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Abstract. We equip integral graded-polarized mixed period spaces with a natural
Ralg-definable analytic structure, and prove that any period map associated to an
admissible variation of integral graded-polarized mixed Hodge structures is definable
in Ran,exp with respect to this structure. As a consequence we reprove that the zero
loci of admissible normal functions are algebraic.

1. introduction

1.1. Summary. The purpose of this paper is to continue the development of o-
minimality as a natural setting for the study of Hodge theory. In [?] it was shown that
the moduli of integral polarized pure Hodge structures—known as period spaces—
admit natural structures of definable analytic spaces, in such a way that all period
maps from algebraic varieties are definable. The general functorial setting of defin-
able analytic spaces was studied in [?]. The purpose of this article is to extend this
technology to the setting of mixed Hodge structures.

One complication that enters when studying variations of mixed Hodge structures
(VMHS) is that one must additionally restrict to admissible ones in the sense of
Steenbrink-Zucker and Kashiwara, instead of just ones that are holomorphic and Grif-
fiths transverse. This apparent complication, crucial for the internal coherence of
Hodge theory as developed in the theory of Hodge modules [?], fits perfectly with the
o-minimal setting. For any smooth complex algebraic variety S the (not necessarily
admissible) VMHSs extensions of ZSanp0q by ZSanp1q are parametrized by ΓpS,O˚Sanq,

corresponding to holomorphic period maps ϕ : San Ñ Ext1
ZMHSpZp0q,Zp1qq – C˚ from

San to the mixed period space C˚. For S “ A1 the period map exp : C Ñ C˚ cannot
possibly be definable in any o-minimal structure; however the VMHS on A1 it defines
is not admissible.

Unlike in the pure case, there is some ambiguity in the choice of definable structure.
Indeed, if we think only of the “unipotent” fibers1 we end up with a quotient of
unipotent groups, for which there are many choices of which definable structure—this
is already the case for C˚. The definable structure appearing in Theorem 4.4 is built
using the “sl2” real splitting (also known as the “canonical” real splitting), but it is
not inconceivable to us that one could use other natural definable structures and retain
our main results.

1.2. Results. In section §3 we equip any graded-polarized integral mixed period space
ΓzM with the structure of a Ralg-definable analytic space which is functorial with
respect to morphisms of mixed period spaces (see Theorem 6.4). Our main result is
the following:

Theorem 1.1 (4.4). Let ΓzM be a graded-polarized integral mixed period space equipped
with the Ralg-definable structure associated to the sl2-splitting. Let S be a reduced
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1Formally, the fibers of the map from the mixed period space to the product of the pure period

spaces corresponding to taking the associated graded variation.
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complex algebraic space and ϕ : S Ñ ΓzM an admissible period map. Then ϕ is
Ran,exp-definable.

It should be noted that the work of Brosnan–Pearlstein [?] building on the mixed
SL2-orbit theorem of Kato–Nakayama–Usui [?] is a key ingredient in our proofs, giving
the necessary boundedness statement for us to prove definability.

In [?] we recovered as an immediate corollary of the definability of the period
map for pure VHS the algebraicity of the corresponding Hodge loci proven in [?].
Similarly as an immediate corollary of Theorem 4.4 we recover the algebraicity of
(possibly non-reduced) mixed Hodge loci (in particular the zero-loci of admissible
normal functions) obtained in [?], [?], [?], [?] . Recall that for a graded-polarized
integral mixed Hodge structure V “ pVZ,W, F, qkq the set of integral weight zero
Hodge classes is Hdg0pV qZ :“ HomZ´MHSpZp0q, V q “ pW0qZ X F 0, and we define

Hdgd0pV qZ Ă Hdg0pV qZ as the subset of Hodge classes v with q0pv, vq ď d, where

q0 is the polarization form on GrW0 VZ. The locus Hdgd0pΓzMq Ă ΓzM of points V

for which Hdgd0pV q ‰ 0 is a definable analytic subspace, and for any period map

ϕ : S Ñ ΓzM we define Hdgd0pSq Ă S to be the pullback of Hdgd0pΓzMq with its
natural not-necessarily-reduced structure as a definable analytic subspace.

Corollary 1.2. Let ϕ : S Ñ ΓzM be as in the theorem. Then the Hodge subspace

Hdgd0pSq Ă S is algebraic.

Without too much difficulty, the same can be shown for the locus of bounded-norm
Hodge classes Hdgd0pVq Ă VC in the total space of an admissible variation pV,W,Fq,
but we leave this to the reader.

1.3. Outline. In §2 we recall some facts about how definable quotients work, and
the relation between definable structures on quotients and choices of fundamental
sets. In §3 we recall relevant background from mixed Hodge theory and the various
real splittings that we use, and put a definable structure on graded-polarized integral
mixed period spaces. In §4 we give a notion of variations of mixed Hodge structure
and period maps on arbitrary algebraic varieties, review the notion of admissibility
and its consequences, and state our main theorem. In §5 we prove our main theorem.
Finally, in §6 we generalize the construction of §3 to place a definable structure on
mixed Hodge varieties and prove functoriality.

2. Definable quotients

In this section we fix an o-minimal structure and we work in the category of defin-
able locally compact Hausdorff topological spaces and definable continuous maps.

Let X be a locally compact Hausdorff definable topological space and Γ a group
acting on X by definable homeomorphisms.

Definition 2.1. A fundamental set for the action of Γ on X is an open definable
subset F Ď X such that

(1) Γ ¨ F “ X,
(2) the set tγ P Γ | γ ¨ F X F ‰ ∅u is finite.

Remark 2.2. The existence of a fundamental set for the action of Γ on X implies that
Γ equipped with the discrete topology acts properly on X. In particular, the set ΓzX
equipped with the quotient topology is a locally compact Hausdorff topological space.

Proposition 2.3. If F is a fundamental set for the action of Γ on X, then there
exists a unique definable structure on ΓzX such that the canonical map F Ñ ΓzX is
definable.
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Proof. Let R Ă X ˆ X be the equivalence relation associated to the action of Γ on
X, that is, R “ tpx, γ ¨ xqu. As observed before, the action of Γ on X is necessarily
proper, hence R is a closed subset of X ˆX. It follows that the induced equivalence
relation RF :“ RX pF ˆ F q on F is closed. Moreover, the set

RF “
ď

γPΓ

tpx, γ ¨ xq P F ˆ F u

is definable, since only matter the finite number of γ for which γ ¨ F X F ‰ ∅. We
conclude using that ΓzX “ F {RF as topological spaces and that the equivalence
relation RF on F is closed, definable and étale. �

Remark 2.4. (1) The definable structure on ΓzX depends on the choice of F . (For
example, two strips in C with different slopes give different definable structures
on the quotient C{Z “ C˚.)

(2) Two fundamental sets F and F 1 define the same definable structure on ΓzX if
and only if F is contained in a finite union of translates of F 1 under elements
of Γ.

(3) The map F Ñ ΓzX admits locally on the base some continuous definable
section. Therefore, giving a morphism from a definable space Y to ΓzX is
equivalent to giving a finite definable cover Y “ YYi and morphisms Yi Ñ F
such that the induced maps Yi Ñ ΓzX coincide on overlaps.

(4) In case X is a complex manifold and Γ acts by definable biholomorphism the
construction above is compatible with the complex structure.

Proposition 2.5. If F is a fundamental set for the action of Γ on X and Γ1 Ă Γ
is a finite index subgroup, then for any finite subset C Ă Γ mapping surjectively onto
Γ{Γ1 the set

Ť

γPC γ ¨F is a fundamental set for the action of Γ1 on X. Moreover, the

induced definable structure on Γ1zX is independent of C and the map Γ1zX Ñ ΓzX is
definable.

Proposition 2.6. Let X and Y be locally compact Hausdorff definable topological
spaces and Γ a group acting on both X and Y by definable homeomorphisms. Let
f : X Ñ Y be a Γ-equivariant continuous map.

‚ If F is a fundamental set for the action of Γ on Y , then f´1pF q is a funda-
mental set for the action of Γ on X.

‚ The induced continuous map ΓzX Ñ ΓzY is definable.

Proof. First note that Γ ¨ f´1pF q “ f´1pΓ ¨ F q “ f´1pY q “ X. On the other hand,
the set tγ P Γ | γ ¨ f´1pF q X f´1pF q ‰ ∅u is finite, since it is clearly a subset of
tγ P Γ | γ ¨ F X F ‰ ∅u, and the latter is finite by assumption. �

2.1. Fundamental sets for arithmetic groups. Arithmetic quotients of reductive
groups are endowed with Ralg-definable structures using a Siegel set fundamental do-
main:

Theorem 2.7 (Theorem 1.1 of [?]). Let G be a reductive algebraic group over Q, Γ Ă
GpQq an arithmetic subgroup and M Ă GpRq a compact subgroup. Then the quotient
ΓzGpRq{M admits a structure of Ralg-definable analytic space, functorial in the triple
pG,Γ,Mq and characterized by the following property. Let GpRq{M be endowed with
its natural semi-algebraic structure and S Ă GpRq{M be an open semi-algebraic Siegel
set. Then SÑ ΓzGpRq{M is Ralg-definable.

Note that the statement in [?] is for G semi-simple (and that is all we will need),
although the reductive case easily follows.
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3. Background in mixed Hodge theory

3.1. Splittings. (cf. [?, §2].)

Fix a field K of characteristic zero and a finite-dimensional K-vector space V
equipped with an increasing filtration tWku. Note that any K-vector space obtained
from V using duals, tensor products and subspaces inherits an increasing filtration
from tWku.

Definition 3.1. A splitting of tWku is a direct sum decomposition V “
À

k

Vk such

that Wl “
À

kďl

Vk.

Let SpW q denote the variety of all splittings of tWku. It is a smooth algebraic vari-
ety defined over K (a Zariski-open in a product of Grassmanians) such that SpW qpLq
is the set of all splittings of tWk bK Lu for every field L Ě K.

The natural left action of GLpV q on V induces an algebraic left action of the K-
algebraic group GLpV qW “ tg P GLpV q | gpWkq Ď Wk for all ku on SpW q. Its unipo-
tent radical is the K-algebraic subgroup U :“ exppW´1 EndpV qq. One easily checks
that for every field L Ě K the group UpLq acts simply transitively on SpW qpLq, cf.
[?, §3.6] or [?, Proposition 2.2].

There is a natural closed immersion SpW q ãÑ W0 EndpV q which on K-points asso-
ciates to any given splitting V “

À

k Vk the semisimple endomorphism T P EndpV q
with integral eigenvalues whose l-eigenspace is Vl. This realizes SpW q as an affine sub-
space of W0 EndpV q directed by the subvector space W´1 EndpV q. In this realization,
the left action of GLpV qW on SpW q is induced by the adjoint action of GLpV q on
EndpV q, and the K-algebraic group U acts on SpW q by affine transformations.

There is an exact sequence of K-algebraic groups

1 Ñ U Ñ GLpV qW Ñ GLpGrW V q Ñ 1,

and the choice of a splitting T P SpW qpKq induces a section GLpGrW V q Ñ GLpV qW ,
whose image we denote by GLpV qT .

Notation 3.2. In the sequel we will frequently identify a splitting of W with the
corresponding semisimple endomorphism T of V .

3.2. Mixed Hodge structures. (cf. [?].)

A decreasing filtration F of an object V is said to be finite if there exists two integers
m and n such that FmV “ V and FnV “ 0, and similarly for increasing filtrations.
In what follows, all filtrations are implicitely supposed to be finite.

Let R “ Z,Q or R. A mixed R-Hodge structure is a triple V “ pVR,W, F q consisting
of

‚ a R-module VR of finite type,
‚ an increasing filtration tWku of VR (the weight filtration),
‚ a decreasing filtration tF pu of VC :“ VR bR C (the Hodge filtration),

such that GrpF Grq
F

GrWl pVCq “ t0u when p ` q ‰ l, where we denote by the same

symbol W the filtration induced by W on VC and by F the conjugate filtration of F
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defined by F
q

:“ F q.

A morphism of mixed R-Hodge structure is a R-linear morphism of the underlying
R-modules that preserves both filtrations. The category of mixed R-Hodge structures
is abelian, and it admits both duals and tensor products (hence internal homs).

Let V “ pVR,W, F q be a pureR-Hodge structure of weight n, meaning that GrWl pVRq “
t0u when l ‰ n. In that case, we have the Hodge decomposition

VC “
à

p`q“n

V p,q

with V p,q :“ F p X F
q
, so that V q,p “ V p,q. The Weil operator C P EndpVRq is then

the real endomorphism satisfying

CC “
à

p,q

ip´q ¨ idV p,q .

Let q : VR b VR Ñ R be a p´1qn-symmetric bilinear form—that is, q is symmetric
if n is even and skew-symmetric if n is odd. We say that the pure R-Hodge structure
V is polarized by q if the hermitian form h on VC defined by hpu, vq “ qCpCu, vq is
positive-definite and the Hodge decomposition of VC is h-orthogonal.

3.3. Bigradings.

Definition 3.3. A bigrading of a real mixed Hodge structure pV,W,F q is a direct sum
decomposition VC “

À

p,q
Jp,q such that:

F p “
à

rěp,s

Jr,s and pWkqC “
à

r`sďk

Jr,s.

The bigradings of a real mixed Hodge structure pV,W,F q are easily seen to be in
bijection with the splittings T P SpWCq such that T pF pq Ď F p, via VlpT q “

À

p`q“l

Jp,q.

Lemma 3.4 (Deligne [?]). If pV,W,F q is a real mixed Hodge structure, then it admits
a unique bigrading tIp,qu which satisfies:

Ip,q “ Iq,p mod
à

răp,săq

Ir,s.

Deligne bigrading is functorial and is given explicitely by the formula:

Ip,q :“ pF p X pWp`qqCq X

˜

F
q
X pWp`qqC `

ÿ

jě0

F
q´1´j

X pWp`q´2´jqC

¸

.

3.4. Real splittings.

Proposition 3.5. A real mixed Hodge structure pV,W,F q is said to split over R if it
satisfies one of the equivalent following properties:

(1) it is a direct sum of pure real Hodge structures of different weights,

(2) it admits a real splitting, i.e. a bigrading tJp,qu such that Jp,q “ J
q,p

,
(3) there exists T P SRpW q such that T pF pq Ď F p.

If pV,W,F q admits a real splitting tJp,qu, then one has necessarily

Jp,q “ F p X F
q
XWp`q,

so that it is unique and coincides with Deligne bigrading.
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3.5. Graded-polarized mixed period domains. (cf. [?, ?].)

Let V be a finite dimensional R-vector space equipped with an increasing filtration
tWku and a collection of non-degenerate bilinear forms qk : GrWk V bR Gr

W
k V Ñ R

that are p´1qk-symmetric. Fix a partition of dimR V into non-negative integers thp,qu
such that hp,q “ hq,p.

For any integer k, we denote by Ωk the Griffiths period domain parametrizing
all decreasing filtrations tF pk up on GrWk VC with dimC F

p
k “

ř

rěp h
r,k´r that define

a real pure Hodge structure of weight k polarized by qk, and by Ω̌k its compact
dual parametrizing the pqkqC-isotropic filtrations tF pk up on GrWk VC with dimC F

p
k “

ř

rěp h
r,k´r. Letting Ω̌ :“

ś

k Ω̌k and Ω :“
ś

k Ωk, and denoting by H the real alge-

braic group
ś

k Autpqkq, it follows from Griffiths theory that Ω̌ is a smooth projective
complex variety on which the complex algebraic group HpCq acts transitively by al-
gebraic automorphisms and Ω Ă Ω̌ is a real semi-algebraic open subset on which the
real algebraic group HpRq acts transitively by semi-algebraic automorphisms.

Let M denote the corresponding mixed period domain, i.e. the set of decreasing
filtrations tF pu of VC such that pV,W,F q is a real mixed Hodge structure graded-
polarized by the qk’s and such that

dimC
`

pF p GrWp`q VCq X pF
q

GrWp`q VCq
˘

“ hp,q.

By definition, M is a semi-algebraic open subset of the smooth projective complex
variety M̌ that parametrizes the decreasing filtrations tF pu of VC by complex vector
subspaces such that the filtration induced on the graded pieces GrWk VC is inside Ω̌k

for each k.
Let G denotes the real algebraic group defined as the preimage of H Ă GLpGrW V q

through the natural homomorphism GLpV qW Ñ GLpGrW V q. Let G denote the
preimage of HpRq by the homomorphism GpCq Ñ HpCq. It is naturally a group
object in the category of Ralg-definable topological spaces, and the following inclusions
hold in this category:

GpRq Ď G “ UpCq ¨GpRq Ď GpCq.
Moreover the action of GpCq on M̌ induces an action of G on M. The following
proposition is well-known, see [?, Prop. 2.11] for instance:

Proposition 3.6. The real algebraic group G acts transitively on M by semi-algebraic
automorphisms.

Proof. Recall that SpW q denotes the variety of splittings of W , cf. section 3.1. The
complex variety Ω ˆ SpW qpCq parametrizes the elements of M equipped with a bi-
grading, cf. section 3.3. Thanks to the existence of Deligne bigrading, the natural map
ΩˆSpW qpCq ÑM is surjective. Since this map is also G-equivariant and the G-action
on Ω ˆ SpW qpCq is transitive by [?, Prop. 2.2], it follows that G acts transitively on
M. �

Note that the morphism M Ñ Ω which is equivariant with respect to the homo-
morphism G Ñ HpRq is the restriction of a complex algebraic map M̌ Ñ Ω̌ which is
equivariant with respect to the homomorphism GpCq Ñ HpCq.

Let MR ĂM denote the subset consisting of those Hodge filtrations for which the
corresponding mixed Hodge structure is split over R. The group GpRq acts transi-
tively on MR, so that it is a smooth real semi-algebraic subset of M. Moreover, MR



DEFINABILITY OF MIXED PERIOD MAPS 7

is naturally in bijection with Ωˆ SpW qpRq, and this bijection is compatible with the
GpRq-actions, so that it is an isomorphism of real semi-algebraic spaces.

Observe that the action of G on M is not proper, since the stabilizer of a point is
non-compact.

Proposition 3.7. The actions of GpRq on MR and M are proper.

Proof. Let BR denote the set of real Hodge frames of mixed Hodge structures that are
split over R. It is a GpRq-torsor, hence the GpRq-action on BR is proper. But the
surjective and proper morphism BR Ñ MR is GpRq-equivariant, therefore the GpRq-
action on MR is proper too, cf. [?, proposition 5.i) in TG III.29]. By [?, proposition
5.ii) in TG III.29], the properness of the action of GpRq on M follows, once we know
the existence of a GpRq-equivariant continuous map MÑMR, for which we can refer
for example to proposition 3.10. �

Corollary 3.8. If Γ is a discrete subgroup of GpRq, then the induced action of Γ on
M is proper and the quotient ΓzM admits a canonical structure of complex analytic
space such that the natural map MÑ ΓzM is holomorphic.

3.6. The δ-splitting. Given a real mixed Hodge structure pV,W,F q with Deligne
bigrading tIp,qu, we define a nilpotent Lie subalgebra of EndpV qC by

L´1,´1
pW,F q “ tX P EndpVCq |XpI

p,qq Ď
à

răp,săq

Ir,su.

It is defined over R with real form pL´1,´1
pW,F qqR :“ L´1,´1

pW,F q X EndpV q.

Proposition 3.9 (Deligne, cf. proposition 2.20 in [?]). Given a real mixed Hodge

structure pV,W,F q, there exists a unique δ P pL´1,´1
pW,F qqR such that pV,W, e´iδ ¨ F q is a

real mixed Hodge structure which splits over R.

This splitting is functorial (δ commutes with every morphism of real mixed Hodge

structures) and satisfies L´1,´1
pW,F q “ L´1,´1

pW,e´iδ¨F q
.

Proposition 3.10 ([?, proposition 2.24]). The Deligne δ-splitting yields a GpRq-
equivariant smooth real semi-algebraic retraction MÑMR of the inclusion MR ĎM
(over Ω).

3.7. The sl2-splitting, aka canonical splitting, aka ξ-splitting.

Theorem 3.11 (Deligne, cf. [?, Theorem 2.18]). The sl2-splitting is the unique, func-
torial splitting of real mixed Hodge structures which is given by universal Lie polyno-
mials in the Hodge components of the Deligne δ-splitting such that if pexppzNq ¨F,W q
is an admissible nilpotent orbit with limit mixed Hodge structure pF,Mq which is split
over R then the Deligne grading of the splitting of pexp iN ¨ F,W q is a morphism of
type p0, 0q for pF,Mq.

Corollary 3.12. The sl2-splitting yields a GpRq-equivariant smooth real semi-algebraic
retraction r : MÑMR of the inclusion MR ĎM (over Ω).

3.8. The definable structure on arithmetic quotients of period domains. In
the following proposition we continue to identify MR “ Ωˆ SpW qpRq.

Proposition 3.13. Let Γ Ă GpQq be an arithmetic subgroup. Then ΓzMR admits a
structure of a Ralg-definable analytic space characterized by the following property: for
any semi-algebraic Siegel set S Ă Ω and bounded semi-algebraic Σ Ă SpW qpRq, the
map Sˆ Σ Ñ ΓzMR is Ralg-definable.
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Proof. Let U be the unipotent radical of G, ΓU :“ Γ XUpQq, and ΓH the image of
Γ in HpQq. By [?, Prop. 2.2], UpRq acts simply transitively on SpW qpRq. Taking
B Ă SpW qpRq to be a bounded semi-algebraic fundamental set for the cocompact
action of ΓU and F to be a definable fundamental set for ΓHzΩ, we use F ˆ B as a
definable fundamental set to induce the definable structure on ΓzMR via Proposition
2.3. Let S Ă Ω be any semi-algebraic Siegel set and Σ Ă SpW qpRq be any bounded
semi-algebraic subset. Then S meets only finitely many ΓH-translates of F , and for any
any γ P GpQq we have that Σ meets only finitely many ΓU-translates of γB, so SˆΣ
meets only finitely many Γ-translates of F ˆ B. Therefore the map S ˆ Σ Ñ ΓzMR
is Ralg-definable. �

Definition 3.14. Let Γ Ă GpQq be an arithmetic subgroup and r : M Ñ MR the
sl2-splitting. Let Ξ ĂMR be a definable fundamental set for ΓzMR. We endow ΓzM
with a structure of a Ralg-definable analytic space via proposition 2.6 using r´1pΞq as
a definable fundamental set.

Be careful that two different retractions will yield in general two different definable
structures on ΓzM.

4. Variations of mixed Hodge structures and their period maps

4.1. Variation of mixed Hodge structures. Let R “ Z,Q or R. A variation of
mixed R-Hodge structures over a (possibly non-reduced) complex analytic space S is
the data of

‚ a R-local system L on the underlying topological space,
‚ an increasing filtration W of L by sublocal systems (the weight filtration),
‚ a decreasing filtration F of LbROS by locally split OS-submodules (the Hodge

filtration)

such that

‚ F satisfies Griffiths transversality in the usual sense on the reduced2 regular
locus of S.

‚ for every s P S, pLs,Ws, Fsq is a mixed R-Hodge structure.

We say the variation is graded-polarized if we are given a parallel polarization on each
of the associated variation of pure Hodge structures.

Lemma 4.1. Consider a variation of integral mixed Hodge structures over a complex
analytic space S. Then, up to replacing S by a finite étale cover, the pull-back of the
underlying local system by any holomorphic map ∆˚ Ñ S has unipotent monodromy.

Proof. By going to a finite étale cover, one can assume that all the monodromy op-
erators are trivial modulo a prime number p ě 3. On the other hand, by applying
Borel’s monodromy theorem [?, Lemma 4.5] to the associated variations of pure Hodge
structures, one sees that the eigenvalues of the monodromy operator corresponding to
a holomorphic map ∆˚ Ñ S are roots of the unity. Since roots of unity of a fixed
degree inject modulo p for sufficiently large p, the claim follows. �

4.2. Period maps. Let S be a (possibly non-reduced) complex analytic space. By a
mixed period map from S we mean a locally liftable analytic map ϕ : S Ñ GpZqzM
which is tangent to the Griffiths transverse foliation of M on the reduced regular locus
of S. Evidently, a mixed period map from S is equivalent to giving a variation of

2Note in particular that we do not require the nilpotent tangent directions to be Griffiths transverse,
though it is not clear that this level of generality is useful: variations coming from geometry will satisfy
Griffiths transversality in the nilpotent directions as well.
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graded-polarized integral mixed Hodge structures on S in the sense of the previous
section.

4.3. Admissibility. The notion of admissibility for a variation of mixed Hodge struc-
tures was introduced by Steenbrink and Zucker over one-dimensional bases [?] and by
Kashiwara [?] in higher dimensions. Let us recall the definitions.

Let pL,W, F q be a graded-polarizable variation of real mixed Hodge structures on
∆˚ with unipotent monodromy. Let V and Wk denote the canonical extensions of LbR
O∆˚ and Wk bR O∆˚ to ∆ respectively, equipped with their logarithmic connections.
The variation pL,W, F q is called pre-admissible if the following conditions hold:

(1) The residue at the origin of the logarithmic connection on V, which is an
endomorphism of the fiber V |0 of V at the origin, admits a weight filtration

relative to W |0.

(2) The Hodge filtration F extends to a subbundle F of V such that Grp
F

GrWk V
is locally-free for all p and k.

Given a Zariski-open subset S in a reduced complex analytic space S, we say that
a graded-polarized variation of real mixed Hodge structures pL,W, F q on S is admis-
sible with respect to the inclusion S Ă S if for any holomorphic map f : ∆ Ñ S such
that fp∆˚q Ă S and f˚L has unipotent monodromy, the pull-back variation on ∆˚ is
pre-admissible.

One easily verifies that a variation of real mixed Hodge structures on ∆˚ with unipo-
tent monodromy which is pre-admissible is admissible with respect to the inclusion
∆˚ Ă ∆, cf. [?, lemma 1.9.1].

Proposition 4.2. If a graded-polarizable variation of real mixed Hodge structures over
a complex algebraic variety S is admissible with respect to an algebraic compactification
S of S, then it is admissible with respect to any other algebraic compactification of S.

Proof. Indeed, a holomorphic map f : ∆˚ Ñ S is the restriction of a holomorphic
∆ Ñ S exactly when it is definable in Ran, hence this property in independent of the
compactification. �

4.4. Nilpotent orbit theorem. Consider a graded-polarized variation of real mixed
Hodge structures over p∆˚qn with unipotent monodromies. Let H denote the Poincaré
upper half-plane and e : Hn Ñ p∆˚qn the uniformizing map given by epz1, ¨ ¨ ¨ , znq “
pexpp2πi¨z1q, ¨ ¨ ¨ , expp2πi¨znqq. Choosing a reference point in Hn, we get a period map
ϕ̃ : Hn ÑM. Denoting by Nj (1 ď j ď n) the logarithm of the monodromy operators
corresponding to counterclockwise simple circuits around the various punctures, the

holomorphic map Ψ̃ : Hn Ñ M̌ given by Ψ̃pzq :“ expp´
n
ř

j“1
zj ¨ Njq ¨ ϕ̃pzq factorizes

through the projection map e : Hn Ñ p∆˚qn. Let Ψ : p∆˚qn Ñ M̌ denote the
factorization. Thanks to Schmid’s nilpotent orbit theorem [?, Theorem 4.12], the
composition of Ψ with the projection M̌Ñ Ω̌ extend as a holomorphic map ∆n Ñ Ω̌.
If one assume from now on that the variation is admissible with respect to the inclusion
p∆˚qn Ă ∆n, then by definition the restriction of Ψ to any punctured disk ∆˚ Ă p∆˚qn

extends as a holomorphic map ∆ Ñ M̌. Since the projection M̌ Ñ Ω̌ is an affine
holomorphic map, it follows that Ψ extends as a holomorphic map ∆n Ñ M̌. Therefore
we have proved:
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Proposition 4.3. Let S be the complement of a normal crossing divisor in a complex
manifold S. Let pL,W, F q be a graded-polarized variation of real mixed Hodge struc-
tures over S with unipotent monodromies at infinity which is admissible with respect
to the inclusion S Ď S. If V and Wk denote the canonical extensions of L bR O∆˚

and Wk bR O∆˚ to S respectively, then the Hodge filtration F extends to a subbundle

F of V such that Grp
F

GrWk V is locally-free for all p and k.

4.5. Admissible period maps are definable.

Theorem 4.4. Consider an admissible variation of graded-polarized integral mixed
Hodge structures over a reduced complex algebraic variety S, and let ϕ : S Ñ GpZqzM
be the associated period map. Then ϕ is definable in Ran,exp, where we equip GpZqzM
with the Ralg-definable structure associated to the sl2-splitting, cf. section 3.8.

This generalizes to the mixed case [?, Theor.1.3] for pure variations of Hodge struc-
tures.

5. Proof of Theorem 4.4

Recall that it is sufficient to prove the definability of the map obtained by precom-
posing ϕ by a surjective definable holomorphic map. In particular, by looking at a
desingularization of S, one can assume from the beginning that S is smooth. More-
over, up to replacing S by a finite étale cover, one can assume that the monodromies
at infinity are unipotent, c.f. lemma 4.1.

Taking a covering of S in Ralg (or just Ran,exp) by open subsets isomorphic to p∆˚qn,
one sees that we are reduced to proving:

Theorem 5.1. Consider an admissible variation of graded-polarized integral mixed
Hodge structures with unipotent monodromies over the punctured polydisk p∆˚qn, and
let ϕ : p∆˚qn Ñ GpZqzM be the associated period map. Then ϕ is definable in Ran,exp.

Let H denote the Poincaré upper half-plane and e : Hn Ñ p∆˚qn the uniformizing
map given by epz1, ¨ ¨ ¨ , znq “ pexpp2πi ¨ z1q, ¨ ¨ ¨ , expp2πi ¨ znqq. By choosing a lifting ϕ̃
of the period map ϕ, we obtain a commutative diagram of holomorphic maps

Hn M

p∆˚qn GpZqzM

ϕ̃

e

ϕ

A vertical strip in Hn is by definition a product of sets of the form

tpx, yq P H | a ă x ă b, c ă yu

for some real numbers a ă b and c ą 0. Let S Ă Hn be a vertical strip mapped by e
surjectively onto p∆˚qn, and consider the induced commutative diagram of holomorphic
maps

S M

p∆˚qn GpZqzM

ϕ̃|S

e|S

ϕ

Since the holomorphic map e|S is definable and surjective, the definability of ϕ will
be proved if we show that ϕ̃|S : S Ñ M is definable and that the image of S by ϕ̃
is contained in a finite union of definable fundamental sets. This is the content of the
next two results.
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Proposition 5.2. If ϕ̃ : Hn Ñ M is a lifting of the period map of an admissible
variation of mixed Hodge structures over p∆˚qn with unipotent monodromies, then its
restriction to any vertical strip is definable in Ran,exp.

Proof. Denoting by Nj (1 ď j ď n) the logarithm of the monodromy operators
corresponding to counterclockwise simple circuits around the various punctures, the

holomorphic map Ψ̃ : Hn Ñ M̌ given by Ψ̃pzq :“ expp´
n
ř

j“1
zj ¨ Njq ¨ ϕ̃pzq factor-

izes through the projection map e : Hn Ñ p∆˚qn. If Ψ : p∆˚qn Ñ M̌ denote the
factorization, it follows from the admissibility condition that Ψ extends as a holo-
morphic map ∆n Ñ M̌, cf. proposition 4.3. For any vertical strip S Ă Hn, the
restriction of Ψ to its image by e is the restriction to a relatively compact set of
a holomorphic map, therefore it is definable in Ran. As e|S : S Ñ ∆n is Ran,exp-

definable, it follows that pS Ñ M, z ÞÑ Ψ̃pzq “ Ψpepzqq is Ran,exp-definable. Since

both the action of GpCq on the compact dual M̌ and the morphism Cn Ñ GpCq

given by pz1, ¨ ¨ ¨ , znq ÞÑ expp
n
ř

j“1
zj ¨ Njq are algebraic, it follows from the equality

ϕ̃pzq “ expp
n
ř

j“1
zj ¨Njq ¨ Ψ̃pzq that the restriction of ϕ̃ to any vertical strip is definable

in Ran,exp. �

Proposition 5.3. If ϕ̃ : Hn Ñ M is a lifting of the period map of an admissible
variation of mixed Hodge structures over p∆˚qn, then the image by ϕ̃ of a vertical strip
is contained in a finite union of definable fundamental sets.

Given the definition of the definable structure in Definition 3.14, the theorem is a
consequence of its special pure case proved in [?] and the following result of Brosnan–
Pearlstein.

Theorem 5.4 (Cor 2.34 of [?]). Let Hr Ñ M be a lifting of the period map of an
admissible variation of mixed Hodge structures over p∆˚qr. If M Ñ SpW qpRq is the
map associated to the sl2-splitting, then the composition Hr Ñ SpW qpRq is bounded on
any vertical strip.

6. Mixed Hodge varieties

6.1. Mixed Mumford-Tate groups. (cf. [?] and [?, §2].)
We first briefly summarize Mumford–Tate groups of mixed Hodge structures. For

simplicity we focus on rational mixed Hodge structures, though the same holds for
any subfield of R. Let S “ ResC{R Gm, and define the weight torus to be the diagonal
w : Gm Ñ S. For a rational mixed Hodge structure V “ pVQ,W, F q, the associated
Deligne torus is the homomorphism h : SC Ñ GLpVCq by which pz1, z2q P SCpCq “
C˚ ˆC˚ acts as zp1z

q
2 on Ip,q in the Deligne splitting of V . Recall that the weight zero

Hodge classes of V are defined as Hdg0pV qQ :“ pW0qQ X F
0.

Let xV y be the smallest full subcategory of the category of rational mixed Hodge
structures which contains both V and Qp0q and is closed under subquotients, ‘, and b.
The Mumford–Tate group MTpV q Ă GLpV q is then the Tannakian group associated
to xV y with its obvious tensor functor. By [?, Lemma 2], MTpV q is equal to the largest
Q-subgroup of GLpV q which fixes Hdg0pT

m,npV qq for all m,n ě 0 where Tm,npV q :“
V m b pV _qn. It is connected and equal to the Q-Zariski closure of h in GLpV q, is
contained in GLpV qW , and if GrW V is polarizable then MTpGrW V q is the quotient
of MTpV q by its unipotent radical (cf. [?, §2.4]).

The Mumford–Tate group of an integral mixed Hodge structure is simply the Mumford–
Tate group of the associated rational mixed Hodge structure.
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6.2. Mixed Hodge varieties. In this section we largely follow the setup in [?, §3],
which we refer to for details (see also [?]). The following definition serves as an abstract
model for a Mumford–Tate group.

Definition 6.1. A mixed Hodge datum is a pair pG, XGq where G is a connected
linear algebraic Q-group and XG is a GpRqUpCq-conjugacy class of homomorphisms
SC Ñ GC where U is the unipotent radical of G satisfying the following conditions.
For some (hence any) h P XG, letting H “ G{U, we have

(1) SC
h
ÝÑ GC Ñ HC is defined over R;

(2) Gm
w
ÝÑ SC

h
ÝÑ GC Ñ HC is defined over Q;

(3) The rational mixed Hodge structure on the Lie algebra g of G induced by the
adjoint action has W´1g “ u.

A morphism of mixed Hodge data ρ : pG, XGq Ñ pG1, X 1G1q is a Q-homomorphism
ρ : G Ñ G1 sending XG to X 1G1 .

The first two conditions guarantee that if ρ : G Ñ GLpVQq is a Q-representation,
then ρ ˝ h endows VQ with the structure of a rational mixed Hodge structure for each
h P XG. If ρ is moreover faithful the third condition ensures that U is the group acting
trivially on the associated graded. When ρ is faithful the map

XG Ñ trational mixed Hodge structures on V u

factors through a complex manifold DG,XG
which is independent of ρ.

Definition 6.2.

(1) A connected mixed Hodge datum is a triple pG, XG,D`q where pG, XGq is a
mixed Hodge datum and D` is a connected component of DG,XG

; the stabilizer
GpRq` of D` in GpRq is a connected component. We refer to D` as a connected
mixed Hodge domain.

(2) For pG, XG,D`q a connected mixed Hodge datum and Γ Ă GpQq` :“ GpQqX
GpRq` an arithmetic subgroup, the associated connected mixed Hodge variety
is the complex manifold ΓzD`.

(3) A morphism f : D Ñ D1 of connected mixed Hodge domains corresponding

to connected mixed Hodge data pGp1q, X
p1q

Gp1q
,Dp1qq is a map induced from a Q-

homomorphism ρ : G Ñ G1 sending XG to X 1G1 and D to D1. If in addition Γ

is sent to Γ1 we call the induced map f : ΓzD Ñ Γ1zD1 a morphism of connected
mixed Hodge varieties.

(4) A Hodge datum pG, XGq is graded-polarizable if for some (hence any) h P XG

and some (hence any) faithful representation ρ : G Ñ GLpVQq the induced
mixed Hodge structure on VQ is graded-polarizable. In this case we say the as-
sociated connected mixed Hodge domains and varieties are graded-polarizable
as well.

Remark 6.3. For simplicity we only deal with connected mixed Hodge varieties, as this
is all that is needed for definability questions: a general mixed Hodge variety as in [?]
is a finite union of connected ones.

Note that any connected mixed Hodge domain D` has a functorial Ralg-definable
structure for which the action of GpRq` is definable.

For any graded-polarizable connected mixed Hodge datum pG, XG,D`q and a faith-
ful Q-representation ρ : G Ñ GLpVQq we obtain a holomorphic embedding of D` in a
graded-polarizable mixed period domain M as a ρpGpRq`UpCqq-orbit after choosing
an integral structure for VQ and graded polarization forms. For a generic V in this
orbit we have:
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(1) MTpV q “ ρpGq;
(2) ρpGpCqq ¨ V is a closed algebraic subvariety of M̌;
(3) ρpGpRq`UpCqq ¨ V is a semialgebraic open subset of ρpGpCqq ¨ V , equal to the

component of pρpGpCqq ¨ V q XM containing V .

Theorem 6.4. Any connected graded-polarizable mixed Hodge variety has the structure
of an Ralg-definable analytic space which is functorial with respect to morphisms of
connected mixed Hodge varieties and which agrees with that of ΓzM from Definition
3.14.

Before the proof we make some preliminary observations. For any connected mixed
Hodge datum pG, XG,D`q we define the real-split locus D`R Ă D` as the locus of
h P D` whose Deligne torus is defined over R, and likewise define the real split locus
of any connected mixed Hodge variety as pΓzD`qR :“ ΓzD`R . Evidently both are
Ralg-definable subspaces and morphisms preserve the real split loci and their definable
structures.

For any graded-polarized connected mixed Hodge datum pG, XG,D`q, we have a
natural mixed Hodge datum pH, XH,D`Grq of the associated graded. As in section 3.5,
we have a natural semi-algebraic identification

(1) D`R – D`Gr ˆ SpWgqpRq

where SpWgq is the variety of splittings of the weight filtration of the Lie algebra g of
G, since UpRq “ exppW´1gRq acts simply transitively on SpWgqpRq by [?, Prop. 2.2].

Proposition 6.5. The real split locus pΓzD`qR of any connected graded-polarizable
mixed Hodge variety admits a structure of a Ralg-definable topological space charac-

terized by the following property: for any semi-algebraic Siegel set S Ă pD`GrqR and
bounded semi-algebraic Σ Ă SpWgqpRq, the map S ˆ Σ Ñ ΓzMR is Ralg-definable.
Moreover, the definable structure is compatible with morphisms of connected mixed
Hodge varieties.

Proof. The first part is the same as in the proof of Proposition 3.13. As the iden-
tification (1) is clearly functorial in morphisms of connected mixed Hodge data, the
second statement follows from Theorem 2.7 and the fact that a bounded set of Deligne
gradings Gm Ñ G is mapped to a bounded set. �

Proof of Theorem 6.4. We start by generalizing the sl2-splitting:

Lemma 6.6. For any connected graded-polarized mixed Hodge domain D` there is a
Ralg-definable GpRq`-equivariant retraction r : D` Ñ D`R which is compatible with
morphisms of connected mixed Hodge domains.

Proof. A faithful Q-representation ρ : G Ñ GLpVQq yields an embedding ι : D` ÑM
into a graded-polarizable mixed period domain and we may pull back the sl2-retraction
r : MÑMR to D`.

It remains to show that the sl2-retraction commutes with a morphism D` Ñ D1`
induced by a morphism of mixed Hodge data ρ : pG, XGq Ñ pG1, X 1G1q. For any
h P XG, ρ induces a morphism dρ : g Ñ g1 of mixed Hodge structures induced by h
and ρ˝h. The Deligne δ-splitting of g is Adpe´iδq ¨h where δ P pL´1,´1

g qR is the unique

element for which T “ Adpe´2iδqT , where T is the Deligne grading [?, Prop. 2.20].
From the proof of [?, Prop. 2.2], δ is contained in ad gR, in fact in the Lie algebra
generated by the weight torus and its conjugate. Obviously dρpT q is the Deligne
grading of ρ ˝ h, and so dρpδq is the δ operator for g1. As the sl2-splitting is defined by
universal Lie polynomials in δ, the result follows. �
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As in Definition 3.14, we endow ΓzM with a definable structure coming from the
definable set r´1pΞq for a definable fundamental set Ξ for pΓzMqR. By the lemma this
definable structure is compatible with morphisms. �

6.3. (Weakly) special subvarieties. Briefly, as in [?] we define the collection of
weakly special subvarieties of connected mixed Hodge varieties to be the minimal
collection which is closed under finite unions, taking connected components, and taking
images and preimages under morphisms of mixed Hodge varieties and which contains
points. For an algebraic variety S with an admissible variation of integral graded-
polarized mixed Hodge structures pL,W, F q with monodromy contained in Γ, we define
the weakly special subspaces of S to be the pull-backs of weakly special subvarieties
of ΓzM along the associated period map ϕ : S Ñ ΓzM with their natural structure
as locally closed Ran,exp-definable analytic subspaces, by Theorem 4.4. From definable
GAGA [?, Theorem 3.1] we conclude:

Corollary 6.7. Weakly special subspaces of S are algebraic.

As a concrete example of the corollary, we specifically treat the case of Noether–
Lefschetz loci in more detail, and leave the general setup to the reader. For any V PM,
define the Noether–Lefschetz locus

NLpV q “ tV 1 PM | MTpV 1q Ă MTpV qu ĂM.

and let NLpV q Ă ΓzM be the image. The following is the mixed analog of [?, Theorem
II.C.1]; the same proof works with essentially no modification.

Proposition 6.8. For V P M, let G :“ MTpV q with unipotent radical U and let
XG be the GpRqUpCq-conjugacy class of the Deligne torus of V . Then the compo-
nent of NLpV q passing through V is the connected mixed Hodge domain for pG, XGq

containing V .

Corollary 6.9. NLpV q Ă ΓzM is a definable analytic subspace.

Proof. From the proposition and Theorem 6.4, each connected component of NLpV q is
a definable analytic subspace, and it remains to check there are finitely many compo-
nents. For V 1 PM, to have MTpV 1q Ă MTpV q we must check if finitely many vectors
in finitely many Tm,npV 1q are Hodge, that is, contained in F 0Tm,npV 1qXW0T

m,npV 1q.

Thus, NLpV q “ }NLpV q XM for a natural algebraic subvariety }NLpV q Ă M̌. As
}NLpV q intersects a definable fundamental set for ΓzM in finitely many components,
the result follows. �

For any algebraic variety S with an admissible variation of integral graded-polarized
mixed Hodge structures pL,W, F q with monodromy contained in Γ and any s P S we
define NLs Ă S to be the pull back of NLpLs,Ws, Fsq Ă ΓzM with its natural structure
as a definable analytic subspace.

Corollary 6.10. NLs Ă S is algebraic.

Recall the definition of Hdgd0pSq Ă S from the introduction. Using that there are
finitely many OpGrW0 VZ, q0q-orbits of primitive vectors v with fixed square q0pv, vq “
d ‰ 0 (for instance using [?]), and therefore finitely many Γ-orbits of v P W0VZ with
q0pv, vq “ 0, we deduce in the same fashion:

Corollary 6.11. Hdgd0pSq Ă S is algebraic.
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