TABLE DES MATIÈRES 1

Table des matières

1	Cou	ars 16 - 22/11	1
	1.1	Stratégie de preuve	1
	1.2	Preuve	1

1 Cours 16 - 22/11

Dans ce cours, on démontre un autre cas particulier du théorème général de Deligne énoncé au cours 14, affirmant l'existence d'une structure de Hodge mixte sur tout schéma séparé sur \mathbb{C} . Dans le cours précédent, on a montré ce théorème dans le cas des variétés à croisements normaux; nous nous intéressons maintenant au cas des variétés algébriques lisses quasi-projectives.

Théorème 1.1. Soit U une variété algébrique lisse quasi-projective sur \mathbb{C} . Alors $H^k(U,\mathbb{Z})$ admet une structure de Hodge mixte entière fonctorielle. Les poids de $H^k(U,\mathbb{Z})$ varient entre k et 2k et $h^{p,q}(H^k(U,\mathbb{Z})) = 0$ sauf si $0 \le p, q \le k$.

1.1 Stratégie de preuve

La preuve est similaire à celle du cours précédent; on peut la découper en 4 étapes.

- D'abord, le théorème de Hironaka sur la résolution des singularités montre que, si U est une variété quasi-projective, U peut se réaliser comme ouvert d'une variété projective lisse X avec D = X - U une variété globalement à croisements normaux, i.e. D peut s'écrire comme l'union $D = \bigcup_i D_i$, où D_i est une variété projective lisse et, localement, $D = \{|z_i| < \epsilon, z_1 \times \cdots \times z_k = 0 \text{ dans } \mathbb{C}^{k+1}\}, z_i = 0$ étant une équation locale d'un unique D_{j_i} .

Notant j l'inclusion de U dans X, la première étape consiste à construire un complexe de faisceaux S^{\bullet} sur X tel que S^{\bullet} soit quasi-isomorphe à $j_*\mathbb{C}_U$. Ce complexe S^{\bullet} sera muni de deux filtrations W_{\bullet} et F^{\bullet} et la suite spectrale du complexe filtré $(S^{\bullet}, W_{\bullet})$ converge vers la cohomologie de U.

- Ensuite, on montre que F^{\bullet} induit une structure de Hodge pure sur $_WE_2^{p,q}$.
- La troisième étape consiste à montrer que la suite spectrale pour $(S^{\bullet}, W_{\bullet})$ dégénère en E_2 , de sorte que la cohomologie de U est munie d'une structure de Hodge mixte.
- Enfin, il reste à prouver que cette construction est indépendante du plongement ouvert $U \hookrightarrow X$ et qu'elle est fonctorielle par rapport aux morphismes entre variétés lisses.

1.2 Preuve

Première étape On considère un plongement de U dans X comme précédemment.

Définition 1.2. Avec les notations précédentes, on définit le complexe logarithmique (lisse) sur X par : pour tout ouvert V de X, $A_X^k(V, \log D) \subset A^k(U \cap V)$ est le sous-espace des k formes ϕ sur $U \cap V$ telles que $z_1\phi, \ldots, z_l\phi, z_1d\phi, \ldots, z_ld\phi$ s'étendent en des formes lisses sur V, où $D \cap V$ s'écrit localement $\{|z_i| < \epsilon, z_1 \times \cdots \times z_l = 0\}$.

On définit aussi un complexe logarithmique holomorphe par

$$\Omega_X^k(V, \log D) = \Omega_X^k(U \cap V) \cap A_X^k(V, \log D).$$

Par définition, $dA_X^k(V, \log D) \subset A_X^{k+1}(V, \log D)$ et $d\Omega_X^k(V, \log D) \subset \Omega_X^{k+1}(V, \log D)$. On a donc bien deux complexes, $\mathcal{A}_X^{\bullet}(\log D) \subset j_*\mathcal{A}_U^{\bullet}$ et $\Omega_X^{\bullet}(\log D) \subset j_*\Omega_U^{\bullet}$.

Théorème 1.3 (Griffiths, 1969). Les inclusions $\Omega_X^{\bullet}(\log D) \hookrightarrow \mathcal{A}_X^{\bullet}(\log D) \hookrightarrow (j_*\mathcal{A}_U^{\bullet}, d) \cong_{q.i} R^{\bullet}j_*\mathbb{C}_U$ sont des quasi-isomorphismes.

Démonstration. On commence par énoncer un lemme permettant de mieux comprendre les faisceaux $\mathcal{A}_X^{\bullet}(\log D)$ et $\Omega_X^{\bullet}(\log D)$.

Lemme 1.4. Si $V \cap U = \{|z_i| < \epsilon, z_1 \times \cdots \times z_l = 0\}$, alors $\Omega_X^{\bullet}(\log D) \cong \Omega_X^{\bullet}(V)\{\frac{dz_1}{z_1}, \dots, \frac{dz_l}{z_l}\}$. De même, $\mathcal{A}_X^{\bullet}(\log D) \cong \mathcal{A}_X^{\bullet}(V)\{\frac{dz_1}{z_1}, \dots, \frac{dz_l}{z_l}\}$.

1 COURS 16 - 22/11

2

Démonstration. Pour simplifier, on fait la preuve dans le cas l=1, le cas général étant analogue. On a clairement l'inclusion $\Omega_X^{\bullet}(V)\{\frac{dz_1}{z_1}\}\subset \Omega_X^{\bullet}(\log D)$.

Réciproquement, soit $\alpha \in \Omega_X^{\bullet}(\log D)$. Par définition, $\alpha = \frac{\beta}{z_1}$, avec $\beta \in \Omega_X^{\bullet}(V)$. Écrivons $\beta = \gamma \wedge dz_1 + \delta$, où $\gamma, \delta \in \Omega_X^{\bullet}(V)$, δ étant sans dz_1 . On a

$$\begin{split} z_1 d\alpha &= z_1 \big[\frac{d\beta}{z_1} + \beta \wedge \frac{dz_1}{z_1^2} \big] \\ &= z_1 \big[\frac{d\gamma \wedge dz_1}{z_1} + \frac{d\delta}{z_1} + \frac{\delta \wedge dz_1}{z_1^2} \big]. \end{split}$$

Nécessairement, on doit avoir $\mu := \frac{\delta}{z_1} \in \Omega_X^{\bullet}(V)$. Donc $\alpha = \gamma \frac{dz_1}{z_1} + \mu \in \Omega_X^{\bullet}(V) \{ \frac{dz_1}{z_1} \}$. L'isomorphisme $\mathcal{A}_X^{\bullet}(\log D) \cong \mathcal{A}_X^{\bullet}(V) \{ \frac{dz_1}{z_1}, \dots, \frac{dz_l}{z_l} \}$ se montre de façon similaire. \square

Prouvons maintenant le théorème (1.3). Localement, $D = \{z_1 \times \cdots \times z_l = 0\}$ et U = X - D est difféomorphe à $D_1^* \times \cdots \times D_l^* \times D_{l+1} \times \cdots \times D_n$, qui est homotope à $(S^1)^l$. Il s'agit de montrer que

l'inclusion $\Omega_X^{\bullet}(\log D) \hookrightarrow j_* \mathcal{A}_U^{\bullet}$ induit un isomorphisme $H^k(\Gamma(X, \Omega_X^{\bullet}(\log D))) \stackrel{\varphi}{\cong} H^k(U, \mathbb{C})$. De nouveau, l'isomorphisme $H^k(\Gamma(X, \mathcal{A}_X^{\bullet}(\log D))) \cong H^k(U, \mathbb{C})$ se montre similairement.

– Montrons d'abord la surjectivité. À homotopie près, U est un tore donc $H^k(U,\mathbb{C}) = \Lambda^k H^1(U,\mathbb{C})$. Notons $\eta_i = \frac{dz_i}{z_i} \in \Gamma(X, \Omega^1_X(\log D))$ et $[\eta_i]$ sa classe dans $H^1(\Gamma(X, \Omega^\bullet_X(\log D)))$. On a

$$\int_{\partial D_j} \phi([\eta_i]) = \int_{\partial D_j} \eta_i = 2\pi i \delta_{ij}.$$

Donc les $\phi([\eta_i])$ engendrent $H^1(U,\mathbb{C})$. Si $\eta_I := \Lambda_{i \in I} \eta_i$, les $\{\phi(\eta_I)\}_{|I|=k}$ engendrent donc $H^k(U,\mathbb{C})$.

- Pour l'injectivité, il est suffisant de montrer que si $\alpha \in \Gamma(X, \Omega_X^k(\log D))$) est d-fermé, alors α est d-cohomologue à $\tilde{\alpha} = \sum_{|I|=k} a_I \eta_I$, où les a_I sont des constantes complexes. On montre cela par récurrence sur l, avec $D = \{z_1 \times \cdots \times z_l = 0\}$.
 - Si l=0, le complexe considéré est simplement le complexe de de Rham holomorphe et le résultat s'ensuit.
 - Si le résultat est vrai pour l-1, écrivons $\alpha=\frac{dz_l}{z_l}\wedge\beta+\gamma$, où β ne fait pas intervenir dz_l et ne dépend pas de z_l , et où γ est holomorphe en la variable z_l (i.e. n'a pas de pôle de la forme $\frac{dz_l}{z_l}$). Comme $d\alpha=0$, on a $\frac{dz_l}{z_l}\wedge\beta+d\gamma=0$. Mais β ne dépend pas de z_l et $d\gamma$ n'a pas de pôle en z_l , donc $d\beta=d\gamma=0$.

En appliquant l'hypothèse de récurrence à β et $D' = \{z_1 \times \cdots \times z_{l-1} = 0\}$, on a $\beta = \tilde{\beta} + d\phi$, où $\tilde{\beta}$ est à coefficients constants. Donc $\frac{dz_l}{z_l} \wedge \beta = \frac{dz_l}{z_l} \wedge \tilde{\beta} - d(\frac{dz_l}{z_l} \wedge \phi)$. Comme γ est holomorphe en z_l , $\gamma \in \Gamma(X, \Omega_X^1(\log D'))$. On a de plus $d\gamma = 0$, donc γ aussi s'écrit $\gamma = \tilde{\gamma} + d\psi$, où $\tilde{\gamma}$ est à coefficients constants.

Donc $\alpha = (\frac{dz_l}{z_l} \wedge \tilde{\beta} + \tilde{\gamma}) + d(\psi - \frac{dz_l}{z_l} \wedge \phi)$, ce qui achève la preuve par récurrence et la démonstration du théorème.

On définit maintenant la filtration par le poids sur le complexe $\Omega_X^{\bullet}(\log D)$.

Définition 1.5. On définit une filtration croissante W_{\bullet} sur $\Omega_X^{\bullet}(\log D)$ en posant $W_p(\Omega_X^{\bullet}(\log D))$ l'espace des formes logarithmiques holomorphes ayant au plus l pôles de la forme $\frac{dz_i}{z_i}$. On définit de même $W_p(\mathcal{A}_X^{\bullet}(\log D))$ en considérant des formes lisses.

Rappelons quelques notations utilisées dans le cours précédent : si $I = \{i_1, \ldots, i_l\} \subset \{1, \ldots, N\}$, on note $D_I = D_{i_1} \cap \cdots \cap D_{i_l}$. Pour tout k, $D^{[k]} := \bigsqcup_{|I| = k} D_I$, et i_k est l'application naturelle $D^{[k]}$ dans X. On a alors la proposition suivante.

Proposition 1.6. On a un isomorphisme canonique $\operatorname{Gr}_k^W \Omega_X^{\bullet}(\log D) \stackrel{\operatorname{Res}_k}{\cong} i_{k*} \Omega_{D^{[k]}}^{\bullet - k}$, où Res_k est défini dans la preuve.

1 COURS 16 - 22/11

3

Démonstration. Considérons $\alpha \in \Gamma(V, W_k\Omega_X^{\bullet}(\log D))$. On a

$$\alpha = \sum_{K,L} \alpha_{K,L} dz_L \wedge \frac{dz_K}{z_K},$$

où $K \subset \{1,\ldots,N\}, |K| \leq k$. On définit $\operatorname{Res}_k \alpha \in \Gamma(V,i_{k*}\Omega_{D^{[k]}}^{\bullet-k})$ par

$$(\operatorname{Res}_k \alpha)_I = (2\pi i)^k \sum_L (\alpha_{I,L} dz_L)_{|D_I \cap V},$$

où les multi-indices I sont de cardinal k.

Il est clair que $\operatorname{Res}_k \alpha$ s'annule sur $W_{k-1}\Omega_X^{\bullet}(\log D)$ et on vérifie sans peine que la définition est indépendante du choix des coordonnées et que Res_k commute à d. Donc Res_k définit un morphisme de faisceaux

$$\operatorname{Res}_k : \operatorname{Gr}_k^W \Omega_X^{\bullet}(\log D) \to i_{k*} \Omega_{D_k}^{\bullet - k}.$$

Montrons que c'est un isomorphisme.

Pour la surjectivité, si des α_K holomorphes sur chaque $D_K \cap V$, |K| = k, sont donnés, on peut localement étendre holomorphiquement α_K en $\tilde{\alpha_K}$ dans un voisinage de $D_K \cap V$. Alors, en posant

$$\alpha = \sum_K (\frac{1}{2\pi i})^k \tilde{\alpha_K} \wedge \frac{dz_K}{z_K},$$

on a $\operatorname{Res}_k \alpha = (\alpha_K)_K$.

Pour l'injectivité, si $\operatorname{Res}_k \alpha = 0$, alors $\alpha_{K,L}$ s'annule sur $D_K \cap V$ pour tout K de cardinal k et tout L. Donc $\alpha \in W_{k-1}(\Omega^{\bullet}_X(\log D))$.

Corollaire 1.7. On considère la suite spectrale associée au complexe filtré $(\Omega_X^{\bullet}(\log D), W^{\bullet})$, où $W^{\bullet} = W_{-\bullet}$. Alors, on a ${}_WE_1^{p,q} = H^{2p+q}(D^{[-p]}, \mathbb{C})$.

Démonstration. On a

$$\begin{split} wE_1^{p,q} &= H^{p+q}(\operatorname{Gr}_{W^{\bullet}}^{p} \Omega_{X}^{\bullet}(\log D)) \\ &= H^{p+q}(\frac{W^{-p}\Omega_{X}^{\bullet}(\log D)}{W^{-p-1}\Omega_{X}^{\bullet}(\log D)}) \\ &= H^{p+q}(\Omega_{D^{[-p]}}^{\bullet+p}) \\ &= H^{2p+q}(\Omega_{D^{[-p]}}) \\ &= H^{2p+q}(D^{[-p]}, \mathbb{C}). \end{split}$$

Exemple 1.8. Si X est une surface et D est une union de courbes lisses, la première page de la suite spectrale est la suivante :

$$H^{0}(D^{[2]}) \xrightarrow{d_{1}} H^{2}(D^{[1]}) \xrightarrow{d_{1}} H^{4}(X) \longrightarrow 0$$

$$0 \longrightarrow H^{1}(D^{[1]}) \xrightarrow{d_{1}} H^{3}(X) \longrightarrow 0$$

$$H^{0}(D^{[1]}) \xrightarrow{d_{1}} H^{2}(X) \longrightarrow 0$$

$$0 \longrightarrow H^{1}(X) \longrightarrow 0$$

$$0 \longrightarrow H^{0}(X) \longrightarrow 0$$

RÉFÉRENCES 4

Deuxième étape Sur le complexe $\Omega_X^{\bullet}(\log D)$, on dispose de la filtration de Hodge

$$F^p \Omega_X^{\bullet}(\log D) = \Omega^{\geq p}(\log D)$$

et de même sur $\mathcal{A}_X^{\bullet}(\log D)$,

$$F^p \mathcal{A}_X^{\bullet}(\log D) = \bigoplus_{i > p} A_X^{i, \bullet}(\log D).$$

Comme Res_k abaisse le degré des formes par k, il est naturel de définir une structure de Hodge pure de poids q sur ${}_WE_1^{p,q}$, en transportant celle sur $H^{2p+q}(D^{[-p]},\mathbb{C})(p)$ via l'isomorphisme $Res_{-p}: {}_WE_1^{p,q}\cong H^{2p+q}(D^{[-p]},\mathbb{C})$.

Lemme 1.9. L'application $d_1: {}_WE_1^{p,q} \to {}_WE_1^{p+1,q}$ est un morphisme de structures de Hodge.

Démonstration. Il s'agit d'identifier le morphisme $\tilde{d}_1: H^{2p+q}(D^{[-p]}, \mathbb{C})(p) \to H^{2p+q+2}(D^{[-p-1]}, \mathbb{C})(p+1)$ obtenu via les isomorphismes $\operatorname{Res}_{-p}: {}_WE_1^{p,q} \cong H^{2p+q}(D^{[-p]}, \mathbb{C})$ et $\operatorname{Res}_{-p-1}: {}_WE_1^{p+1,q} \cong H^{2p+q+2}(D^{[-p-1]}, \mathbb{C})$. On peut montrer qu'il s'agit du morphisme de Gysin mais on l'admettra (cf. [1]).

Corollaire 1.10. $_WE_2^{p,q}$ admet une structure de Hodge pure réelle de poids q.

Remarque 1.11. On peut en fait démontrer que cette structure de Hodge pure est définie sur \mathbb{Z} . En fait, la filtration par le poids W_{\bullet} , induit, à un changement d'indice près, la filtration de Leray sur $H^{\bullet}(U,\mathbb{C})$, cf. les remarques du cours suivant.

Troisième étape On admet (cf. [2]) que la suite spectrale ${}_WE^{\bullet,\bullet}$ dégénère en E_2 . Comme elle converge vers la cohomologie de U, on a, d'après le corollaire précédent, l'existence d'une structure de Hodge mixte sur la cohomologie de U.

Quatrième étape Il reste à montrer que la définition de la structure de Hodge mixte sur la cohomologie de U est fonctorielle et ne dépend pas de la compactification X choisie.

Soient U et V deux variétés quasi-projectives, $f:V\to U$ un morphisme. Choisissons une compactification X de U. Alors, par le théorème d'Hironaka, on peut trouver une compactification Y de V pour laquelle il existe un morphisme $\bar{f}:Y\to X$ prolongeant f. Ceci prouvera la fonctorialité une fois démontrée l'indépendance par rapport à la compactification.

Mais si X et X' sont deux compactifications de U, on peut trouver une troisième compactification X'' et des morphismes $X'' \to X$ et $X'' \to X$ tel que le diagramme

soit commutatif. Ceci prouve que l'on a des morphismes de structure de Hodge mixtes entre les structures de Hodge mixtes sur $H^bullet(U)$ via les différentes compactifications. Comme au niveau vectoriel, ces morphismes sont simplement d'identité de $H^{\bullet}(U)$, ce sont des isomorphismes de structure de Hodge mixtes.

Références

- [1] Deligne, P., Théorie de Hodge II, Publications mathématiques de l'IHÉS, 40, 1971
- [2] Griffiths, P. et Schmid, W., Recent developments in Hodge theory, 1975