch}}.$

 $\phi: Y \to X$ a flat projective morphism, then $\phi_*(\text{CH}_d(Y)_{\text{fl}_*\text{Ch}}) \subset \text{CH}_d(X)_{\text{fl}_*\text{Ch}}.$

Main Proposition. Let X be smooth projective and $j: Y \rightarrow X$ be the inclusion of a smooth hypersurface. Then $j_*(\text{CH}_d(Y)_{\text{fl}_*\text{Ch}}) \subset \text{CH}_d(X)_{\text{fl}_*\text{Ch}}.$

Defi. We say that $W \subset X$ is a complete bundle section (cbs) if W is the zero locus of a transverse section of a vector bundle on X .

Coro. 1 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Then $j_*(\text{CH}_d(W)_{\text{fl}*Ch}) \subset \text{CH}_d(X)_{\text{fl}*Ch}$.

Coro. 2 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Let $\tau : X' := Bl_W(X) \to X$ be the blow-up of $W.$ Then $\tau_*({\rm CH}_d(X')_{\rm fl_*Ch}) \subset {\rm CH}_d(X)_{\rm fl_*Ch}.$

• Obvious facts concerning $CH(X)_{\text{fl}_*Ch}$:

 $\phi:Y\to X$ a smooth morphism, then $\phi^*(\mathrm{CH}^c(X)_{\mathrm{fl}_*\mathrm{Ch}})\subset \mathrm{CH}^c(Y)_{\mathrm{fl}_*\mathrm{Ch}}.$

 $\phi: Y \to X$ a flat projective morphism, then $\phi_*(\text{CH}_d(Y)_{\text{fl}_*\text{Ch}}) \subset \text{CH}_d(X)_{\text{fl}_*\text{Ch}}.$

Main Proposition. Let X be smooth projective and $j: Y \rightarrow X$ be the inclusion of a smooth hypersurface. Then $j_*(\text{CH}_d(Y)_{\text{fl}_*\text{Ch}}) \subset \text{CH}_d(X)_{\text{fl}_*\text{Ch}}.$

Defi. We say that $W \subset X$ is a complete bundle section (cbs) if W is the zero locus of a transverse section of a vector bundle on X .

Coro. 1 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Then $j_*(\mathrm{CH}_d(W)_{\mathrm{fl}_*(Ch)}) \subset \mathrm{CH}_d(X)_{\mathrm{fl}_*(Ch)}$.

Coro. 2 Let X be smooth projective and $j: W \to X$ be the inclusion of a smooth cbs. Let $\tau : X' := Bl_W(X) \to X$ be the blow-up of W . Then $\tau_*(\text{CH}_d(X')_{\text{fl}_*\text{Ch}}) \subset \text{CH}_d(X)_{\text{fl}_*\text{Ch}}.$

Sketch of proof of Thm B

Coro. 3 Let $Z \subset X$ be a connected component of a smooth cbs W. Then $[Z] \in CH_d(X)_{\text{fl. Ch.}} d = \dim Z.$

Proof. Let $\tau : X' = \text{Bl}_W(X) \to X$ be the blowup of W. Let $E_Z \to W$ be the exceptional divisor over $Z.$ Then $E_Z^c \in \operatorname{CH}_d(X')_{\operatorname{Ch}}$ and $\tau_*E_Z^c = \pm [Z]$ in $\text{CH}_d(X)$. Hence $[Z] \in \text{CH}_d(X)_{\text{fl}_*Ch}$ by Coro 2. qed

Finally one proves

Thm C. Let $Z \subset X$ be smooth, with $\dim X \ge 4 \dim Z$. Then there exists a sequence $X_N \stackrel{\tau_N}{\to} \dots X_1 \stackrel{\tau_1}{\to} X_0 = X$ of blow-ups along smooth cbs such that the proper transform of Z is a connected component of a smooth cbs.

Coro 4. Same assumptions on $Z, X \Rightarrow [Z] \in CH_d(X)_{\text{fl.}Ch}$.

Proof. By Coro. 3 one gets that $\overline{Z} \in CH_d(X_N)_{\text{fl}*Ch}$. By Coro. 2, one gets : $[Z] = \tau_*[Z] \in \text{CH}_d(X)_{\text{fl}_*\text{Ch}}$ (with $\tau = \tau_1 \circ \ldots \circ \tau_N$). ged

Proof that Thm C \Rightarrow **Thm B**. Indeed, let $Z \subset X$, with $\dim Z = d$. Desingularize $Z, \widetilde{Z} \to Z$, and embed \widetilde{Z} in $X \times \mathbb{P}^r$, with r large. Apply Corollary 4 to $\widetilde{Z}\subset X\times \mathbb{P}^r$ and then pr_{X*} . **qed**

Sketch of proof of Thm B

Coro. 3 Let $Z \subset X$ be a connected component of a smooth cbs W. Then $[Z] \in CH_d(X)_{\text{fl. Ch.}} d = \dim Z.$

Proof. Let $\tau : X' = \text{Bl}_W(X) \to X$ be the blowup of W. Let $E_Z \to W$ be the exceptional divisor over $Z.$ Then $E_Z^c \in \operatorname{CH}_d(X')_{\operatorname{Ch}}$ and $\tau_*E_Z^c = \pm [Z]$ in $\text{CH}_d(X)$. Hence $[Z] \in \text{CH}_d(X)_{\text{fl}_\ast\text{Ch}}$ by Coro 2. ged

Finally one proves

Thm C. Let $Z \subset X$ be smooth, with $\dim X \geq 4 \dim Z$. Then there exists a sequence $X_N \stackrel{\tau_N}{\rightarrow} \dots X_1 \stackrel{\tau_1}{\rightarrow} X_0 = X$ of blow-ups along smooth cbs such that the proper transform of Z is a connected component of a smooth cbs.

Coro 4. Same assumptions on $Z, X \Rightarrow [Z] \in CH_d(X)_{\text{fl}_\in\text{Ch}_\infty}$.

Proof. By Coro. 3 one gets that $\widetilde{Z} \in CH_d(X_N)_{\text{fl}_n\text{Ch}}$. By Coro. 2, one gets : $[Z] = \tau_*[\overline{Z}] \in CH_d(X)_{\text{fl}_*Ch}$ (with $\tau = \tau_1 \circ \ldots \circ \tau_N$). **qed**

Proof that Thm C \Rightarrow **Thm B**. Indeed, let $Z \subset X$, with $\dim Z = d$. Desingularize $Z, \widetilde{Z} \to Z$, and embed \widetilde{Z} in $X \times \mathbb{P}^r$, with r large. Apply Corollary 4 to $\widetilde{Z}\subset X\times \mathbb{P}^r$ and then pr_{X*} . **qed**

Idea of the proof of Thm C

We sketch the proof when $\dim Z = 1$. Choose a general complete intersection curve W containing Z as a component.

Then $W=Z\cup Z'$ where Z' is smooth, and the intersection $Z\cap Z'$ is transverse at finitely many points p_1, \ldots, p_N . Choose a smooth 0-dimensional complete intersection $T = \{p_1, \ldots, \, p_N, \, q_1, \ldots, \, q_M\}$ containing all points p_i , with $q_i \not\in W.$

Thm C in this case reduces to:

Lemma. The proper transform of W under the blow-up of T is a smooth cbs. qed

Idea of the proof of Thm C

We sketch the proof when $\dim Z = 1$. Choose a general complete intersection curve W containing Z as a component.

Then $W=Z\cup Z'$ where Z' is smooth, and the intersection $Z\cap Z'$ is transverse at finitely many points p_1, \ldots, p_N . Choose a smooth 0-dimensional complete intersection $T = \{p_1, \ldots, \, p_N, \, q_1, \ldots, \, q_M\}$ containing all points p_i , with $q_i \not\in W.$

Thm C in this case reduces to:

Lemma. The proper transform of W under the blow-up of T is a smooth cbs. qed

Question. *Is* $CH(X)_{\mathbb{Q}} = CH(X)_{\text{smooth},\mathbb{Q}}$?

• Open if $X = G(k, n)$, $k \geq 3$, $n - k \geq 3$. In particular:

Question. Let $X = G(k, n)$, $k > 3$, $n - k > 3$. Is the class c_2 smoothable with rational coefficients ?

• If $k \geq 3$, $n - k \geq 4$, the Barth-van de Ven Lefschetz type theorem combined with Serre's construction \Rightarrow smooth codim. 2 subvarieties of $G(k, n)$ are 0-sets of sections of rank 2 vector bundles on $G(k, n)$.

Recall Hartshorne's conjecture on rank 2 vector bundles on $\mathbb{P}^N.$

Conj. There exists n_0 such that rank 2 vector bundles on \mathbb{P}^N , with

Thm. (Benoist-Voisin 2024) Hartshorme's conjecture implies that any rank 2 vector bundle on $G(k, n)$, $k \geq n_0$, $n - k \geq n_0$ is split, hence that $\operatorname{CH}^2(G(k,n))_{\text{smooth}} = \mathbb{Z} c_1^2.$ so that $\operatorname{CH}^2(G(k,n))_{\text{smooth},\mathbb{Q}}\neq \operatorname{CH}^2(G(k,n))_{\mathbb{Q}}.$

Question. *Is* $CH(X)_{\mathbb{Q}} = CH(X)_{\text{smooth},\mathbb{Q}}$?

• Open if $X = G(k, n)$, $k \geq 3$, $n - k \geq 3$. In particular:

Question. Let $X = G(k, n)$, $k > 3$, $n - k > 3$. Is the class c_2 smoothable with rational coefficients ?

• If $k \geq 3$, $n - k \geq 4$, the Barth-van de Ven Lefschetz type theorem combined with Serre's construction \Rightarrow smooth codim. 2 subvarieties of $G(k, n)$ are 0-sets of sections of rank 2 vector bundles on $G(k, n)$.

Recall Hartshorne's conjecture on rank 2 vector bundles on $\mathbb{P}^N.$

Conj. There exists n_0 such that rank 2 vector bundles on \mathbb{P}^N , with $N \geq n_0$ are split.

Thm. (Benoist-Voisin 2024) Hartshorme's conjecture implies that any rank 2 vector bundle on $G(k, n)$, $k \geq n_0$, $n - k \geq n_0$ is split, hence that $\operatorname{CH}_\text{{\small{-}}}^2(G(k,n))_\text{smooth}=\mathbb{Z}c_1^2.$ so that $\mathrm{CH}^2(G(k,n))_{\mathrm{smooth},\mathbb{Q}}\neq \mathrm{CH}^2(G(k,n))_{\mathbb{Q}}.$

Defi. Let $\text{CH}(X)_{\text{sm}_*\text{Ch}} \subset \text{CH}(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in \text{CH}(Y)_{\text{Ch}}$ (or $z =$ product of divisor classes on Y).

Question. Is $\text{CH}_d(X)_{\text{sm}_\star\text{Ch}} = \text{CH}_d(X)$ for any smooth projective X, any d ?

Thm. Yes if X is an abelian variety.

Proof. Let $\mu: X \times X \rightarrow X$ be the sum map. For any $Z \subset X$ of dimension d, let $\tau : Z \to X$ be a desingularization of Z. Smooth morphism $\phi := \mu \circ (\tau, Id_X) : Z \times X \to X$ such that

(*) $\phi_*(\widetilde{Z} \times 0) = \phi_*(\text{pr}_X^*0) = Z$ in $\text{CH}_d(X)$.

If $0 \in CH_0(X)_{\text{Ch}}$, this is finished. In general, $0 \notin CH_0(X)_{\text{Ch}}$ (Debarre 2008). However, if $j: C \subset X$ is a smooth complete intersection curve, $j_* : J(C) \to Alb(X) = X$ is a smooth morphism. Furthermore it is known that $0 \in CH_0(J(C))_{Ch}$ (Mattuck). Then replace ϕ by $\phi' = \phi \circ (Id_{\widetilde{Z}}, j_*) : \widetilde{Z} \times J(C) \to X$ in (*). qed

Defi. Let $\text{CH}(X)_{\text{sm}_*\text{Ch}} \subset \text{CH}(X)$ be generated by cycles of the form f_*z , with $f: Y \to X$ flat projective, Y smooth, and $z \in \text{CH}(Y)_{\text{Ch}}$ (or $z =$ product of divisor classes on Y).

Question. Is $\text{CH}_d(X)_{\text{sm}_\star\text{Ch}} = \text{CH}_d(X)$ for any smooth projective X, any d ?

Thm. Yes if X is an abelian variety.

Proof. Let $\mu: X \times X \to X$ be the sum map. For any $Z \subset X$ of dimension d, let $\tau : Z \to X$ be a desingularization of Z. Smooth morphism $\phi := \mu \circ (\tau, Id_X) : Z \times X \to X$ such that

(*) $\phi_*(\widetilde{Z} \times 0) = \phi_*(\text{pr}_X^*0) = Z$ in $\text{CH}_d(X)$.

If $0 \in CH_0(X)_{\text{Ch}}$, this is finished. In general, $0 \notin CH_0(X)_{\text{Ch}}$ (Debarre 2008). However, if $j: C \subset X$ is a smooth complete intersection curve, $j_* : J(C) \to Alb(X) = X$ is a smooth morphism. Furthermore it is known that $0 \in CH_0(J(C))_{Ch}$ (Mattuck). Then replace ϕ by $\phi' = \phi \circ (Id_{\widetilde{Z}}, j_*) : \widetilde{Z} \times J(C) \to X$ in (*). qed

Defi. Let $\text{CH}(X)_{\text{sm}_{*}\text{Ch}} \subset \text{CH}(X)$ be generated by cycles of the form $f_{*}z$, with $f: Y \to X$ flat projective, Y smooth, and $z \in \text{CH}(Y)_{\text{Ch}}$ (or $z =$ product of divisor classes on Y).

Question. Is $\text{CH}_d(X)_{\text{sm}_\star\text{Ch}} = \text{CH}_d(X)$ for any smooth projective X, any d ?

Thm. Yes if X is an abelian variety.

Proof. Let $\mu: X \times X \to X$ be the sum map. For any $Z \subset X$ of dimension d, let $\tau : Z \to X$ be a desingularization of Z. Smooth morphism $\phi := \mu \circ (\tau, Id_X) : Z \times X \to X$ such that

(*) $\phi_*(\widetilde{Z} \times 0) = \phi_*(\text{pr}_X^*0) = Z$ in $\text{CH}_d(X)$.

If $0 \in CH_0(X)_{\text{Ch}}$, this is finished. In general, $0 \notin CH_0(X)_{\text{Ch}}$ (Debarre 2008). However, if $j: C \subset X$ is a smooth complete intersection curve, $j_*: J(C) \to Alb(X) = X$ is a smooth morphism. Furthermore it is known that $0 \in CH_0(J(C))_{Ch}$ (Mattuck). Then replace ϕ by $\phi' = \phi \circ (Id_{\widetilde{Z}}, j_*) : \widetilde{Z} \times J(C) \to X$ in (*). qed