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Abstract. For V → S a polarizable variation of Hodge structure defined over Q, the
special subvarieties of S on which V admits exceptional Hodge tensors are conjectured
to be defined over Q. We prove this conjecture for special subvarieties satisfying
a simple monodromy condition, and illustrate this result for the universal family of
smooth hypersurfaces of fixed degree in projective space. Using the same ideas, we
moreover reduce the conjecture for special subvarieties of arbitrary dimension to the
conjecture for special points.

Résumé. Étant donnée une variation polarisable de structures de Hodge V → S définie
sur Q, il est conjecturé que les sous-variétés spéciales de S le long desquelles V admet
des tenseurs de Hodge exceptionnels sont définies sur Q. Nous démontrons cette conjec-
ture pour les sous-variétés spéciales satisfaisant une condition simple de monodromie,
et illustrons ce résultat dans le cas de la famille universelle des hypersurfaces lisses de
degré fixé dans l’espace projectif. En utilisant les mêmes méthodes, nous réduisons la
conjecture au cas particulier des points spéciaux.

1. Introduction

1.1. Hodge loci. The main objects of study in this article are Hodge loci. Let us start
by recalling their definition in the geometric case, where their behaviour is predicted by
the Hodge conjecture.

Let f : X → S be a smooth projective morphism of smooth irreducible complex quasi-
projective varieties and let i a positive integer. The Betti and De Rham incarnations of
the 2i-th cohomology of the fibers of f give rise to a weight zero polarizable variation
of Hodge structure (V := R2ifan∗ Z(i),V := R2if∗Ω

•
X/S , F

•,∇) on S. Here V is the

local system on the complex manifold San associated to S parametrising the 2i-th Betti
cohomology of the fibers of f ; V is the corresponding algebraic vector bundle, endowed
with its flat Gauß-Manin connection; and F • is the Hodge filtration on V induced by
the stupid filtration on the algebraic De Rham complex Ω•X/S . In this situation one

defines the locus of exceptional Hodge classes Hod(V) ⊂ Van as the set of Hodge classes
λ ∈ F 0Van∩VQ whose orbit under monodromy is infinite, and the Hodge locus HL(S,V)
as its projection in San. Thus HL(S,V) is the subset of points s in San for which the
Hodge structure H2i(Xs,Z(i)) admits more Hodge classes than the very general fiber
H2i(Xs′ ,Z(i)).

According to the Hodge conjecture each λ ∈ Hod(V) should be the cycle class of an
exceptional algebraic cycle in the corresponding fiber of f . As algebraic subvarieties of
the fibers are parametrised by a common Hilbert scheme, the Hodge conjecture and an
easy countability argument implies the following (as noticed by Weil in [Weil79], where
he asks for an unconditional proof):
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(?)

The locus of Hodge classes Hod(V) is a countable union of closed irreducible
algebraic subvarieties of V. The restriction of f to any such subvariety of V
is finite over its image. In particular the Hodge locus HL(S,V) is a countable
union of closed irreducible algebraic subvarieties of S.

More generally let (V,V, F •,∇) be any polarizable variation of Z-Hodge structure
(ZVHS) on a smooth complex irreducible algebraic variety S. Thus V is a finite rank
ZSan-local system on the complex manifold San; and (V, F •,∇) is the unique regular
algebraic module with integrable connection on S whose analytification is V⊗ZSan OSan

endowed with its Hodge filtration F • and the holomorphic flat connection ∇an defined
by V, see [Sc73, (4.13)]). We will abbreviate the ZVHS (V,V, F •,∇) simply by V.
If we define the locus of exceptional Hodge classes Hod(V) ⊂ V and the Hodge locus
HL(S,V) ⊂ S as in the geometric case, Cattani, Deligne and Kaplan [CDK95] proved a
vast generalisation of Weil’s expectation:

Theorem 1.1. (Cattani-Deligne-Kaplan) Let V be a polarizable ZVHS on a smooth
complex quasi-projective variety S. Then (?) holds true.

From now on we do not distinguish a complex algebraic variety X from its associated
complex analytic space Xan, the meaning being clear from the context. It will be con-
venient for us to work in the following more general tensorial setting. Let V⊗ be the
infinite direct sum of ZVHS

⊕
a,b∈NV⊗a ⊗ (V∨)⊗b, where V∨ denotes the ZVHS dual

to V; and let (V⊗, F •) be the corresponding filtered algebraic vector bundle of infinite
rank. We denote by Hod(V⊗) ⊂ V⊗ and HL(S,V⊗) ⊂ S the corresponding locus of
Hodge tensors and the tensorial Hodge locus respectively. Thus HL(S,V⊗) is the subset
of points s in San for which the Hodge structure Vs admits more Hodge tensors than
the very general fiber Vs′ , equivalently where the Mumford-Tate group Gs of Vs is not
of maximal dimension. Theorem 1.1 says that Hod(V⊗) and HL(S,V⊗) are countable
unions of closed irreducible subvarieties of V⊗ and S respectively, called the special sub-
varieties of V⊗ and S for V. We refer to [BKT18] for a simplified proof of the statement
for HL(S,V⊗) using o-minimal geometry.

1.2. Fields of definition of Hodge loci. The question we attack in this paper is the
relation between the field of definition of the ZVHS V and the fields of definition of the
corresponding special subvarieties.

Once again the geometric case provides us with a motivation and a heuristic. Suppose
that f : X → S is defined over a number field L ⊂ C. In that case one easily checks,
refining Weil’s argument, that the Hodge conjecture implies, in addition to (?):

(??)

(a) each irreducible component of Hod(V), respectively HL(S,V), is defined
over a finite extension of L;
(b) each of the finitely many Gal(Q/L)-conjugates of such a component is
again an irreducible component of Hod(V), respectively HL(S,V).

Remark 1.2. Of course (??) for Hod(V) implies (??) for HL(S,V), and is a priori strictly
stronger.

Remark 1.3. The full Hodge conjecture is not needed to deduce (??). As proven by
Voisin [Voi07, Lemma 1.4], the property (??) for Hod(V) is equivalent to the conjecture
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that Hodge classes in the fibers of f are (de Rham) absolute Hodge classes. We won’t
use the notion of absolute Hodge classes in this article and refer the interested reader
to [ChSc14] for a survey. Our methods, being primarily concerned with the geometric
properties of the special subvarieties themselves, say little directly about Hodge classes.

Let us now turn to general ZVHS.

Definition 1.4. We say that a ZVHS V is defined over a number field K ⊂ C if S, V,
F • and ∇ are defined over K: S = SK ⊗K C, V = VK ⊗K C, F •V = (F •KVK)⊗K C and
∇ = ∇K ⊗K C with the obvious compatibilities.

In the same way the property (?), which is implied by the Hodge conjecture in the
geometric case, was proven to be true for a general ZVHS, we expect the property (??),
which is implied by the Hodge conjecture in the geometric case, to hold true for any
ZVHS V, namely:

Conjecture 1.5. Let V be a ZVHS defined over a number field L ⊂ C. Then:

(a) any special subvariety of V⊗ (resp. of S) for V is defined over a finite extension
of L;

(b) any of the finitely many Gal(Q/L)-conjugates of a special subvariety of V⊗ (resp.
of S) for V is a special subvariety of V⊗ (resp. of S) for V.

Remark 1.6. Simpson’s non-abelian period conjecture [Si90, “Standard conjecture” p.372]
predicts that any ZVHS defined over a number field L ⊂ C ought to be motivic: there
should exist a Q-Zariski-open subset U ⊂ S such that the restriction of V to U is a direct
factor of a geometric ZVHS on U . Thus Conjecture 1.5 would follow from Simpson’s
“standard conjecture” and (??) in the geometric case. Of course Simpson’s standard
conjecture seems unreachable with current techniques.

Let us mention the few results in the direction of Conjecture 1.5 we are aware of:

Suppose we are in the geometric situation of a morphism f : X → S defined over Q.
In [Voi07, Theor. 0.6] (see also [Voi13, Theor. 7.8]), Voisin proves the following:

(1) for Hod(V): let Z ⊂ V is an irreducible component of Hod(V) through a Hodge
class α ∈ H2k(X0,Z(k))prim such that the only constant sub-QVHS of the base change

of VQ to Z is Q · α. Then Z is defined over Q.
(2) for HL(S,V): Let Z be as in (1). Under the weaker assumption that any constant

sub-QVHS of the base change of VQ to Z is purely of type (0, 0), the projection of Z in

S is an irreducible component of HL(S,V) defined over Q, and its Gal(Q/Q)-translates
are still irreducible components of HL(S,V).

In the case of a general ZVHS Saito and Schnell [SaSc16] prove:
(1) for Hod(V): if V is defined over a number field then a special subvariety of V for

V is defined over Q if it contains a Q-point of V.
(2) for HL(S,V⊗): without assuming that V is defined over Q but only assuming that

S is defined over a number field L, then a special subvariety of S for V is defined over
a finite extension of L if and only if it contains a Q-point of S. This generalizes the
well-known fact that the special subvarieties of Shimura varieties are defined over Q (as
any special subvariety of a Shimura variety contains a CM-point, and CM-points are
defined over Q).
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Remark 1.7. These results seem to indicate a significant gap in difficulty between Con-
jecture 1.5 for Hod(V) and Conjecture 1.5 for HL(S,V). Saito and Schnell’s result (2),
which only requires S to be defined over Q, looks particularly surprising. They also seem
to indicate that the statement (b) in Conjecture 1.5 goes deeper than (a). In particular
Saito and Schnell’s result (2) says nothing about Galois conjugates.

Remark 1.8. Voisin’s and Saito-Schnell’s criteria look difficult to check in practice. Even
in explicit examples one usually knows very little about the geometry of a special variety
Y . In Voisin’s case one would need to control the Hodge structure on the cohomology
of a smooth compactification of X base-changed to Z. In Saito-Schnell’s case there is in
general no natural source of Q-points (like the CM points in the Shimura case).

1.3. Results. All results in this paper concern Conjecture 1.5 for HL(S,V⊗). We
provide a simple geometric criterion for a special subvariety of S for V to be defined
over Q and its Galois conjugates to be special. As this criterion is purely geometric we
say nothing about fields of definitions of isolated points in the Hodge locus. In fact our
Theorem 1.16 will reduce Conjecture 1.5 to its particular case for special points.

Let us first recall the notion of algebraic monodromy group.

Definition 1.9. Let S be a smooth irreducible complex algebraic variety, let k be a field
and V a k-local system (of finite rank) on San (in our case k will be Q or C). Given an
irreducible closed subvariety Y ⊂ S, the algebraic monodromy group HY of Y for V is
the connected component of the identity of the Tannaka group of the Tannakian category
〈V|Y nor〉⊗kLoc of k-local systems on the normalisation Y nor of Y tensorially generated by
the restriction of V and its dual.

Equivalently HY is the connected component of the Zariski-closure of the monodromy
ρ : π1(Y

nor,an)→ GL(Vk) of the local system V|Y nor .

Theorem 1.10. Let V be a polarized variation of Z-Hodge structure on a smooth quasi-
projective variety S, whose adjoint generic Mumford-Tate group Gad

S is simple. Then:

(a) if S is defined over a number field L then any strict maximal special subvariety
Y ⊂ S satisfying HY 6= {1} is defined over Q.

(b) if V is moreover defined over L then the finitely many Gal(Q/L)-translates of
such a special subvariety are special subvarieties of S for V.

As an easy geometric illustration of Theorem 1.10 we obtain for instance:

Corollary 1.11. Let PN(n,d)
C be the projective space parametrising the hypersurfaces X

of Pn+1
C of degree d. Let Un,d ⊂ PN(n,d)

C be the Zariski-open subset parametrising the
smooth hypersurfaces X and let V −→ U be the polarized variation of Z-Hodge struc-
ture corresponding to the primitive cohomology Hn(X,Z)prim. Then any strict maximal
special subvariety Y ⊂ Un,d for V with algebraic monodromy group HY 6= {1} is defined

over Q; moreover its Galois conjugates are special.

Remark 1.12. In Corollary 1.11 we can more generally replace Un,d with the space Un,d,

with Un,d the open subset of PN1
C ×· · ·×P

Nr
C parametrising smooth complete intersections

of r hypersurfaces of degrees d = (d1, · · · , dr) in Pn+1
C .
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Theorem 1.10 is obtained as a corollary of a more general result, where we replace the
condition HY 6= 1 with a more general one:

Definition 1.13. Let S be a smooth irreducible complex algebraic variety and V a k-
local system on San. Let Y ⊂ S be an irreducible closed subvariety. We say that Y is
weakly non-factor for V if it is not contained in a closed irreducible Z ⊂ S such that the
k-algebraic monodromy group HY is a strict normal subgroup of HZ .

Admittedly in the situation of Definition 1.13 it is not easy to decide whether or not
a given irreducible closed subvariety Y ⊂ S is weakly non-factor for V. As explained
in Section 2 the situation is much better when V is a ZVHS and Y ⊂ S is special
for V: in that case Y being non-factor roughly means that Y cannot be non-trivially
Hodge-theoretically deformed inside a larger special subvariety.

The main result in this paper, from which Theorem 1.10 is deduced, is then the
following:

Theorem 1.14. Let V be a polarized variation of Z-Hodge structure on a smooth quasi-
projective variety S.

(a) if S is defined over a number field L then any special subvariety of S for V which
is weakly non-factor for VQ is defined over a finite extension of L;

(b) if moreover V is defined over L then the finitely many Gal(Q/L)-translates of
such a special subvariety are also special, weakly non-factor subvarieties of S for
V.

Remark 1.15. In the situation of Theorem 1.10[(b)] and more generally Theorem 1.14[(b)]
we expect that the generic Mumford-Tate group remains constant in the Galois orbit of
the special subvarieties we consider. However we cannot prove it. This illustrates how
our method, which is not directly related to absolute Hodge classes, is different from
Voisin’s.

As another application of the ideas of Theorem 1.14, we are able to reduce the Con-
jecture 1.5(a) for HL(S,V) to the case of points:

Theorem 1.16. Special subvarieties for ZVHSs defined over Q are defined over Q if
and only if it holds true for special points.

2. ZVHS versus local systems, Mumford-Tate group versus monodromy,
special versus weakly special

In this section we recall the geometric background providing the intuition for The-
orem 1.14, namely the geometry of special subvarieties and their generalisation, the
weakly special subvarieties. We refer to [K17] and [KO19] for details.

Let VQ be a Q-local system on S and Y ⊂ S an irreducible closed subvariety. In
Definition 1.9 we recalled the definition of the algebraic monodromy group HY for VQ.
Suppose now that VQ underlies a ZVHS V over S. In addition to HY , which depends
only on the underlying local system, one attaches a more subtle invariant to Y and
V: the generic Mumford-Tate group GY i.e. the (connected component of the identity
of the) Tannaka group of the category 〈V|Y nor〉⊗QVHS of QVHS on the normalisation of
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Y tensorially generated by the restriction of V and its dual. One may check from the
definiteness of a polarisation of the variation on Y that the monodromy on Y acts
on Hodge tensors through a finite group, from which it follows that HY ⊂ GY . The
Mumford-Tate group GY is usually much harder to compute than HY as its definition
is not purely geometric. The ZVHS V is completely described by its complex analytic
period map ΦS : San → XS := Γ\DS . Here DS denotes the Mumford-Tate domain
associated to the generic Mumford-Tate group GS of (S,V), ΓS ⊂ GS(Q) is an arithmetic
lattice and the complex analytic quotient XS is called the Hodge variety associated to
V. The special subvarieties of the Hodge variety XS and their generalisation, the weakly
special subvarieties of XS are defined purely in group-theoretic terms, see [KO19, Def.
3.1]. One proves that the special subvarieties of S for V are precisely the irreducible
components of the ΦS-preimage of the special subvarieties of XS , thus obtaining the
following characterisation, see [KO19, Def. 1.2].

Proposition 2.1. Let V be a ZVHS on S. A special subvariety of S for V is a closed
irreducible algebraic subvariety Y ⊂ S maximal among the closed irreducible algebraic
subvarieties of S with generic Mumford-Tate group GY .

Similarly, one defines a generalisation of the special subvarieties of XS , the so-called
weakly special subvarieties of XS , purely in group-theoretic terms see [KO19, Def. 3.1].
The weakly special subvarieties of S for V, which generalize the special ones, are defined
as the irreducible components of the ΦS-preimage of the weakly special subvarieties of
XS . Again one obtains the following characterisation, see [KO19, Cor. 3.14]:

Proposition 2.2. Let V be a ZVHS on S. A weakly special subvariety Y ⊂ S for V
is a closed irreducible algebraic subvariety Y of S maximal among the closed irreducible
algebraic subvarieties of S with algebraic monodromy group HY .

A posteriori Proposition 2.2 offers an alternative definition of the weakly special subva-
rieties of S for a ZVHS V. It is important for us to notice that this alternative definition
of the weakly special subvarieties of S for V makes sense for V any k-local system on
San, k a field:

Definition 2.3. Let k be a field and let V be a k-local system on S. We define a
weakly special subvariety Y ⊂ S for V to be a closed irreducible algebraic subvariety
Y of S maximal among the closed irreducible algebraic subvarieties of S with algebraic
monodromy group HY .

Remark 2.4. If V is a k-local system on S, Y ⊂ S is a closed irreducible subvariety, and
k′ is a field extension of k, the k′-algebraic monodromy group HY (V ⊗k k′) is the base
change HY (V)⊗k k′. Thus Y being weakly special for V is equivalent to Y being weakly
special for V⊗k k′.

For V a ZVHS and Y ⊂ S an irreducible closed subvariety there exists a unique
weakly special subvariety 〈Y 〉ws with algebraic monodromy group HY and a unique
special subvariety 〈Y 〉s with generic Mumford-Tate group GY containing Y , see [KO19,
2.1.4]:

Y ⊂ 〈Y 〉ws ⊂ 〈Y 〉s ⊂ S .
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When V is a mere local system there exists by definition a weakly special subvariety
with algebraic monodromy group HY and containing Y but its uniqueness is not clear
to us.

Let us now recall that for V a ZVHS special subvarieties of S for V can be thought of as
families of weakly special subvarieties. Indeed let Y ⊂ S be a weakly special subvariety.
A fundamental result of Deligne-André [An92, Theor.1] states that the group HY is
normal in (the derived group of) GY . Following [KO19, Prop. 2.13], the decomposition

Gad
Y = Had

Y ×G′adY induces a product decomposition XY = wXY ×X ′Y , where XY is the
smallest special subvariety of XS containing ΦS(Y ) and Y is (an irreducible component
of) Φ−1S (wXY × {x′0}) for a certain point x′ ∈ X ′Y and a weakly special subvariety

wXY of XS . All the (irreducible components of) the preimages Φ−1S (wXY × {x′}),
x′ ∈ X ′Y , are weakly special subvarieties of S for V that can be thought as Hodge theoretic
deformations of Y . In particular, there are only countably many special subvarieties of
S for V, while there are uncountably many weakly special ones, organised in countably
many “product families”.

We can now make a few remarks on the notion of weakly non-factor subvarieties
defined in Definition 1.13:

(1) For V a local system a closed irreducible subvariety Y ⊂ S is weakly non-factor if
and only if any weakly special subvariety Y ⊂ Z ⊂ S with HZ = HY is weakly
non-factor. When V is a ZVHS it amounts to saying that the weakly special closure
〈Y 〉ws ⊂ S is weakly non-factor.

(2) Let V be a ZVHS. Given a closed irreducible subvariety Y ⊂ S, let wXY ⊂ XS

be the smallest weakly special subvariety containing ΦS(Y ). It follows from the
above description of the weakly special subvarieties that Y is weakly non-factor for
V if and only if there does not exist Y ⊂ Z ⊂ S, with Z closed irreducible, such
that wXZ = wXY × wX ′ ⊂ XS with wX ′ a weakly special subvariety of XS with
HwX′ 6= 1. The “weakly non-factor” condition is thus a Hodge theoretic rigidity of
Y . In particular one obtains the following:

Lemma 2.5. Let V be a ZVHS on S. Any weakly non-factor, weakly special subva-
riety of S is special.

(3) The terminology “weakly non-factor” generalizes the terminology “non-factor” in-
troduced by Ullmo [Ull07] for special subvarieties of Shimura varieties.

(4) For V a non-isotrivial local system on S, it follows from the definition that for any
weakly non-factor subvariety Y ⊂ S the algebraic monodromy group HY is non-
trivial. When V is moreover a ZVHS this last condition is equivalent to saying that
Y has positive period dimension for V in the sense of [KO19]: its image ΦS(Y ) is
not a point.

Given S a smooth complex quasi-projective variety and V a complex local system, we
say that V is defined over a number field L ⊂ C if both S and the algebraic module with
integrable connection (V,∇) corresponding to V under the Deligne-Riemann-Hilbert cor-
respondence (see (3.1) below) are defined over L. Theorem 1.14 then follows immediately
from Lemma 2.5 and the general result on local systems:
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Theorem 2.6. Let S be a smooth complex quasi-projective variety and V a complex local
system on San.

(a) Suppose that S is defined over a number field L. Then any weakly special, weakly
non-factor subvariety of S for V is defined over a finite extension of L;

(b) if moreover V is defined over L, then any Gal(Q/L)-translates of a weakly special,
resp. weakly non-factor, subvariety of S for V is a weakly special, resp. weakly
non-factor, subvariety of S for V.

3. Proof of the main results

3.1. Proof of Theorem 2.6(b).

Let S be a smooth complex quasi-projective variety, LocC(San) the category of complex
local systems of finite rank on San, MIC(San) the category of holomorphic modules with
integrable connection on San and MICr(S) the category of algebraic modules with regular
integrable connection on S. Following Deligne [De70, Theor.5.9], the analytification
functor MICr(S) → MIC(San) is an equivalence of tensor categories. Composed with
the Riemann-Hilbert correspondence this provide an equivalence of tensor categories

(3.1) MICr(S)
τ' LocC(San) .

Let V ∈ LocC(San). Let σ : C → C be a field automorphism. Let Sσ := S ×C,σ C be
the twist of SS under σ. We denote by Vσ ∈ LocC((Sσ)an) the image of V under the
composition of equivalence of (Tannakian) categories

(3.2) LocC(San)
τ−1

∼ MICr(S)
·×C,σC∼ MICr(S

σ)
τ∼ LocC((Sσ)an) .

Theorem 2.6(b) then follows immediately from the Proposition 3.1 below. �

Proposition 3.1. Let S be a smooth complex quasi-projective variety and V ∈ LocC(San).
Let σ : C → C be a field automorphism. Let Y ⊂ S be a closed irreducible subvariety
with Galois twist Y σ ⊂ Sσ.

(1) the complex algebraic monodromy group HY of Y with respect to V is canonically
isomorphic to the complex algebraic monodromy group HY σ of Y σ with respect
to Vσ.

(2) Y is weakly special for V if and only if Y σ is weakly special for Vσ.
(3) Y is weakly non-factor for V if and only if Y σ is weakly non-factor for Vσ.

Proof. Let us first assume that Y is smooth. In that case the equivalence of tensor cat-

egories (3.2) LocC(Y an)
τ' LocC((Y σ)an) restricts to an equivalence of tensor categories

〈V|Y 〉⊗
τ' 〈Vσ|Y 〉

⊗ .

Taking (the connected component of the identity of) their Tannaka groups we obtain a
canonical isomorphism

HY ' HY σ ,

thus proving Proposition 3.1(1) in that case.

When Y is not smooth, we consider a desingularisation Y s p→ Y nor π→ Y . Notice that
(Y s)σ is a desingularisation of (Y nor)σ = (Y σ)nor. Notice moreover that the algebraic
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monodromy groups of (p ◦ π)∗V|Y and π∗VY coincides, as p∗ : π1(Y
s) → π1(Y

nor) is
surjective. Arguing as above for Y s and (Y s)σ proves Proposition 3.1(1) in general.

Suppose now that Y ⊂ S is a closed irreducible subvariety. If Y σ is not weakly
special for Vσ there exists Z ⊃ Y σ a closed irreducible subvariety of Sσ containing Y σ

strictly and such that HZ = HY σ . But then Zσ
−1

is a closed irreducible subvariety of S
containing Y strictly, and such that H

Zσ
−1 = HY by Proposition 3.1(1). It follows that

Y is not weakly special. This proves Proposition 3.1(2).
The argument for Proposition 3.1(3) is similar. We are reduced to showing that

for S a smooth complex quasi-projective variety, V ∈ LocC(San), σ : C → C a field
automorphism and Y ⊂ S a closed irreducible subvariety with Galois twist Y σ ⊂ Sσ,
then HY is normal in HS if and only if HY σ is normal in HSσ . Consider the Tannakian
subcategory T of 〈V〉⊗ consisting of the local systems which are trivial in restriction
to Y an. Applying σ we obtain that T σ is the Tannakian subcategory of 〈Vσ〉⊗ of local
systems that are trivial on (Y σ)an. But as a result of the Tannakian formalism the normal
closures of HY and HY σ in HS and HSσ respectively are the kernel of the canonical
morphism from HS to the Tannaka group of T , resp. from HSσ to the Tannaka group
of T σ. Hence the result. �

3.2. Proof of Theorem 1.14 when V is defined over a number field.

Although this is not necessary to prove the theorem in general, let us notice that Theo-
rem 1.14 in the case where V is defined over a number field L follows from Theorem 2.6(b).
Indeed when V is a ZVHS, weakly special weakly non-factor subvarieties of S for V are
special subvarieties of S for V by Lemma 2.5. Applying Theorem 2.6(b), it follows that
the Aut(C/L)-translates of any special, weakly non-factor, subvariety of S for V is spe-
cial (and weakly non-factor). But special subvarieties of S for V form a countable set. It
follows immediately that any special, weakly non-factor, subvariety of S for V is defined
over Q (see for instance [Voi13, Claim p.25]). �

3.3. Proof of Theorem 2.6(a).

Let us now prove Theorem 2.6(a), hence finish the proof of Theorem 1.14. Let S be a
complex irreducible smooth quasi-projective variety and V a complex local system on
San. Suppose that S is defined over a number field L ⊂ C. Let Y ⊂ S be a weakly
special subvariety of S for V which is weakly non-factor. Let us show that Y is defined
over Q.

Let Z ⊂ S be the Q-Zariski-closure of Y , i.e. the smallest closed subvariety of S
defined over Q and containing Y . Thus Z is irreducible.

The subset Z0 ⊂ Z of smooth points is Q-Zariski-open (meaning that Z − Z0 is a
closed subvariety of Z defined over Q) and dense. Notice that Y ∩Z0 is Zariski-open in
Y (otherwise Y would be contained in the closed subvariety Z − Z0 defined over Q, in
contradiction to the Q-Zariski-density of Y in Z); moreover the fact that Y ⊂ S is weakly
special, resp. weakly non-factor for (S,V) implies that Y 0 := Y ∩ Z0 is weakly special,
resp. weakly non-factor for (Z0,V|Z0). Replacing Y ⊂ S by Y 0 ⊂ Z0 if necessary, we

can without loss of generality assume that Y is Q-Zariski-dense in S. We are reduced
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to proving that Y = S, or equivalently that HY = HS . This follows immediately from
the Proposition 3.2 below, of independent interest. �

Proposition 3.2. Let S be a smooth complex quasi-projective variety, V a complex local
system on San and let Y ⊂ S be a closed irreducible weakly non-factor subvariety for V.
Suppose that S is defined over Q and that Y is Q-Zariski-dense in S. Then HY = HS.

Proof. Let Y be “the” spread of Y with respect to S. Let us recall its definition. Let
K ⊂ C be the minimal field of definition of Y , see [Gro65, Cor. 4.8.11]. This is the
smallest subfield Q ⊂ K ⊂ C such that Y is defined over K: there exists a K-scheme
of finite type YK such that Y = YK ⊗K C. Let us choose R ⊂ K a finitely generated
Q-algebra whose field of fractions is K and let YR be an R-model of YK = YR ⊗R K.
The morphism YR → SpecR induces a morphism of complex varieties Y := YR ⊗Q C→
T := Spec (R ⊗Q C), defined over Q. Notice that the complex dimension of T is the

transcendence degree of K over Q. The natural closed immersion YR ⊂ S ⊗Q R makes
Y a closed irreducible variety

Y ⊂ S ×C T

defined over Q, with induced projections p : Y → S and π : Y → T , both defined over Q,
such that Yt0 := π−1(x0) ' Y where t0 ∈ T (C) is the closed point given by R ⊂ K ⊂ C.
By construction the morphism p is dominant. The variety Y is called “the” spread of
Y . It depends on the choice of R but different choices give rise to birational varieties
Ys. Shrinking SpecR if necessary, we can assume without loss of generality that T is
smooth.

Let Y0 ⊂ Y be the Q-Zariski-open dense subset of smooth points. As p is dominant,
the fact that Y ⊂ S is weakly non-factor for (S,V) implies that Y 0 := Y0 ∩ Y ⊂ Y0

is weakly non-factor for (Y0, p−1(V)|Y0). As HY 0 = HY and HY0 = HS , to show that

HY = HS we are reduced, replacing S by Y0 and Y by Y0∩Y if necessary, to the situation
where there exists a morphism π : S → T defined over Q such that Y = St0 ⊂ S and Y
is weakly non-factor for (S,V).

It follows from [GM88, Theorem p.57] that there exist finite Whitney stratifications
(Sl) of S and (Tl)l≤d of T by locally closed algebraic subsets Tl of dimension l (d =
dimT ) such that for each connected component Z (a stratum) of Tl, π

−1(Z)an is a
topological fibre bundle over Zan, and a union of connected components of strata of
(San
j ), each mapped submersively to Zan (moreover, for all t ∈ Zan, there exists an open

neighbourhood U(t) in Zan and a stratum preserving homeomorphism h : π−1(U) '
π−1(t) × U such that π|π−1(U) = pU ◦ h, where pU denotes the projection to U). These

Whitney stratifications can be chosen defined over Q (meaning that the closure of each
stratum is defined over Q): see [Tei82], [Ar13, 3.1.9].

It follows from the minimality of K that t0 belongs to the unique open stratum Td,
d = dimT . Without loss of generality we can and will assume from now on that T = Td.
In particular San is a topological fibre bundle over T an.

If follows that the image of π1(Y
an) in π1(S

an) is a normal subgroup. Hence HY is a
normal subgroup of HS . As Y ⊂ S is weakly non-factor it follows that HY = HS . �
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3.4. Proof of Theorem 1.10.

Let S, V and Y as in the statement of Theorem 1.10. Let us show that Y is weakly
non-factor. Let Z ⊂ S be a closed irreducible subvariety of S containing Y strictly, and
such that HY is is a strict normal subgroup of HZ . As the special closure 〈Z〉s of Z
is a special subvariety of (S,V) containing Y , it follows from the maximality of Y that
〈Z〉s = S. As HZ is normal (see [An92, Theor.1]) in the algebraic group Gder

Z = Gder
S

which is assumed to be simple, it follows that either HZ = {1} or HZ = HS = Gder
S . As

HY is a strict normal subgroup of HZ , necessarily HY = {1} (and HZ = HS). This is
impossible as HY 6= 1 by assumption. Hence such a Z does not exist and Y is weakly
non-factor. The conclusion then follows from Theorem 1.14. �

3.5. Proof of Corollary 1.11.

In the situation of Corollary 1.11 the variation V is clearly defined over Q. Let Gn,d

be the group of automorphisms of Hn(X,Q)prim preserving the cup-product. When n
is odd the primitive cohomology is the same as the cohomology. When n is even it is
the orthogonal complement of hn/2, where h is the hyperplane class. Thus Gn,d is either
a symplectic or an orthogonal group depending on the parity of n, and is a simple Q-
algebraic group. A classical result of Beauville [Beau86, Theor.2, Theor.4] proves that
the image of the monodromy representation for V is an arithmetic subgroup of G(Q).
In particular the algebraic monodromy group HUn,d coincides with the simple group

Gd,n. As HUn,d ⊂ Gad
Un,d
⊂ Gd,n we deduce Gad

Un,d
= Gd,n. The result then follows from

Theorem 1.10. �

3.6. Proof of Theorem 1.16.

Let us suppose that the special points for ZVHS’s defined over Q are defined over Q.
Let V → San be a ZVHS defined over Q and let Y be a special subvariety of S for V.
Let us show that Y is defined over Q.

Suppose for the sake of contradiction that Y is not defined over Q. Let Z ⊂ S be
the Q-Zariski closure Z of Y in S. Again, replacing S by the Q-Zariski open subset of
smooth points Z0 of Z and Y by Y 0 := Z0∩Y we can without loss of generality assume
that Z = S is smooth. Arguing as in the proof of Theorem 2.6(a) we may assume that
HY is a strict normal subgroup of HS . Because GS is reductive and HS is normal in
the derived group Gder

S , it follows that HY is a product of simple factors of Gder
S , hence

normal in GS .

It follows that there exist a finite collection of natural integers ai, bi, 1 ≤ i ≤ n
such that the ZVHS V′ := (

⊕
1≤i≤nV⊗ai ⊗ (V∨)⊗bi)HY consisting of the HY -invariant

vectors in
⊕

1≤i≤nV⊗ai ⊗ (V∨)⊗bi has generic Mumford-Tate group G′S = GS/HY and

algebraic monodromy group H′S := HS/HY . Writing (G′S = GS/HY ,D′S := DS/HY )
for the quotient Hodge datum of (GS ,DS) by HY and π : XS � X ′S the induced
projection of Hodge varieties, the period map for V′ is Φ′S := π ◦ ΦS : San → X ′S . The
special subvariety Y of S for V is still a special subvariety of S for V′ and its image
Φ′S(Y ) is a point.
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Passing to a finite cover if necessary and filling in finitely many punctures at infinity, we
may assume that Φ′S is proper. Following [BBT18, Theor.1.1] there exists a factorisation

Φ′S = Ψ ◦ q ,

where q : S → B is a proper morphism of quasi-projective varieties defined over Q
satisfying q∗OS = OB and Ψ : B → X ′ is a quasi-finite period map. This means that
V′ = q∗V′B for a ZVHS V′B, and that b0 := q(Y ) is a special point of B for V′B.

It follows from Lemma 3.3 below that the ZVHS V′ can be defined over Q. It then
follows from Lemma 3.4 below that V′B is also defined over Q. Under our assumption

that special points of ZVHS defined over Q are defined over Q one concludes that the
special point b0 of B for V′B is defined over Q. But then the irreducible component Y

of q−1(b0) is also defined over Q, a contradiction.

This finishes the proof of Theorem 1.16. �

Lemma 3.3. Let V be a ZVHS and V′ a sub-ZVHS. If V is definable over K ⊂ C then
there exists a K-structure on V and V′ such that the projection V � V′ is defined over
K.

Proof. Let E be the finite dimensional K-algebra of ∇-flat F •-preserving algebraic sec-
tions over S of VK ⊗ V∨K . Each invertible element of EC := E ⊗K C defines a natural
K-structure on V, F • and ∇, the original one (VK , F •K ,∇K) being preserved exactly by
the invertible elements of E.

Let J be the Jacobson radical of E. Let us choose T ⊂ E a (semisimple) splitting of
the projection E → E/J . As the category of polarizable QVHS is abelian semisimple
the finite dimensional complex algebra HomZVHS(V,V) ⊗Z C is semisimple. Under the
Riemann-Hilbert correspondence it identifies with a semisimple subalgebra A ⊂ EC.
Following a classical result of Wedderburn-Malcev there exists an element j ∈ JC :=
J ⊗K C such that (1 + j)A(1 + j)−1 ⊂ TC.

Let eC ∈ A be the idempotent corresponding to the projection of ZVHS π : V � V′
under the Riemann-Hilbert correspondence. As TC is semisimple, hence a product of
matrix algebras, any idempotent of TC is conjugated to an idempotent in T . Thus there
exist an invertible element f ∈ TC and e ∈ T such that (1 + j)eC(1 + j)−1 = f−1ef .

If we endow (V, F •,∇) with the K-structure defined by the element f(1 + j) ∈ EC
it follows that the image of π : V � V′ under the Riemann-Hilbert correspondence is
defined over K for this new K-structure. Hence the result. �

Lemma 3.4. Let f : S −→ B be a proper morphism of K-varieties defined over K ⊂ C,
such that f∗OS = OB. Let VB be a ZVHS on B. If the ZVHS VS := f∗VB on S is
definable over K then VB is also definable over K.

Proof. Let (VS := f∗VB, F •S := f∗F •B,∇S := f∗∇B) be the De Rham incarnation of VS .
It follows from the projection formula and the assumption f∗OS = OB that

f∗VS = f∗(f
∗VB ⊗OS OS) = VB ⊗OB f∗OS = VB .

It follows easily that F •B = f∗F
•
S and ∇B = f∗∇S . As f , F •S and ∇S are defined over K,

it follows that F •B and ∇B are defined over K. �
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[K17] B. Klingler, Hodge theory and atypical intersections: conjectures, arXiv preprint 1711.09387, to

appear in the book Motives and complex multiplication, Birkhaüser
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