
CHERN’S CONJECTURE FOR SPECIAL AFFINE MANIFOLDS

BRUNO KLINGLER

Abstract. An affine manifold X in the sense of differential geometry is a differentiable

manifold admitting an atlas of charts with value in an affine space, with locally constant

affine change of coordinates. Equivalently, it is a manifold whose tangent bundle admits a

flat torsion free connection. Around 1955 Chern conjectured that the Euler characteristic

of any compact affine manifold has to vanish. In this paper we prove Chern’s conjecture in

the case where X moreover admits a parallel volume form.
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1. Introduction

Let X be a connected topological manifold of dimension n. Following Klein’s Erlangen

program one may study X by asking if it supports a locally homogeneous geometric struc-

ture: a system of local coordinates modeled on a fixed homogeneous space G/H such that

on overlapping coordinate patches, the coordinate changes are locally restrictions of trans-

formations from the group G. Klein noticed that we recover as special cases all classical (i.e.

euclidean, spherical or hyperbolic) geometries. This program, known as uniformization, has

been highly successful for n = 2 and more recently for n = 3. We refer the reader to [Gol10]

for a nice survey on locally homogeneous geometric structures.

1.1. Affine structures. In this paper we are interested in particularly natural locally

homogeneous structures, namely affine structures, which are surprisingly very poorly under-

stood. An affine structure on X is a maximal atlas of charts (Uα, ϕα : Uα
∼→ ϕα(Uα) ⊂ V ),

where V denotes the real affine space of dimension n with underlying real vector space
~V ' Rn, such that:

- each Uα is open in X =
⋃
α Uα;

- ϕα : Uα
∼−→ ϕα(Uα) ⊂ V is a homeomorphism;

- for every non-empty connected open set U ⊂ Uα ∩ Uβ the change of coordinates

(ϕα ◦ ϕ−1
β )|ϕβ(U) : ϕβ(U)

∼−→ ϕα(U) is the restriction of an element g(U,α, β) of the

affine group Aff(V ) ' GL(~V ) n ~V .

Equivalently, fixing x0 a point of X and using the monodromy principle, one easily shows

that an affine structure on X is the datum of a group morphism h : π1(X,x0) −→ Aff(V )

and a local homeomorphism D : X̃ −→ V , where X̃ denotes the universal cover of X, which

is h-equivariant: ∀ γ ∈ π1(X,x0), ∀x ∈ X̃, D(γ · x) = h(γ) ·D(x) . The developing map

D is obtained by glueing the local charts (ϕα), and the holonomy h is obtained by piecing

together the transition functions (g(U,α, β)).

Notice that an affine structure on a topological manifold X defines canonically a C∞-

structure on X. Hence without loss of generality we will from now on assume that X is

a C∞-manifold (we will just say manifold) and work in the differentiable category. In this

setting one obtains a third equivalent definition of an affine structure on X, namely a flat

torsion-free connection on the tangent bundle TX.

1.2. Chern’s conjecture. Around 1950 Chern tried to understand which topological

constraints an affine structure imposes on a connected closed n-manifold. He apparently

proposed the following:

Conjecture 1.1. (Chern, 1955) Let X be a connected closed manifold. If X admits an

affine structure then its Euler characteristic χ(X) vanishes.
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Notice that the Euler characteristic is multiplicative under passage to a finite covering

space. Hence without loss of generality we can and will assume in Conjecture 1.1 that

X is oriented. In this case, χ(X) := χ(TX) =< e(TX), [X] >, where e(TX) ∈ HdX (X,Z)

denotes the Euler class of the real oriented tangent bundle TX of X, the non-negative integer

dX denotes the dimension of X, and [X] ∈ HdX (X,Z) denotes the fundamental class of X.

As the Euler class of any odd rank real oriented vector bundle is killed by 2 (see [MS74,

property 9.4]), Conjecture 1.1 trivially holds true for odd-dimensional manifolds.

We now explain why Conjecture 1.1 is non-trivial.

We first recall that the existence of a flat connection on an oriented vector bundle does not

imply the vanishing of its real Euler class: while Chern-Weil theory (see [MS74, Appendix C])

says that the real Pontryagin classes pi,R(E) ∈ H4i(X,R) of an oriented real vector bundle E

on X can be computed using the curvature form of any GL(r,R)+-connection ∇ on E, hence

vanish if ∇ is flat, the real Euler class eR(E) ∈ Hr(X,R) can be computed from the curvature

form of ∇ only if ∇ is an SO(r)-connection on E. Indeed, the following easy construction

provides oriented R2-bundles E admitting a flat connection but with non-zero Euler number

on the closed oriented surface Σ of genus g, g ≥ 2. Fix a complex structure on Σ and consider

the induced hyperbolic uniformization Σ ' Γ\H, where H denotes the Poincaré upper half-

plane and π1(Σ) ' Γ ⊂ PSL(2,R) is a cocompact torsion-free lattice. The group PSL(2,R)

acts naturally on the projective line P1(R) hence the S1-bundle η := Γ\(H×P1(R)) over Σ

can be seen as a bundle with structural group PSL(2,R) with the discrete topology. Notice

that η is nothing else than the tangent circle bundle to Σ, hence has Euler number 2 − 2g.

It is easy to check that η admits a square root η̂: namely the inclusion ι : Γ ↪→ PSL(2,R)

lifts to ι̂ : Γ ↪→ SL(2,R). The 2-plane bundle E associated to ι̂ has structural group SL(2,R)

with discrete topology (hence admits a flat connection) and has Euler number 1 − g (see

[MS74, p.313-4] for details).

Remark 1.2. Notice however that the real Euler class of the oriented real vector bundle

underlying a complex vector bundle of complex rank r identifies with its r-th real Chern

class, hence vanish by Chern-Weil’s theory. In particular Chern’s conjecture holds true for

complex affine manifolds.

Hence Conjecture 1.1 is not a general statement on flat vector bundles. One could nev-

ertheless ask if it is a statement on flat, not necessarily torsion-free, connection on tangent

bundles. In [Ben55] Benzécri proved Chern’s conjecture for closed 2-manifolds: among them

only tori admit affine structures. In [Mil58] Milnor proved his celebrated inequality:

Theorem 1.3 (Milnor). An oriented R2-bundle E over the closed oriented surface Σg of

genus g ≥ 2 admits a flat connection ∇ if and only if |χ(E)| < g.

This implies in particular the following stronger version of Benzécri’s result: the tangent

bundle of a closed connected surface X admits a flat, not necessarily torsion-free, connection
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if and only if χ(X) = 0. Milnor asked if this result can be generalized in all dimensions.

However in [Smi77] Smillie showed the following:

Theorem 1.4 (Smillie). For any n ≥ 2 there are examples of closed 2n-dimensional man-

ifolds X with non-vanishing Euler characteristic χ(X) whose tangent bundle TX admits a

flat connection with non-zero torsion.

Hence Chern’s conjecture is really a question on affine structures, not on flat connections

on tangent bundles.

1.3. Results. The simplest examples of affine manifolds are the complete ones, namely the

ones for which the developing map D : X̃ −→ V is a global diffeomorphism (equivalently, the

ones which are geodesically complete). In this case X is a quotient of V by a subgroup Γ ⊂
Aff(V ) acting freely discontinuously on V . After the results of Benzécri, Milnor and Smillie

we mentioned, Kostant and Sullivan [KS75] proved Conjecture 1.1 in the case where the affine

structure on X is moreover complete. Their proof in that case is an ingenious argument on

the monodromy, which can not be generalized. In [HT75] Hirsch and Thurston proved

Conjecture 1.1 when the image of the holonomy homomorphism h : π1(X,x0) −→ Aff(V ) is

built out of amenable groups by forming free products and taking finite extensions (a simpler

proof when the holonomy is solvable was obtained by Goldman and Hirsch [GolHir81]).

Recently, Bucher and Gelander proved Conjecture 1.1 for varieties which are locally a product

of surfaces, see [BucGel11].

In this paper we deal with special affine structures, i.e. affine structures whose holonomy

lies in the special affine subgroup SAff(V ) ' SL(~V )n~V of Aff(V ) ' GL(~V )n~V . Equivalently,

special affine structures are the affine structures admitting a parallel volume form. Markus

conjectured in 1960 that a closed affine manifold is complete if and only if it is special affine

(see [HT75]). This conjecture is largely opened, a significant step being Carrière’s result

[Car89] that any closed flat Lorentzian manifold is complete.

Our main result in this paper is the proof of Chern’s conjecture for special affine manifolds:

Theorem 1.5. If X is a connected closed special affine manifold then χ(X) = 0.

Notice that if X is a connected closed manifold with vanishing first Betti number, then

any multiplicative character χ : π1(X,x0) −→ R∗ takes value in ±1, thus any affine structure

on (the oriented cover of) X is special affine. Hence:

Corollary 1.6. Suppose X is a connected closed affine manifold with vanishing first Betti

number. Then χ(X) = 0.

1.4. Strategy of the proof of Theorem 1.5. Let us now describe the strategy of the

proof of Theorem 1.5. While most previous results build on group-theoretic arguments and

generalized versions of the Milnor-Wood inequality, our approach relies on the geometry of

the total space E of the tangent bundle of an affine manifold.
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The following classical proposition, which we recall in the Appendix A, follows from the

very definition of the (real) Euler class of an oriented real vector bundle and reduces its study

to the study of the differential forms on the total space of the bundle:

Proposition 1.7. Let X be a connected oriented closed n-manifold and E an oriented real

vector bundle on X of rank r > 0, with total space E. The Euler class eR(E) ∈ Hr(X,R)

vanishes if and only if the natural morphism between cohomology with compact support and

usual cohomology

R ' Hr
c (E ,R) −→ Hr(E ,R) ' Hr(X,R)

vanishes.

Remark 1.8. Proposition 1.7 is Poincaré dual to the following homological statement, which

might be more intuitive: the Euler class eR(E) ∈ Hr(X,R) is zero if and only if the natural

morphism

Hn(E ,R) = R · [X] −→ HBM
n (E ,R)

vanishes (where [X] denotes the fundamental class in E of the zero section of E, and HBM
•

denotes the Borel-Moore homology). Loosely speaking: if and only if the cycle X of E is a

boundary in the complex of locally finite chain with non-compact support of E .

We study differential forms on E using the geometry of E . When E is a mere bundle,

the only natural geometric structure on E is the foliated structure given by the projection

π : E −→ X. If in addition we assume that the bundle E is endowed with a flat connection

∇, the total space E has a natural local product structure in the sense of Definition 2.1, the

additional foliation being given by the flat leaves of ∇.

For any manifold M endowed with a local product structure, the De Rham complex of

sheaves of real differential forms (Ω•M , d) is enriched with a natural bigrading (Ω•,•E , d′, d′′), d′

being the differential in the “horizontal” direction and d′′ the one in the “vertical” direction.

This bigrading defines two filtrations d′F
• and d′′F

•, on H•c (E ,R) and also on H•(E ,R). As

usual the graded pieces of these filtrations are computed by spectral sequences d′E
•,•
• and

d′′E
•,•
• (both in the compact support case and the usual one). I don’t know how to compute

these filtrations for a general local product structure.

On the other hand when M is the total space E of a flat bundle E on X, one can compute

these filtrations with the exception of d′′F
• on H•c (E ,R), see Proposition 3.2 and Proposi-

tion 3.4.

The morphism H•c (E ,R) −→ H•(E ,R) we want to study is induced by a morphism of spec-

tral sequences ϕ•,•• : d′′E
•,•
c,• −→ d′′E

•,•
• and the relation between the local product structure

on E and the vanishing of eR(E) is given by the following refinement of Proposition 1.7:

Proposition 1.9. Let X be a connected oriented closed n-manifold. Let E be an oriented

flat real vector bundle on X of rank r > 0 with total space E and projection π : E −→ X.

The Euler class eR(E) ∈ Hr(X,R) vanishes if and only if the map

ϕ0,r
∞ : Gr0

d′′
F •H

r
c (E ,R) = d′′E

0,r
c,∞ −→ d′′E

0,r
∞ = Gr0

d′′
F •H

r(E ,R) = R
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vanishes.

We will be mainly interested in the case n = r. In this case the local product structure on

E is called a para-complex structure on E . The bigrading (Ω•,•E , d′, d′′) is formally similar to

the bigrading of the complex analytic De Rham complex on a complex manifold, except that

there is no involution of (Ω•E , d) exchanging d′ and d′′ (like the conjugation in the complex

setting).

Suppose now that the vector bundle E is the tangent bundle TX. Any linear connection

∇ on TX defines a natural almost complex structure I on E . Moreover Dombrowski [Dom62]

proved that I is a complex structure if and only if ∇ is flat and torsion-free, i.e. X is an affine

manifold. This complex structure was further studied by Cheng and Yau [ChengYau82].

The interplay of this complex structure on E and the natural para-complex structure on E
is our main tool for studying the vanishing of eR(TX): the total space E of the tangent bundle

of an affine manifold acquires a very rich para-hypercomplex structure (see Definition 4.1), a

notion analogous to an hypercomplex structure in complex geometry. In particular, and this

will be crucial for us, the standard para-complex structure on E is the value at θ = 0 ∈ [0, 2π[

of an S1-family of para-complex structures, induced by a canonical SO(2)-action on TE . Such

an S1-family simply does not exist if ∇ is flat but has non-trivial torsion. Notice moreover

that for θ 6= 0 mod π/2, the para-complex structure on E corresponding to θ does not come

from a flat bundle structure on TX.

For each θ ∈ S1 the corresponding para-complex structure defines, as above, a filtration

d′′θ
F •, on H•c (E ,R) and on H•(E ,R). It satisfies d′′θ=0

F • = d′′F
• and d′′

θ=π/2
F • = d′F

•. The

main idea in the proof of Theorem 1.5 is that while the filtrations d′F
• and d′′F

• are unrelated

when E is the total space of a mere flat bundle, the S1-family of para-complex structures on

the total space E of the tangent bundle of an affine manifold induces an S1-family of filtrations

interpolating between them. Technically speaking, we construct a spectral sequence in the

category of sheaves over S1, obtaining a morphism

ϕ0,n
∞,S1 : d′′E

0,n
c,∞ −→ d′′E

0,n
∞

of sheaves over S1. The subtle relation between this spectral sequence of sheaves, and the

spectral sequence we are interested in at the point θ = 0, lies in the existence of a canonical

factorisation (see Lemma 4.10) of the morphism ϕ0,n
∞ as

(1) ϕ0,n
∞ : d′′E

0,n
c,∞

∼ //
(
d′′E

0,n
c,∞
)
θ=0

(
ϕ0,n

∞,S1

)
θ=0 //

(
d′′E

0,n
∞
)
θ=0

//
d′′E

0,n
∞ .

Let us warn the reader that the canonical morphism
(
d′′E

0,n
∞
)
θ=0
−→ d′′E

0,n
∞ relating the

stalk of the sheaf d′′E
0,n
∞ at the point θ = 0 to d′′E

0,n
∞ in the factorization (1) is a priori neither

injective nor surjective.

A crucial feature of the sheaves d′′E
0,n
c,∞ and d′′E

0,n
∞ on S1 is their constructibility, as they

are quotients of the constant sheaf RS1 . Suppose now that X is special affine. We use this
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constructibility, the fact that d′′
θ=π/2

F • = d′F
• and the existence of an affine volume form on

X to show that the sheaf d′′E
0,n
∞ is identically zero (see Proposition 4.13). It follows from (1)

that the morphism ϕ0,n
∞ vanishes. By Proposition 1.9, this finishes the proof of Theorem 1.5.

1.5. Notations. From now on manifolds are connected and oriented. If Y is a manifold

one denotes by ShY the Abelian category of sheaves of real vector spaces on Y , by C∞Y ∈ ShY

its sheaf of infinitely differentiable real functions and by (Ω•Y , d) its De Rham complex of

sheaves of real differential forms. One denotes by RY ∈ ShY the constant sheaf of rank one.

More generally if Λ denotes a π1(Y )-module we denote by ΛY the locally constant sheaf on Y

defined by Λ. The notation T ∗Y denotes either the cotangent bundle of Y or the associated

sheaf on Y .

We refer to [KS90, chap. II] for a survey on sheaves and their properties. In particular,

given f : X −→ Y a morphism of manifolds one denotes as usual by f−1 : ShY −→ ShX ,

f∗ : ShX −→ ShY and f! : ShX −→ ShY the pull-back functor, direct image functor and

direct image with proper support functor. If F is a C∞Y -module the notation f∗F denotes

the C∞X -module C∞X ⊗f−1C∞Y
F .

1.6. Acknowledgments. This work was done while I was a Member at the Institute for

Advanced Study, Princeton. I thank the Institute, in particular the Ellentuck Fund and

the Charles Simonyi Fund, for their support. I also thank Burt Totaro for providing the

argument of the proof of Proposition 3.4.

2. Differential forms on spaces with a local product structure

2.1. Spectral sequence associated to a foliation. Recall that a foliation F of dimension

r on a manifold M of dimension n + r is the datum of an atlas of charts (Vα, ϕα : Vα
∼→

ϕα(Vα) ⊂ Rn × Rr) such that the change of coordinates (ϕα ◦ ϕ−1
β )|ϕβ(V α∩Vβ) : ϕβ(Vα ∩

Vβ)
∼−→ ϕα(Vα ∩Vβ) is a diffeomorphism of open subsets of Rn×Rr of the form ϕαβ(x, y) =

(ϕ1
αβ(x), ϕ2

αβ(x, y)). The connected components of the sets x = constant in a chart Vα are

called plaques. Let F ⊂ TM be the (integrable) subbundle of vectors tangent to the plaques.

The exact sequence of vector bundles

0 −→ F −→ TM −→ Q := TM/F −→ 0

defines the dual sequence

0 −→ Q∗ −→ T ∗M −→ F ∗ −→ 0 .

This 1-step filtration of T ∗M induces a filtration F • on the De Rham complex of sheaves

(Ω•M , d) hence spectral sequences FE
pq
1 ⇒ Hp+q(M,R) and FE

pq
c,1 ⇒ Hp+q

c (M,R). We won’t

need a precise description of these spectral sequences for general foliations, see [To97, chap.4]

as we consider only spaces with a local product structure (two foliations).
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2.2. Local product structures and para-complex structures.

Definition 2.1. Let n and r be two positive integers. A local product structure of type

(n, r) on a manifold M of dimension n+ r is the datum of an atlas of charts (Vα, ϕα : Vα
∼→

ϕα(Vα) ⊂ Rn×Rr) such that the change of coordinates (ϕα◦ϕ−1
β )|ϕβ(Vα∩Vβ) : ϕβ(Vα∩Vβ)

∼−→
ϕα(Vα ∩ Vβ) is a diffeomorphism of open subsets of Rn × Rr of the form

(2) ϕαβ(x, y) = (ϕ1
αβ(x), ϕ2

αβ(y)) .

Remark 2.2. Recall that an almost product structure on a manifold M is an endomorphism

J ∈ EndTM such that J2 = 1. Let TM+ ⊂ TM (resp. TM− ⊂ TM) be the subbundle

eigenspace of I associated to the eigenvalue +1 (resp. −1) of I. Hence TM = TM+⊕TM−.

The almost product structure J is said of type (n, r) if TM+ is of rank n and TM− of rank r.

Equivalently an almost product structure of type (n, r) is a (GL(n,R)×GL(r,R))-structure

on M . A local product structure of type (n, r) is the same thing as an integrable almost

product structure of type (n, r). We refer to [Wa61] for details.

In this paper we will essentially be concerned with the special case n = r:

Definition 2.3. A para-complex structure on a manifold M of dimension 2n is a local

product structure of type (n, n).

We refer to [CFG96] for a survey on para-complex geometry.

2.3. The bigraded De Rham complex of a local product structure. A pair of

supplementary foliations F ′ and F ′′ on a manifold M gives rise to two pairs of spectral

sequences as in Section 2.1. In the case of a local product structure, these spectral sequences

are the two spectral sequences associated to a bigraduation of the De Rham complex of M ,

as we now show.

Let M be a manifold with a local product structure of type (n, r), and (Vα, ϕα : Vα →
Rn × Rr) an atlas of charts for the local product structure. Let p′ : Rn × Rr −→ Rn and

p′′ : Rn × Rr −→ Rr be the two natural projections. The map ϕα induces a decomposition

of the sheaves of differential forms on Vα:

(3) Ωl
Vα '

⊕
p+q=l

Ωp,q
Vα

,

where

(4) Ωp,q
Vα

:= ϕ∗α(p′∗Ωp
Rn ⊗C∞Rn×Rr

p′′∗Ωq
Rr) .

The shape (2) of the change of coordinates guarantees that these local decompositions

glue together and one obtains a canonical decomposition of sheaves

(5) Ωl
M =

⊕
p+q=l

Ωp,q
M .
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Moreover the decomposition dRn+r = d′Rn+d′′Rr of the differential on Rn+r induces a canonical

decomposition of d : Ω•M −→ Ω•+1
M into the sum of two differential operators d = d′ + d′′

where

d′ : Ω•,•M −→ Ω•+1,•
M and d′′ : Ω•,•M −→ Ω•,•+1

M

satisfy

d′2 = d′′2 = d′d′′ + d′′d′ = 0 .

Hence the bigraded C∞M -algebra Ω•,•M carries two natural derivations d′ and d′′ of type

(1, 0) and (0, 1) respectively. Considering the double complex Ω•,•M of sheaves on M

(6) Ω0,0
M

d′′

��

d′ // Ω1,0

d′′

��

d′ // · · ·

d′′

��

d′ // Ωn,0

d′′

��
Ω0,1
M

d′′ ��

d′ // Ω1,1

d′′ ��

d′ // · · ·

d′′ ��

d′ // Ωn,1

d′′ ��
...

d′′

��

d′ // ...

d′′

��

d′ // ...

d′′

��

d′ // ...

d′′

��
Ω0,r
M

d′ // Ω1,r d′ // · · · d′ // Ωn,r

one obtains an identification:

(7) (Ω•M , d) = Tot(Ω•,•M , d′, d′′) .

Remark 2.4. The situation is formally similar to the decomposition of the sheaves of complex

differential forms on a complex manifold, except there is no real involution exchanging Ωp,q
M

with Ωq,p
M .

Definition 2.5. Let M be a manifold with a local product structure. We define the sheaves

L′p and L′′p, p ∈ Z>0, on M as L′p := Ker(d′′ : Ωp,0
M −→ Ωp,1

M ) and L′′p := Ker(d′ : Ω0,p
M −→

Ω1,p
M ).

2.4. Cohomological properties of the bicomplex Ω•,•M .

Lemma 2.6. Let M be a manifold with a local product structure. Then RM −→ (L′•, d′)
and RM −→ (L′′•, d′′) are resolutions of the constant sheaf RM .

Proof. Let (Vα, ϕα : Vα → Rn × Rr) be a chart of the local product structure M . Then

(L′•, d′)|Vα = (p′ ◦ ϕα)−1((Ω•Rn , d)). As RRn −→ (Ω•Rn , d) is a resolution and the functor

(p′ ◦ ϕα)−1 is exact, one obtains a quasi-isomorphism RVα = (p′ ◦ ϕα)−1RRn ' (L′•, d′)|Vα .

This proves that RM −→ (L′•, d′) is a resolution. Similarly, replacing L′, p′ and d′ by L′′, p′′

and d′′ respectively, one obtains that RM −→ (L′′•, d′′) is a resolution. �

Recall the following classical definitions:
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Definition 2.7. Let A be an Abelian category and K a complex of objects of A. The

(decreasing) filtration bête F •K of K is defined as

(8) (F pK)n =

0 if n < p

Kn if n ≥ p.

Definition 2.8. We denote by d′E
p,q the classical hypercohomology spectral sequence asso-

ciated to the filtration bête F • on the complex of sheaves ((L′)•, d′) on M :

(9) d′E
p,q
1 = Hq(M, (L′)p)⇒ Hp+q(M,R) .

We denote by d′F
• the associated filtration on H•(M,R).

Similarly, we denote by d′′E
p,q the spectral sequence obtained by replacing L′ and d′ by L′′

and d′′ respectively:

(10) d′′E
p,q
1 = Hq(M, (L′′)p)⇒ Hp+q(M,R) .

We denote by d′′F
• the associated filtration on H•(M,R).

Replacing cohomology with compactly supported cohomology we obtain the two spectral

sequences

(11) d′E
p,q
c,1 = Hq

c (M, (L′)p)⇒ Hp+q
c (M,R) .

(12) d′′E
p,q
c,1 = Hq

c (M, (L′′)p)⇒ Hp+q
c (M,R) .

We still denote by d′F
• and d′′F

• the two associated filtrations on H•c (M,R).

Remark 2.9. These spectral sequences are first quadrant spectral sequences and hence con-

verge. However I don’t know if they always degenerate in E2.

Remark 2.10. Notice that the sheaves Ωp,q
M are fine sheaves on M . Hence both L′p −→

(Ωp,•
M , d′′) and L′′p −→ (Ω•,pM , d′) are acyclic resolutions for the functors Γ(M, ·) and Γc(M, ·).

Thus the spectral sequences we defined above are nothing else than the two spectral sequences

of the double complexes of real vector spaces obtained by applying Γ(M, ·) and Γc(M, ·) to

the double complex of sheaves (6). Once more the situation is formally similar to the Hodge

to De Rham spectral sequence for complex manifolds.

Remark 2.11. In view of Remark 2.10, the language of sheaves in not really needed at

this step. However the use of sheaves will be unavoidable in the heart of the proof (see

Section 4.3).

3. The case of flat bundles

Let X be a manifold of dimension n. Let E be a real oriented vector bundle on X of rank

r > 0, with total space E and projection π : E −→ X. The bundle structure on E defines

a “trivial” foliation of dimension r on E , with closed linear leaves. Suppose from now on

that the bundle E is endowed with a flat connection ∇ associated to a linear representation

ρ : π1(X,x0) −→ GL(~V ). Then the manifold E has a natural local product structure given
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by the fibers of π and the leaf of the flat connection ∇. In the description of Definition 2.1

the maps ϕ2
αβ are moreover linear. In this situation the complex (L′•, d′) and (L′′•, d′′) are

easier to describe.

3.1. The complex (L′•, d′). Notice that the sheaf L′p is nothing else, by definition, than

π−1Ωp
X and the complex (L′•, d′) coincides with the complex (π−1Ω•X , π

−1dX), which is well

defined for any (not necessarily flat) vector bundle E on X.

Proposition 3.1. There is a canonical isomorphism

H i(E , π−1Ωp
X) = H i(Ωp,•(E), d′′) =

0 if i 6= 0;

Ωp(X) if i = 0.

Similarly, considering cohomology with compact support:

H i
c(E , π−1Ωp

X) = H i(Ωp,•
c (E), d′′) =

0 if i 6= r;

Ωp
c(X) if i = r.

Proof. Let us give the proof for the compactly supported cohomology, the proof for ordinary

cohomology is similar. Consider the Leray spectral sequence for π

Ei,j2 = H i
c(X,R

jπ!(π
−1Ωp

X))⇒ H i+j
c (E , π−1Ωp

X) .

By the projection formula: Rπ!(π
−1Ωp

X) = Rπ!(R)⊗ Ωp
X = Ωp

X [−r].
As Ωp

X is a fine sheaf (hence Γc-acyclic):

Ei,j2 =

0 if i 6= r;

Ωj
c(X) if i = r;

Hence the E2-page has only one non-zero column at i = r, the Leray spectral sequence

degenerates in E2 and we get the result. �

Hence the first page d′E
p,q
1 is given by

d′E
p,q
1 = Hq(E , π−1Ωp

X) =

Ωp(X) if q=0 ;

0 if q 6= 0.

It coincides with the usual de Rham complex of X on the line q = 0, thus the spectral

sequence d′E degenerates in E2 (not in E1 as in the compact Kähler case!) and we recover

(in a complicated way...) the isomorphism

d′E
p,0
∞ = Grp

d′
FH

p(E ,R) = Hp(E ,R) ' Hp(X,R) .

For the compactly supported cohomology we get:

d′E
p,q
c,1 = Hq

c (E , π−1Ωp
X) =

Ωp
c(X) if q=r ;

0 if q 6= r.
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Hence the E1-page of the spectral sequence d′Ec is the compactly supported global de Rham

complex for X on the line q = r, the spectral sequenced′Ec degenerates in E2 and we recover

(a version of) the Thom isomorphism (see Appendix A):

d′E
p,r
c,∞ = Grp

d′
FH

p+r
c (E ,R) = Hp+r

c (E ,R) ' Hp
c (X,R) .

Hence we have proven:

Proposition 3.2. Let X be a connected oriented n-manifold. Let E be an oriented flat real

vector bundle on X of rank r > 0 with total space E and projection π : E −→ X. Then

d′E
p,0
∞ = Grp

d′
FH

p(E ,R) = Hp(E ,R) ' Hp(X,R) , and

d′E
p,r
c,∞ = Grp

d′
FH

p+r
c (E ,R) = Hp+r

c (E ,R) ' Hp
c (X,R) .

3.2. The complex (L′′•, d′′) for flat bundles. The cohomology of the sheaves (L′′)q,
0 ≤ q ≤ r, is not as simple as the one of the π−1Ωp

X , 0 ≤ p ≤ n. We will interpret it

directly in terms of the monodromy representation ρ : π1(X,x0) −→ GL(~V ) defining the

flat structure on E. This π1(X,x0)-module structure on ~V induces a natural structure of

π1(X,x0)-module on the infinite dimensional real vector spaces Ωq(~V ) and Ωq
c(~V ), 0 ≤ q ≤ r,

which makes (Ω•(~V ), d) and (Ω•c(~V ), d) complexes of π1(X,x0)-modules.

Recall (see Section 1.5) that if Λ is a π1(X)-module we denote by ΛX the corresponding

local system on X. Hence we obtain the following resolutions in the category of infinite

dimensional local systems on X:

(13) RX ' ((Ω•(~V ))X , d
′′) and RX [−r] ' ((Ω•c(

~V ))X , d
′′) .

Proposition 3.3.

H i(E ,L′′q) = H i(Ωq,•(E), d′′) = H i(X, (Ωq(~V ))X) and

H i
c(E ,L′′q) = H i

c(Ω
q,•(E), d′′) = H i

c(X, (Ω
q
c(~V ))X) .

Proof. We give the proof for the compactly supported cohomology, the other case is similar.

Consider the Leray spectral sequence:

Ei,j2 = H i
c(X,R

jπ!L′′q)⇒ H i+j
c (E ,L′′q) .

As π is a locally trivial fibration the sheaf Rjπ!L′′q is nothing else than the locally constant

sheaf (Hj
c (~V ,Ωq

~V
))X . The sheaf Ωq

~V
is fine and hence is Γc-acyclic on ~V . Thus Hj

c (~V ,Ωq
~V

) is

zero for j 6= 0 and

Ei,j2 =

0 if j 6= 0;

H i
c(X, (Ω

q
c(~V ))X) if j = 0 .

The spectral sequence degenerates trivially in E2 and the result follows. �

Although the cohomology of the sheaves (L′′)q, 0 ≤ q ≤ r, is not as simple as the one of

the π−1Ωp
X , 0 ≤ p ≤ n, we can still show that the filtration d′′F is trivial on H•(E ,R):
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Proposition 3.4. Let X be a connected oriented n-manifold. Let E be an oriented flat real

vector bundle on X of rank r > 0 with total space E and projection π : E −→ X. For any

integer p, the natural map

Hp(E ,R) ' Hp(X,R) −→ d′′E
0,p
∞ := Gr0

d′′
FH

p(E ,R)

is an isomorphism.

Proof. It follows from Proposition 3.3 that the spectral sequence d′′E
p,q
1 = Hq(E ,L′′p) ⇒

Hp+q(E ,R) is canonically isomorphic, via the isomorphism π∗ : H•(X, ·) −→ H•(E , ·), to the

spectral sequence Ep,qρ,1 = Hq(X, (Ωp(~V ))X)⇒ Hp+q(X,RX) associated to the filtration bête

of the resolution RX ' (Ω•(~V ))X . Notice that the natural morphism of π1(X,x0)-modules

R −→ Ω0(V ) is split injective: the splitting is defined by associating to f ∈ Ω0(V ) its value

f(0). Hence the edge map Hq(X,RX) −→ Hq(X, (Ω0(~V ))X) of our spectral sequence is

injective for all q, hence the map Hp(E ,R) −→ Gr0

d′′
FH

p(E ,R) is an isomorphism. �

Notice that similarly the spectral sequence d′′E
p,q
c,1 = Hq

c (E ,L′′p) ⇒ Hp+q(E ,R) is canoni-

cally isomorphic, via the Thom isomorphism Φ : H•c (X,R) −→ H•+rc (E ,R), to the spectral

sequence Ep,qc,ρ,1 = Hq
c (X, (Ωp(~V ))X) ⇒ Hp+q

c (X,RX [−r]) associated to the filtration bête

of the resolution RX [−r] ' (Ω•c(~V ))X . This time the morphism Ωr
c(~V ) −→ R of π1(X,x0)-

modules given by integrating over ~V does not split anymore and I don’t know how to compute

the filtration d′′F on H•c (E ,R).

Definition 3.5. We denote by ϕ : d′′Ec −→ d′′E the canonical morphism of spectral se-

quences defined by the morphism of functors H•c (E , ·) −→ H•(E , ·).

3.3. A criterion for the vanishing of the Euler class of a flat bundle : proof of

Proposition 1.9. From now on we assume that X is closed.

Proof. Let E be a flat oriented real vector bundle of rank r > 0 with total space E and

projection π : E −→ X. Let ω ∈ Ωr
c(E) be a Thom form for E, see Definition A.6. In

particular the n-form ω is d-closed. By Lemma A.4 the Euler class of E can be computed

as:

e(X) = i∗[ω] ∈ Hn(X,R) ,

where i : X −→ E denotes the zero section.

Let us now relate the form ω to the spectral sequence d′′Ec. Decompose the form ω into

types: ω =
∑r

i=0 ω
i,r−i, with ωi,r−i ∈ Ωi,r−i

c (E). As ω is d-closed we obtain:

(14) ∀ i, 0 ≤ i ≤ r, d′ωi,r−i = −d′′ωi+1,r−i−1 .

In particular: d′ωr,0 = 0. As L′′p −→ (Ω•,pE , d′) is a fine resolution, the spectral sequence

d′′E
p,q
c,1 = Hq

c (E ,Lp)⇒ Hp+q
c (E ,R) coincides with the double complex spectral sequence:

Ep,qc,1 = Hq(Ω•,pc (E), d′)⇒ Hp+q
c (E ,R) .

Hence the d′-closed form ωr,0 defines a class [ωr,0] ∈ d′′E
0,r
c,1. Notice that the sub-quotient

d′′E
0,r
∞ of d′′E

0,r
1 is in fact a subspace of d′′E

0,r
1 as Ep,q1 = 0 for p < 0.
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Lemma 3.6. The class [ωr,0] belongs to d′′E
0,r
c,∞.

Proof. By definition d1 : d′′E
0,r
c,1 −→ d′′E

1,r
c,1 maps [ωr,0] to the class of d′′ωr,0 in d′′E

1,r
c,1 =

Hr(Ω•,1c (E), d′). From Equation (14) we get d′′ωr,0 = d′(−ωr−1,1) hence d1[ωr,0] = 0 and

[ωr,0] belongs to d′′E
r,0
c,2.

More generally it follows by induction on i that [ωr,0] belongs to d′′E
0,r
c,i and that di[ω

0,r]

coincides with the class of d′′ωr−i+1,i−1 in d′′E
i,r−i+1
c,i , which vanishes as d′′ωr−i+1,i−1 =

d′(−ωr−i,i).
The lemma follows. �

We now prove the proposition. Suppose first that ϕ0,r
∞ : d′′E

0,r
c,∞ −→ d′′E

0,r
∞ vanishes and

let us show that eR(e) = 0. As the diagram

d′′E
0,r
c,∞
� � //

ϕ0,r
∞
��

d′′E
0,r
c,1

ϕ0,r
1
��

d′′E
0,r
∞
� � //

d′′E
0,r
c,1

commutes, it follows from Lemma 3.6 that ϕ0,r
1 ([ωr,0]) = 0. This means that ωr,0 is d′-exact

in (Ω•,0(E), d′): there exists α ∈ Ωr−1,0(E) such that ωr,0 = d′α. Hence

e(X) = [i∗ω] = [i∗ωr,0] = [i∗(d′α)] = [d(i∗α)] = 0 ∈ Hn(X,R) .

Conversely suppose that ϕ0,r
∞ : d′′E

0,r
c,∞ −→ d′′E

0,r
∞ does not vanish. Consider the commu-

tative diagram:

Hr
c (E ,R) // //

��

d′′E
0,r
c,∞ = Gr0

FH
r
c (E ,R)

ϕ0,r
∞
��

Hr(E ,R) // //
d′′E

0,r
∞ = Gr0

FH
r(E ,R).

As Hr
c (E ,R) ' H0(X,R) ' R (Thom isomorphism) the non-vanishing of ϕ0,r

∞ implies that

the quotient map R = Hr
c (E ,R) � d′′E

0,r
c,∞ is an isomorphism and that the map Hr

c (E ,R) −→
Hr(E ,R) is injective. As the Thom class [ω] ∈ Hr

c (E ,R) generates Hr
c (E ,R), this implies that

its image eR(e) is non-zero in Hr(E ,R). �

4. The case of affine manifolds

Let X be a closed n-manifold whose tangent bundle E := TX admits a flat connection. As

explained in Section 3 the flat structure on TX endows the total space E of TX with a para-

complex structure, which we call its standard para-complex structure and Proposition 1.9

provides a criterion for the vanishing of χ(X).

Suppose now that X is affine i.e. the flat connection on TX is torsion-free. In that case

and in that case only, the standard para-complex structure on TX can be upgraded to a

much richer structure: a para-hypercomplex structure (see Section 4.1).
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Any para-hypercomplex manifold M admits a canonical GL(2,R)-action on its tangent

bundle, whose restriction to SO(2) defines an S1-family of para-complex structures on M .

Hence when X is affine the space E is canonically endowed with an S1-family of para-complex

structures, the para-complex structure at θ = 0 being the standard one.

The main idea in the proof of Theorem 1.5 is that this S1-family of para-complex structures

on E induces an S1-family of spectral sequences, interpolating in a subtle way between the

spectral sequence d′′Ec and the much better understood spectral sequence d′Ec (resp. between

d′′E and d′E). This will enable us to show that the Proposition 1.9 is satisfied for special

affine manifolds.

4.1. Para-hypercomplex structures.

4.1.1. Definition. Let n be a positive integer. The canonical isomorphism Rn ⊗ R2 ' R2n

induces an embedding

(15) GL(n,R)×R∗ GL(2,R) ⊂ GL(2n,R).

Definition 4.1. Let M be a differential manifold of dimension 2n. A para-hypercomplex

structure on M is an integrable GL(n,R)-structure on M (for the embedding of GL(n,R) in

GL(2n,R) defined by (15)).

Equivalently [And05] a para-hypercomplex structure on M is the data of a complex struc-

ture I ∈ End (TM) and a para-complex structure J ∈ End (TM) satisfying IJ = −JI.

Para-hypercomplex manifolds are for para-complex manifolds what hypercomplex mani-

folds are for complex manifolds. This analogy is explained in detail in Appendix B, hoping it

might clarify the well-known many analogies between complex geometry and affine geometry.

Para-hypercomplex structures are also called “complex-product” structure. In addition to

Appendix B we refer to [IvZam05], [And05] and references mentioned there for more details

on such structures.

4.1.2. S1-family of para-complex structures on a para-hypercomplex manifold. Let M be a

para-hypercomplex manifold. The 4-dimensional R-algebra generated by the two elements

J and I of Definition 4.1 satisfying J2 = 1, I2 = −1 and JI = −IJ identifies with gl2(R),

which thus acts on TM . As the GL(n,R)-structure on M is integrable, this gl2(R)-action

integrates to an action of the centralizer GL(2,R) of GL(n,R) in GL(2n,R) on TM . The

GL(2,R)-orbit of J in End (TM) identifies with the GL(2,R)-adjoint orbit of J ∈ gl2(R),

whose Killing norm is positive. Hence the GL(2,R)-orbit of J is a hyperboloid of one sheet

H := GL(2,R)/(R∗ ×Z/2 R∗) ' R× S1, the section S1 being given by the SO(2)-orbit of J .

Each point of this orbit H defines a para-complex on M .

We thus obtain an H-family of para-complex structures on M , with an S1-subfamily for

which the complex structure I is preserved.
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4.1.3. Para-hypercomplex structure on the tangent bundle of an affine manifold. Let X

be a closed n-dimensional manifold. Let E the total space of its tangent bundle TX and

π : E −→ X the corresponding projection. Let ∇ be any linear connection on TX. It

induces:

- a direct sum decomposition TE = TvE⊕ThE into a vertical and horizontal part. Moreover

TvE ' ThE ' π∗TX.

- an almost complex structure I on E given by I =
(

0 1
−1 0

)
in the previous decomposition.

- an almost product structure J on E defined by J =
(−1 0

0 1

)
. They obviously satisfy the

relation IJ = −JI.

One easily shows that J is integrable if and only if ∇ is flat. Moreover Dombrowski

[Dom62] proved that I is a complex structure if and only if ∇ is flat and torsion-free. It

follows from these remarks and Definition 4.1 that if X is an affine manifold then the total

space E of TX is canonically endowed with a para-hypercomplex structure, which we call

the para-hypercomplex structure on E .

4.2. S1-family of para-complex structures on the total space of the tangent bundle

of an affine manifold. It follows from Section 4.1.3 and Section 4.1.2 that the para-

hypercomplex space E , total space of the tangent bundle E := TX of an affine manifold X,

is endowed with an S1-family of para-complex structures. We now describe in more details

these structures in term of the developing map of the affine structure on X.

4.2.1. The standard para-complex structure on E. We define the standard action of Aff(V )

on EV := V × ~V as the one obtained on the total space EV of the tangent bundle TV = V × ~V
from the standard action of Aff(V ) on V . If l : Aff(V ) � GL(~V ) denotes the linear part this

standard action is given by

∀ g ∈ Aff(V ), ∀(u, v) ∈ EV = V × ~V , g · (u, v) = (g · u, l(g) · v) .

Let X be an oriented (Aff(V ), V )-manifolds. Fix a base-point x0 in X, x̃0 the correspond-

ing base point of X̃ and let (h : π1(X,x0) −→ Aff(V ), D : X̃ −→ V ) be the corresponding

holonomy and developing map.

Let E denote the total space of the tangent bundle TX, with projection π : E −→ X and

base point e0 := (x0, 0). Then the (Aff(V ), V )-structure (h,D) on X defines an (Aff(V ), V ×
~V )-structure on E (for the standard action of Aff(V ) on V ×~V ) with holonomy h : π1(E , e0) '
π1(X,x0) −→ Aff(V ) and developing map

(16) DE := dD : Ẽ −→ EV = V × ~V ,

called the standard (Aff(V ), V × ~V )-structure on E . It induces the standard para-complex

structure on E associated as in Section 3 to the flat structure on the bundle E = TX defined

by the monodromy representation l ◦ h : π1(X,x0) −→ GL(~V ).
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4.2.2. The S1-family of para-complex structures on the tangent bundle of an (Aff(V ), V )-

manifold. Suppose given an origin O ∈ V . It defines a splitting Aff(V ) = GL(~V ) n ~V .

The decomposition of an element g ∈ Aff(V ) for this splitting will be denoted by (l(g), t(g))

(where t(g) denotes the translational part of g).

Definition 4.2. Let θ ∈ [0, 2π]. The θ-deformed action of Aff(V ) on EV is defined by

∀ g ∈ Aff(V ), ∀(u, v) ∈ EV = V × ~V , g ·θ (u, v) = (l(g) ·u+cos θ · t(g), l(g) ·v− sin θ · t(g)) .

We denote by EV,θ the space EV with this θ-deformed affine action of Aff(V ).

Remark 4.3. The 0-deformed action is the standard action of Section 4.2.1.

For θ ∈ [0, 2π] let us define Rθ :=
(

cos θ sin θ
− sin θ cos θ

)
∈ GL(~V ⊕ ~V ) as the block rotation matrix

with angle θ. Fix ẽ0 ∈ Ẽ a point over e0 ∈ E and choose O := DE(ẽ0) as an origin for V .

The local diffeomorphism DE,θ := Rθ ◦DE : Ẽ −→ EV satisfies

∀ γ ∈ π1(E , e0), DE,θ ◦ γ = h(γ) ·θ DE,θ .

In other words the pair (h,DE,θ) defines an (Aff(V ), EV,θ)-structure on E . In particular it

defines a para-complex structure on E , called the θ-para-complex structure, which, in local

affine coordinates, is obtained by applying the rotation Rθ to the standard one. This S1-

family of para-complex structures on E coincides with the one defined in Section 4.1.2.

Remark 4.4. Notice that these (Aff(V ), EV,θ)-structures on E are not deduced by differenti-

ation from an affine structure on X as in Equation (16), except if θ = 0 mod π.

Remark 4.5. All these (Aff(V ), EV,θ)-structures on E are equivalent as (Aff(V × V ), V × V )-

structure. On the other hand the para-complex structures associated to θ1 and θ2 coincide

if and only if θ1 = θ2 mod π.

4.3. The one-parameter family of spectral sequences.

4.3.1. Definitions.

Definition 4.6. For each θ ∈ [0, 2π], we define:

- the complex of sheaves (L′′•θ, d′′θ) on E associated to the θ-para-complex structure on E as

in Definition 2.5,

- the spectral sequences d′′θ
E•,•• and d′′θ

E•,•c,• associated to the θ-para-complex structure on E
as in Definition 2.8,

- the bigraded complex of sheaves (Ω•,•E,θ, d
′
θ, d
′′
θ) on E associated to the θ-para-complex struc-

ture on E as defined in Section 2.3.

We now sheafify the situation over S1:

Definition 4.7. Consider the submersion Ψ : Ẽ × S1 −→ EV defined by Ψ(e, θ) = DE,θ(e).

We define the complex of sheaves (L′′•E×S1/S1 , d′′) on E × S1 as the descent to E × S1 of the

π1(E)-equivariant complex of sheaves Ψ−1((L′′)•EV , d
′′) on Ẽ × S1 ; and (Ω•,•E×S1/S1 , d

′, d′′) as

the descent to E × S1 of the π1(E)-equivariant complex of sheaves Ψ−1(Ω•,•EV , d
′, d′′).
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The complex ((L′′)•EV , d
′′) resolves the constant sheaf REV and is quasi-isomorphic to the

total complex of (Ω•,•EV , d
′, d′′). As the functor Ψ−1 is exact, it follows once more that the

complex (L′′•E×S1/S1 , d′′) resolves the constant sheaf RE×S1 and is quasi-isomorphic to the

total complex of (Ω•,•E×S1/S1 , d
′, d′′). For θ ∈ S1, the restriction of the complex of sheaves

(L′′•E×S1/S1 , d′′) to the fiber Eθ coincides with the complex of sheaves (L′′•θ, d′′θ). Similarly the

restriction of the bigraded complex of sheaves (Ω•,•E×S1/S1 , d
′, d′′) to the fiber Eθ coincide with

(Ω•,•E,θ, d
′
θ, d
′′
θ).

Remark 4.8. The sheaves Ωr,s
E,θ on E are fine sheaves and hence provide an acyclic resolu-

tion (Ω•,sE,θ, d
′
θ) of L′′sθ. In contrast the sheaves Ωr,s

E×S1/S1 are not fine, hence the resolution

(Ω•,sE×S1/S1 , d
′) of L′′sE×S1/S1 has no reason to be acyclic.

Definition 4.9. Let p2 : E × S1 −→ S1 denote the second projection.

a) We denote by d′′E
•,•
c,• the spectral sequence computing Rp2!RE×S1 = Rp2!(L′′

•
E×S1/S1)

associated to the filtration bête on L′′•E×S1/S1:

d′′E
p,q
c,1 = Rqp2!L′′

p
E×S1/S1 ⇒ Rp+qp2!RE×S1 ,

and by d′′F
• the associated filtration on the sheaves R•p2!RE×S1.

b) Similarly we denote by d′′E
•,•
• the spectral sequence computing Rp2∗RE×S1 = Rp2∗(L′′

•
E×S1/S1)

associated to the filtration bête on L′′•E×S1/S1:

d′′E
p,q
1 = Rqp2∗L′′

p
E×S1/S1 ⇒ Rp+qp2∗RE×S1 ,

and by d′′F
• the associated filtration on the sheaves R•p2∗RE×S1.

c) We denote by ϕ•,••,S1 : d′′E
•,•
c,• −→ d′′E

•,•
• the morphism of spectral sequences of sheaves

over S1 induced by the morphism of functors Rp2! −→ Rp2∗.

4.3.2. The sheaf spectral sequence versus the pointwise spectral sequences. Let us now de-

scribe the relation between the morphisms of sheaves

ϕr,s∞,S1 : d′′E
r,s
c,∞ −→ d′′E

r,s
∞

and the morphisms of vector spaces ϕr,s∞ : d′′E
r,s
c,∞ −→ d′′E

r,s
∞ of Definition 3.5.

As usual for a sheaf F over a locally compact topological space Y we denote by Fy its

stalk at the point y. Recall that if f : Y −→ Z is a continuous morphism of topological

spaces then for any point z ∈ Z there are natural morphisms (Rpf∗F )z −→ Hp(Yz, F|Yz) and

(Rpf!F )z −→ Hp
c (Yz, F|Yz). Moreover this last morphism is an isomorphism by the proper

base change theorem ([KS90, Prop.2.5.2]), while the first one is not surjective in general. Let

us apply this to f = p2 and z = θ.

For all non negative integers r, s and all θ ∈ S1 we obtain a natural isomorphism(
Rrp2!L′′

s
E×S1/S1

)
θ

∼−→ Hr
c (E ,L′′θ

s
) ,

i.e. a natural isomorphism
(
d′′E

r,s
c,1

)
θ

∼−→ d′′θ
Er,sc,1. This isomorphism is compatible with

the differential d1, hence for every θ ∈ S1 we obtain an isomorphism of spectral sequences
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d′′E
•,•
c,•
)
θ

∼−→ d′′θ
E•,•c,• . For all θ ∈ S1 we denote by αr,sθ the inverse isomorphism

(17) αr,sθ :
(
d′′E

r,s
c,∞
)
θ

∼−→ d′′θ
Er,sc,∞ .

Arguing with p2∗ rather than p2!, one obtains for every θ ∈ S1 a morphism

(18) βr,sθ :
(
d′′E

r,s
∞
)
θ
−→ d′′θ

Er,s∞ ,

which is a priori neither injective nor surjective as the fibers of p2 are non-compact.

As these morphisms are natural we obtain in particular:

Lemma 4.10. The morphism of vector spaces ϕ0,n
∞ : d′′E

0,n
c,∞ −→ d′′E

0,n
∞ factorises as

d′′E
0,n
c,∞ ∼

(α0,n
0 )

−1

//
(
d′′E

0,n
c,∞
)
θ=0

(
ϕ0,n

∞,S1

)
θ=0 //

(
d′′E

0,n
∞
)
θ=0

β0,n
0 //

d′′E
0,n
∞ .

The following criterion is thus an immediate corollary of Lemma 4.10 and Proposition 1.9:

Corollary 4.11. Let X be an affine n-dimensional manifold. If the morphism of sheaves

ϕ0,n
∞,S1 : d′′E

0,n
c,∞ −→ d′′E

0,n
∞ vanishes then eR(X) = 0.

4.3.3. Structure of the sheaves d′′E
r,n−r
∞ . By definition the sheaf d′′E

r,n−r
∞ is the graded sheaf

Grr
d′′
F •R

np∗RE×S1 on S1. Now Rnp2∗RE×S1 is nothing else than the constant sheaf RS1 as

the fibration p2 : E × S1 −→ S1 is trivial. Hence all the sheaves d′′E
r,n−r
∞ are constructible

on S1 as constructibility is preserved by taking subquotients. The following lemma will in

particular be useful for us:

Lemma 4.12. There exists a unique open subset j : U ↪→ S1 such that the sheaf d′′E
n,0
∞ is

isomorphic to the subsheaf j!RU ↪→ RS1.

Proof. The sheaf d′′E
n,0
∞ = Grn

d′′
F •R

np2∗RE×S1 = d′′F
nRnp2∗RE×S1 = d′′F

nRS1 is not only a

subquotient, but a subsheaf of RS1 . Hence its support U is open in S1, and d′′E
n,0
∞ is of the

form j!RU , where j : U ↪→ S1 denotes the natural inclusion. �

4.4. End of the proof of the Theorem 1.5. Our main Theorem 1.5 follows immediately

from Corollary 4.11 and the following:

Proposition 4.13. Suppose that X is special affine. Then the inclusion morphism

d′′E
n,0
∞ ↪→ RS1

is an isomorphism. In particular d′′E
0,n
∞ is zero.

Proof. The real vector spaces {Ω0,n
EV,θ(EV,θ)}

SAff(V ) ⊂ Ωn(EV ) of SAff(V )-invariant (0, n)-forms

on EV for the θ-deformed action coincide for all θ ∈ S1 and are 1-dimensional. Let ω0,n
EV be

a common generator of these spaces. Hence Ψ−1ω0,n
V defines a π1(E)-invariant global section

of Ψ−1Ω0,n
EV , hence a global section ω0,n

E×S1/S1 of the sheaf Ω0,n
E×S1/S1 on E ×S1. As the section

ω0,n
EV is d-closed, the section ω0,n

E×S1/S1 is also d-closed.
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As d′′E
n,0
1 = p2∗L′′

n
E×S1/S1 and L′′nE×S1/S1 = ker(d′ : Ω0,n

E×S1/S1 −→ Ω1,n
E×S1/S1), the d′-closed

global section ω0,n
E×S1/S1 of Ω0,n

E×S1/S1 over E × S1 defines a global section [ω0,n
E×S1/S1 ] of the

sheaf d′′E
n,0
1 over S1, hence of its quotient d′′E

n,0
∞ .

Let us show that this global section [ω0,n
E×S1/S1 ] ∈ d′′E

n,0
∞ (S1) is non-zero. For θ ∈ S1,

consider the morphism

d′′E
n,0
∞ (S1) −→

(
d′′E

n,0
∞
)
θ

βn,0θ−→ d′′θ
En,0∞,θ ,

where the first morphism associates to a global section its germ at θ ∈ S1. By definition it

maps the class [ω0,n
E×S1/S1 ] to the class [ω0,n

θ ] ∈ d′′θ
En,0∞ , where ω0,n

θ := D∗E,θ(ωEV ) ∈ d′′θ
En,01 .

Consider θ = π/2. Then by definition d′′π
2

En,0∞ is nothing else than d′E
n,0
∞ and [ω0,n

π
2

] is a

generator of d′E
n,0
∞ ' R (see Proposition 3.2). This shows that the germ of [ω0,n

E×S1/S1 ] ∈

d′′E
n,0
∞ (S1) is non-zero, hence [ω0,n

E×S1/S1 ] ∈ d′′E
n,0
∞ (S1) is non-zero.

By Lemma 4.12, the sheaf d′′E
n,0
∞ is of the form j!RU for some open subset j : U ↪→ S1.

Such a sheaf admits a non-trivial global section over S1 if and only if U = S1. Hence the

morphism d′′E
n,0
∞ ↪→ RS1 is an isomorphism.

This finishes the proof of Proposition 4.13, and of Theorem 1.5.

�

Remark 4.14. It is worth noticing that if one argues similarly replacing ω0,n
EV by ωn,0EV (with

its obvious meaning) one obtains a global section of Ωn,0
E×S1/S1 which is d-closed. However it

does not define a section of d′′E
0,n
1 (S1) = Rnp2∗L′′

0(S1).

Appendix A. Thom class and Euler class: proof of Proposition 1.7

Let X be a connected oriented n-manifold. Let E be an oriented real vector bundle on X

of rank r > 0, with total space E and projection π : E −→ X. In this section we recall the

definition of the Euler class e(X) ∈ H̃r(X,Z) from the Thom class of E (where H̃• denotes

the reduced cohomology).

Recall that the Thom space Th(E) of the bundle E is the space uniquely defined in the

homotopy category by one of the following equivalent constructions:

(a) apply one-point compactification to each fiber of E to obtain a new bundle Sph(E)

over X whose fibers are spheres Sr with basepoints, namely the points at ∞. These

basepoints specify a section s∞ : X −→ Sph(E). Define the Thom space as the

quotient Th(E) = Sph(E)/s∞(X).

(b) introduce a auxiliary Riemannian metric on E and denote by D(E) and S(E) the

associated unit disk bundle and unit sphere bundle in E. Define Th(E) as the

quotient D(E)/S(E).

(c) define Th(E) = P(E ⊕ 1)/P(E).

Notice that the constructions (a) and (c) are clearly functorial for morphisms of vector

bundles. For a point x ∈ X let ιx : Ex −→ E denotes the inclusion of the fiber Ex in E, seen
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as a morphism of vector bundles over {x} and X respectively. It induces a map still denoted

ιx : Th(Ex) ' Sr −→ Th(E) between Thom spaces.

Theorem A.1. (Thom isomorphism) Let X be a connected oriented n-manifold. Let E

be an oriented real vector bundle on X of rank r > 0, with total space E and projection

π : E −→ X.

There exists a unique class u ∈ H̃r(Th(E),Z), called the Thom class of E, such that for

any x ∈ X the pull-back ι∗xu is the preferred generator of H̃r(Th(Ex),Z) ' H̃r(Sr,Z) given

by the orientation.

Moreover the map Φ = π∗(·) ∪ u : H•(X,Z) −→ H̃•+r(Th(E),Z) is an isomorphism of

Z-modules.

Let E0 the complement of the zero-section in E . Then Th(E) is the cofiber of the inclusion

E0 ↪→ E , in particular the reduced cohomology H̃•(Th(E),Z) is nothing else than the relative

cohomology H•(E , E0;Z). Hence we obtain the following version of the Thom class of E and

of the Thom isomorphism in terms of relative cohomology:

Theorem A.2. Let X be a connected oriented n-manifold. Let E be an oriented real vector

bundle on X of rank r > 0, with total space E and projection π : E −→ X.

There exists a unique class u ∈ Hr(E , E0;Z), called the Thom class of E, such that for

any x ∈ X the pull-back ι∗xu is the preferred generator of Hr(Ex, Ex \ {0};Z) ' H̃r(Sr,Z)

given by the orientation.

Moreover the map Φ = π∗(·) ∪ u : H•(X,Z) −→ H•+r(E , E0;Z) is an isomorphism of

Z-modules.

Definition A.3. Let X be a connected oriented n-manifold. Let E be an oriented real vector

bundle on X of rank r > 0, with total space E and projection π : E −→ X.

The Euler class of E is the class

e(E) = Φ−1u2 ∈ Hr(X,Z) .

The following lemma follows easily from the definition (see [BottTu82, prop.12.4] for a

proof with real coefficients):

Lemma A.4. Let X be a connected oriented n-manifold. Let E be an oriented real vector

bundle on X of rank r > 0, with total space E and projection π : E −→ X. The Euler class

e(E) ∈ Hr(X,Z) is the image of the Thom class u ∈ Hr(E , E0;Z) under the composite

Hr(E , E0;Z)
·|E−→ Hr(E ,Z)

i∗' Hr(X,Z) ,

where i : X −→ E denotes the zero-section.

We now give a differential geometric interpretation of the Thom class. Denote by (Ω•cv(E), d)

the De Rham complex of differential forms on E with vertical compact support, see [BottTu82].

Notice that when X is closed this complex coincides with the complex of differential forms
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on E with compact support (Ω•c(E), d). By integrating along the fibers one defines a push-

forward map of complexes

π∗ : (Ω•cv(E), d) −→ (Ω•−n(X), d) .

One easily shows:

Proposition A.5. There exists a canonical isomorphism ϕ : H∗(Ω•cv(E), d) −→ H∗(E , E0;R)

making the following diagram of isomorphisms commutative:

H∗(Ω•cv(E), d)
ϕ
//

π∗
��

H∗(E , E0;R)

Φ−1

��
H∗−n(Ω•(X),R)

∼ // H∗−n(X,R)

.

Definition A.6. A form ω ∈ Ωr
cv(E) is called a Thom form if its class [ω] ∈ Hr

cv(E ,R) '
H0(X,R) ' R is a generator.

Proposition 1.7 follows immediately from Lemma A.4 and from Proposition A.5.

Appendix B. Quaternionic and para-quaternionic geometry

In this appendix we illustrate the analogy between hypercomplex structures (or even the

more general quaternionic structures) among complex structures and para-hypercomplex

structures (and more generally para-quaternionic structures) among para-complex ones.

Let us start with the classical quaternionic geometry, for which we refer to the original

paper of Salamon [Sal86] and more recently the work of Verbitsky (see for example [Ver99]).

Let n be a positive integer. Let H denotes the Hamilton’s quaternion algebra over R (which

identifies with the Clifford algebra Cl0,2(R)). The natural left-action of the group GL(n,H)

on the left quaternionic vector space Hn, which identifies with R4n as a real vector space,

defines an embedding GL(n,H) ⊂ GL(4n,R), with centralizer GL(1,H) (acting by right

scalar multiplication on Hn). The intersection of GL(n,H) with GL(1,H) is R∗, thus defining

a maximal subgroup

GL(n,H)×R∗ GL(1,H) = GL(n,H)×Z/2Z Sp(1) ⊂ GL(4n,R) ,

where Sp(1) ' SU(2) is the 3-sphere of quaternionic units.

Definition B.1. Let M be a differential manifold of dimension 4n.

An almost quaternionic structure on M is a GL(n,H) ×Z/2Z Sp(1)-structure on M . A

quaternionic structure on M is an almost quaternionic structure admitting a torsion-free

connection.

An almost hypercomplex structure on M is a GL(n,H)-structure on M . A hypercomplex

structure on M is an almost hypercomplex structure admitting a torsion-free connection.

Equivalently, an almost hypercomplex structure on M is the data of two endomorphisms

I1, I2 ∈ End (TM) satisfying I2
1 = I2

2 = −1 (i.e. I1 and I2 are almost complex structures on
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M) and I1I2 = −I2I1, hence generating an action of the algebra H on TM . This action inte-

grates to an action of the Lie group Sp(1) ' SU(2) on TM , generated by the one-parameter

subgroups with tangent vectors I1, I2 and I1I2. This almost hypercomplex structure is a

hypercomplex structure if and only if the almost complex structures I1 and I2 are inte-

grable, or equivalently if there exists a (unique) torsion-free connection ∇ on TM such that

∇I1 = ∇I2 = 0 (the Obata connection).

Para-quaternionic geometry is defined similarly, replacing the quaternion algebra by the

para-quaternion algebra Cl1,1(R) ' gl2(R), i.e. the 4-dimensional R-algebra generated by

two elements j and i satisfying j2 = 1, i2 = −1 and ji = −ij. Consider the inclusion of

groups

(19) GL(n,R) = GL(n,C) ∩ (GL(n,R)×GL(n,R)) ⊂ GL(n,R)×GL(n,R) ⊂ GL(2n,R) ,

given by A ∈ GL(n,R) 7→
(
A 0
0 A

)
∈ GL(2n,R). The centralizer of GL(n,R) in GL(2n,R) is

GL(2,R), with intersection R∗, thus defining an embedding

GL(n,R)×R∗ GL(2,R) = GL(n,R)×Z/2Z SL(2,R) ⊂ GL(2n,R) .

Definition B.2. Let M be a differential manifold of dimension 2n.

An almost para-quaternionic structure on M is a GL(n,R)×Z/2ZSL(2,R)-structure on M .

A quaternionic structure on M is an almost quaternionic structure admitting a torsion-free

connection.

An almost para-hypercomplex structure on M is a GL(n,R)-structure on M . A para-

hypercomplex structure on M is an almost para-hypercomplex structure admitting a torsion-

free connection.

Remark B.3. Para-hypercomplex structures are also called “complex-product” structure. We

refer to [IvZam05], [And05] and references mentioned there for a survey on such structures.

Equivalently [And05] an almost para-hypercomplex structure on M is the data of an

almost-complex structure I ∈ End (TM) and an almost product structure J ∈ End (TM)

satisfying IJ = −JI (it follows immediately that J and IJ are necessarily para-complex

structures). The endomorphisms I and J generate an action of the algebra Cl1,1(R) of para-

quaternions on TM . This action integrates to an action of the Lie group SU(1, 1) ' SL(2,R)

on TM , generated by the one-parameter subgroups with tangent vectors I, J and IJ . This is

a para-hypercomplex structure if and only if the almost complex structure I and the almost

product structure J are integrable, or equivalently if there exists a (unique) torsion-free

connection ∇ on TM such that ∇I = ∇J = 0.
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