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1. Results

A finitely generated group Γ is said to be n-rigid (where n denotes a positive integer) if

Γ has only finitely many conjugacy classes of complex irreducible representations ρ : Γ −→
GLr(C), 1 ≤ r ≤ n, and rigid if it is n-rigid for every positive integer n. Many “natural”

groups are rigid; in particular arithmetic groups of higher rank like SLn(Z), n ≥ 2, are even

superrigid [14], i.e. their complex proalgebraic completion is finite dimensional.

It has long been observed that the rigidity of Γ is linked to the properties of its finite

quotients:

- the set Repn(Γ)(C) of complex representations of degree at most n of Γ contains the ones

with finite image, that is the continuous representations of degree at most n of the profinite

completion Γ̂ of Γ. Hence a necessary condition for Γ to be n-rigid is that Γ̂ is n-rigid (where

we extend the definition of rigidity to topologically finitely generated topological groups by

considering only continuous representations).

- this link has long been studied in the case where Γ is an arithmetic group. Let G

be a connected semisimple linear algebraic group defined over Q and Γ ⊂ G(Q) be an

arithmetic group (i.e. commensurable with G(Z)). In this case the problem of classifying the

representations of Γ with finite image is known as the congruence subgroup problem [3]. One

says that the arithmetic group Γ has the congruence subgroup property (abbreviated CSP) if

any subgroup of finite index of Γ contains a subgroup of the form ker(G(Z) −→ G(Z/NZ)).

It is well known that the (generalized) CSP holds for “most” families of higher rank arithmetic

lattices (we refer to the excellent recent survey [21] and the references therein). It was

observed by Bass-Milnor-Serre and Raghunathan that the CSP implies superrigidity (cf. [3,

section 16] and [22, section 7]).

1.1. Our first result clarifies the link between rigidity and finite quotients for an arbitrary

finitely generated group Γ: the rigidity of Γ is equivalent to a boundedness property of the

representation theory of Γ over prime fields.

Theorem 1.1. Let Γ be a finitely generated group and n a positive integer. The following

two conditions are equivalent:

(i) the group Γ is n-rigid.
1
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(ii) there exists a positive integer cn such that for any prime p the number of GLr(Fp)-
conjugacy classes of absolutely irreducible representations ρ : Γ −→ GLr(Fp), 1 ≤
r ≤ n, is bounded above by cn (where Fp denotes the finite field with p elements).

The main ingredient in the proof of theorem 1.1 is the modular interpretation over the

integers of (an interesting variant of) the character variety of Γ provided by Nakamoto [16].

1.2. Considering finite simple quotients of a group is often more convenient than dealing

with its absolutely irreducible representations over a finite field. We obtain a criterium for a

finitely generated group Γ to be rigid in terms of its finite simple quotients of Lie type (we

refer to the appendix B for our conventions concerning finite simple groups of Lie type):

Theorem 1.2. Let Γ be a finitely generated group. Suppose that:

(i) Γ has property (FAb) (meaning that any finite index subgroup of Γ has finite abelian-

ization).

(ii) for every n ∈ Z>0 there exists a constant cn ∈ Z>0 such that the following holds.

Let J(n) ∈ Z>0 be any integer as provided by theorem 3.1. For any normal sub-

group Γ′ of Γ of index [Γ : Γ′] ≤ J(n), for every prime p and every finite simple

subgroup of Lie type G ⊂ GL(n,Fp) of characteristic p acting semisimply on Fnp , the

number of G-conjugacy classes of surjective morphisms ρ : Γ′ � G is bounded above

by cn.

Then Γ is rigid.

Theorem 1.2 follows from theorem 1.1 as follows. The classical Jordan lemma, which states

that for every n ∈ Z>0 there exists J(n) ∈ Z>0 such that any finite subgroup Γ ⊂ GLn(C)

admits an abelian normal subgroup Γ1 of index at most J(n), implies that condition (i) in

theorem 1.2 is equivalent to the profinite completion Γ̂ being rigid (cf. [2, prop.2 (1)]). In

particular condition (i) is necessary for Γ being rigid. We use the generalization of Jordan’s

lemma to fields of positive characteristic (obtained by Nori [17, paragraph 3], Gabber [9,

theor. 12.4.1] and Larsen-Pink [12, theor. 0.2]) to prove that conditions (i) and (ii) in

theorem 1.2 imply that Γ satisfies property (ii) of theorem 1.1 for any positive integer n,

hence is rigid by theorem 1.1. It is not clear to me whether or not condition (ii) in theorem 1.2

is necessary for Γ being rigid.

1.3. Next we use theorem 1.2 and strong approximation (cf. [27] and [18]) to generalize

to finitely generated linear groups the statement that for arithmetic groups “CSP implies

rigidity”.

Let us first recall the definition of the CSP for S-arithmetic groups and the result of Bass-

Milnor-Serre and Raghunathan. We will use the following notations. Let k be a global field

(i.e. either a number field or the function field of an algebraic curve over a finite field). We

let V denote the set of all places of k and Vf (resp. V∞) the subset of non-Archimedean (resp.

Archimedean) places. As usual for v ∈ V we let kv denote the corresponding completion. If

v ∈ Vf we moreover denote by Okv the ring of integers of kv. For any finite set S of V we



CHARACTER VARIETIES OVER PRIME FIELDS AND REPRESENTATION RIGIDITY 3

let ASk denote the ring of adèles of k outside of S. Let S be a finite subset of V containing

V∞ and denote by OS the ring of S-integers OS = {x ∈ k | v(x) ≥ 0 for all v 6∈ S}.
Let G be an algebraic k-group. We fix a k-embedding G

ι
↪→ GLn and define the group of

S-integral points Γ := G(OS) to be G(k)∩GLn(OS). The congruence kernel of Γ is defined

as the kernel CS(G) := ker(Ĝ(k) −→ G(ASk )), where Ĝ(k) denotes the completion of G(k)

with respect to the topology defined by the family of all normal subgroups of finite index

of Γ. One says that Γ has the (generalized) CSP if CS(G) is finite. In [3, section 16] and

[22, section 7] it is proven that when G is semi-simple, simply connected, and satisfy strong

approximation, if the group Γ has the CSP then Γ is superrigid. We prove:

Theorem 1.3. Consider finitely many connected simply connected absolutely simple linear

algebraic groups Gi over global fields ki, 1 ≤ i ≤ m, and a finitely generated subgroup

Γ ⊂
∏m
i=1 Gi(ki) whose image in each factor is Zariski-dense. For each 1 ≤ i ≤ m let Si,Γ

denote the (finite) set of places v of ki for which either v is Archimedean or the image of

Γ in Gi(ki,v) does not lie in a compact subgroup. Define the congruence kernel C(Γ) as the

kernel of the natural map Γ̂ −→
∏m
i=1 Gi(A

Si,Γ
ki

), where Γ̂ denotes the profinite completion of

Γ.

If Γ has property (FAb) and C(Γ) is prosolvable then Γ is rigid.

Remarks 1.4. (a) In the S-arithmetic case considered by Bass-Milnor-Serre and Raghu-

nathan, theorem 1.3 shows that “CSP implies rigidity”. Indeed suppose for simplicity

that G is a connected simply connected absolutely simple group over the global field

k and let Γ = G(OS). We consider theorem 1.3 for m = 1, the set S1,Γ is equal to

S and one easily shows that C(Γ) is equal to CS(G). Under our assumptions it is

known that the congruence kernel CS(G) is finite if and only if it is central in Ĝ(k)

(cf. [21, theor.2]). In particular if CS(G) is finite it is abelian hence solvable (and

clearly Γ has property (FAb)). Hence theorem 1.3 apply and “CSP implies rigidity”.

(b) the assumptions of theorem 1.3 are much weaker than those of Bass-Milnor-Serre

and Raghunathan: it applies to any finitely generated Zariski-dense subgroup of

G(k) rather than to S-arithmetic subgroups.

(c) Theorem 1.3 should be useful in the context of Platonov’s conjecture [19, p.437],

which states that a linear rigid group is of arithmetic type. Bass and Lubotzky [1]

found counterexamples to Platonov’s conjecture (even superrigid ones). Theorem 1.3

might be helpful for finding more counterexamples.

The criterion provided by theorem 1.3 looks theoretically satisfactory. However I am not

aware of any general strategy for proving the prosolvability of C(Γ) in this situation: already

in the arithmetic case this is a hard problem (cf. [21, section 5]). We refer to appendix C

for remarks concerning C(Γ).

1.4. Acknowledgments. I thank E. Breuillard for explaining me [12], Y. de Cornulier for

answering my naive questions, and J.P. Serre for his comments.
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2. Rigidity and representations over finite fields: proof of theorem 1.1

2.1. Notations and definitions. We follow the notations of [16]. Each commutative ring

is unital. Morphisms of commutative rings map 1 to 1. If R is a commutative ring and p is a

prime ideal of R we denote by k(p) its residue field Rp/pRp and by k(p) an algebraic closure

of k(p). For a group Γ we denote by e the unit of Γ. For a scheme Z we denote by hZ the

functor Hom(·, Z) from the category Sch of schemes to the category Sets of sets.

Definition 2.1. Let Γ be a group and R a commutative ring. A map ρ : Γ −→ GLn(R)

is called a representation if ρ is a group homomorphism. Such a representation is abso-

lutely irreducible if for each prime ideal p ∈ SpecR the induced representation ρp : Γ
ρ−→

GLn(R) −→ GLn(k(p)) is irreducible. We abbreviate “absolutely irreducible representation”

by “a.i.r”.

Definition 2.2. Two representations ρ, ρ′ : Γ −→ GLn(R) are said equivalent (denoted ρ ∼
ρ′) if there exists an R-algebra isomorphism σ : Mn(R) −→Mn(R) such that σ(ρ(γ)) = ρ′(γ)

for each γ ∈ Γ.

Notice that if ρ is absolutely irreducible and ρ ∼ ρ′ then ρ′ is absolutely irreducible. If R is

a field then ρ ∼ ρ′ if and only if ρ = P ·ρ′ ·P−1 for some P ∈ GLn(R) by the Skolem-Noether

theorem.

These definitions naturally extend to schemes. A representation of Γ in a scheme X is a

group morphism ρ : Γ −→ GLn(H0(X,OX)). It is absolutely irreducible if for each x ∈ X
the representation ρx : Γ −→ GLn(k(x)) is absolutely irreducible. For two representations

ρ and ρ′ in a scheme X we say that ρ and ρ′ are equivalent if there exists an OX -algebra

isomorphism σ : Mn(OX) −→Mn(OX) such that σ(ρ(γ)) = ρ′(γ) for each γ ∈ Γ.

We denote by P the set of prime numbers.

Given a finitely generated group Γ we denote by Γ̂ its profinite completion.

2.2. Nakamoto’s result. First we explain Nakamoto’s result on representation varieties.

Let Γ be a group. Let Repn(Γ) : Schop −→ Sets be the functor parametrizing the represen-

tations of degree n of Γ:

(1) ∀X ∈ Sch, Repn(Γ)(X) := {ρ : Γ −→ GLn(H0(X,OX)) representation} .

One easily shows that this functor is represented by an affine scheme Repn(Γ) = SpecAn(Γ).

This is proven in [13, prop.1.2 p.3] in the case where Γ is a finitely generated group and one

restricts to the category of affine C-schemes. The same proof generalizes to the general case

[16, prop.2.3]. If Γ is finitely generated then the scheme Repn(Γ) is of finite type over Z, in

particular noetherian.

The character variety Charn(Γ) is defined as the GIT quotient of Repn(Γ) under the

natural action of the Z-group scheme PGLn:

Ad : Repn(Γ)×PGLn −→ Repn(Γ)

(ρ, P ) 7→ P−1ρP .
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Hence Charn(Γ) = Spec (An(Γ)PGLn) (cf. [16, def.2.10], we refer the reader to [25] for

details about the GIT construction over an arbitrary base). When Γ is finitely generated

Charn(Γ) is a universal categorical quotient of Repn(Γ), in particular of finite type over Z
hence noetherian (cf. [15], [25]). However the modular interpretation of Charn(Γ) seen as a

Z-scheme remains mysterious.

Following Nakamoto [16] we rather consider the subfunctor Repn(Γ)a.i.r : Schop −→ Sets
of Repn(Γ) parametrizing absolutely irreducible representations:

(2) ∀X ∈ Sch, Repn(Γ)a.i.r := {ρ : Γ −→ GLn(H0(X,OX)) an a.i.r} .

It is representable by an open subscheme Repn(Γ)a.i.r of Repn(Γ)a.i.r, whose explicit descrip-

tion shows that it is of finite type over Z when Γ is finitely generated (cf. [16, def.3.4]).

Let’s define the functor EqAIRn(Γ) : Schop −→ Sets parametrizing equivalence classes of

absolutely irreducible representations:

(3) ∀X ∈ Sch, EqAIRn(Γ)(X) := {ρ : Γ −→ GLn(H0(X,OX)) an a.i.r}/ ∼ .

The main result of Nakamoto in [16], building on Donkin’s work [5], can now be stated as

follows:

Theorem 2.3 (Nakamoto). Let Γ be any group.

(a) There exists a coarse moduli scheme Charn(Γ)a.i.r over Z associated to the moduli

functor EqAIRn(Γ). In other words there exist a separated scheme Charn(Γ)a.i.r over

Z and a natural transformation

τ : EqAIRn(Γ) −→ hCharn(Γ)a.i.r

satisfying the following two conditions:

(1) For any scheme Z the natural transformation τ induces an isomorphism

τ : Hom(EqAIRn(Γ), hZ) ' Hom(hCharn(Γ)a.i.r
, hZ)(' HomSch(Z,Charn(Γ)a.i.r)) .

(2) For any algebraically closed field Ω the morphism

τ : EqAIRn(Γ)(Spec Ω) −→ Hom(Spec Ω,Charn(Γ)a.i.r)

is bijective.

(b) The natural morphism π : Repn(Γ)a.i.r −→ Charn(Γ)a.i.r is a universal geometric

quotient by PGLn. Moreover it is a torsor under PGLn.

(c) When Γ is finitely generated the scheme Charn(Γ)a.i.r is of finite type over Z.

Statement (a) is [16, Theor1.3], statement (b) is [16, cor. 6.8], statement (c) is [16,

rem.6.9].



6 BRUNO KLINGLER

2.3. A general lemma.

Lemma 2.4. Let X be an affine scheme of finite type over Z. Then X ×SpecZ SpecC is

0-dimensional if and only if there exists a constant cX such that for any prime number p the

inequality |X(Fp)| < cX holds.

Proof. Let X be an affine scheme of finite type over Z. By [6, 1.6.1] the scheme X is of finite

presentation. Let n be the dimension of X ×SpecZ SpecC.

Let f : SpecZ −→ Z>0 be the function which associates to a prime p the number f(p) of

geometrically irreducible components of XFp of dimension n. By [8, 9.7.9] the function f is

constructible. In particular there exists N ∈ Z>0 such that f is constant on SpecZ[1/N ].

Let l := f(SpecZ[1/N ]) ∈ Z>0.

It follows from the generic flatness theorem [7, 6.9.1] that, increasing N if necessary, X is

flat over Z[1/N ]. In particular all fibers XFp , p 6 |N , have the same dimension n.

The Lang-Weil estimates [11] (in their affine version) state that there exists cX ∈ Z>0

such that for any p ∈ P, p 6 |N , the following holds:

||X(Fp)| − l · pn| < cXp
n− 1

2 .

This imply that n = 0 if and only if |X(Fp)| is uniformly bounded as p ranges through

P. �

2.4. End of the proof of theorem 1.1. Statement (i) in theorem 1.1 is equivalent to

saying that the C-scheme Charr(Γ)a.i.r ×SpecZ SpecC is 0-dimensional, 1 ≤ r ≤ n.

As we assume that Γ is a finitely generated group, for any r ∈ Z>0 the scheme Charr(Γ)a.i.r

is of finite type over Z by theorem 2.3(c).

From lemma 2.4 one obtains that statement (i) is equivalent to the uniform boundedness

of |Charr(Γ)a.i.r)(Fp)|, 1 ≤ r ≤ n, as p ranges through P.

This is equivalent to statement (ii) by the following lemma:

Lemma 2.5. The set Charr(Γ)a.i.r(Fp) is in bijection with the set of conjugacy classes of

absolutely irreducible representations ρ : Γ −→ GLr(Fp).

Proof. By theorem 2.3[(a)] the set Charr(Γ)a.i.r(Fp) is in bijection with the set of conjugacy

classes of irreducible representations ρ : Γ −→ GLr(Fp). Hence the subset Charr(Γ)a.i.r(Fp)
of Charr(Γ)a.i.r(Fp) can be seen as a set of conjugacy classes of certain irreducible represen-

tations ρ : Γ −→ GLr(Fp).
By theorem 2.3[(b)] Repr(Γ)a.i.r is a Charr(Γ)a.i.r-torsor under (PGLr)Z, hence the base-

change (Repr(Γ)a.i.r)Fp is a (Charr(Γ)a.i.r)Fp-torsor under (PGLr)Fp . Let x ∈ Charr(Γ)a.i.r(Fp).
The fiber at x of the morphism πp : (Repr(Γ)a.i.r)Fp −→ Charr(Γ)a.i.r(Fp) is thus an Fp-torsor

under (PGLr)Fp . By Lang’s theorem [10] this torsor is trivial, which exactly means that

x lifts to an Fp-point of (Repr(Γ)a.i.r)Fp , namely an absolutely irreducible representation

ρ : Γ −→ GLr(Fp).
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Hence Charr(Γ)a.i.r(Fp) identifies with the set of stable conjugacy classes of absolutely

irreducible representations ρ : Γ −→ GLr(Fp).
Notice that if ρ1, ρ2 : Γ −→ GLr(Fp) are absolutely irreducible and stably conjugate then

they are conjugate. This follows from HomFp[Γ](ρ1, ρ2) = HomFp[Γ](ρ1, ρ2)⊗Fp Fp and Schur’s

lemma.

This concludes the proof of theorem 1.1. �

3. Counting finite simple quotients of Lie type: proof of theorem 1.2

The classical Jordan’s lemma does not hold in characteristic p > 0: for example the

group GLn(Fp) contains arbitrarily large finite subgroups SLn(Fpr) which are simple modulo

center. However Nori [17, paragraph 3], Gabber [9, theor. 12.4.1] and Larsen-Pink [12, theor.

0.2] provide generalization of this lemma to arbitrary characteristic.

Theorem 3.1. (Larsen-Pink) For every n ∈ Z>0 there exists a constant J(n) depending only

on n such that any finite subgroup G of GLn over any field k possesses normal subgroups

G3 ⊂ G2 ⊂ G1 ⊂ G such that:

(a) [G : G1] ≤ J(n).

(b) Either G1 = G2, or p := char(k) is positive and G1/G2 is a product of finite simple

groups of Lie type in characteristic p.

(c) G2/G3 is abelian of order not divisible by char(k).

(d) Either G3 = {1}, or p := char(k) is positive and G3 is a p-group.

We refer to appendix B for conventions concerning finite simple groups of Lie type.

Theorem 1.2 is then an immediate corollary of the following more precise:

Theorem 3.2. Let Γ be a finitely generated group. Consider the following conditions:

(i) Γ is rigid.

(ii) for every n ∈ Z>0 there exists a positive integer cn such that for any prime p the

number of GLn(Fp)-conjugacy classes of absolutely irreducible representations ρ :

Γ −→ GLn(Fp) is bounded above by cn.

(iii) for every n ∈ Z>0 there exists a positive integer cn such that for any prime p the num-

ber of GLr(Fp)-conjugacy classes of irreducible representations ρ : Γ −→ GLn(Fp)
is bounded above by cn.

(iv) the following two conditions hold:

(a) Γ has property (FAb).

(b) for every n ∈ Z>0 there exists a constant cn ∈ Z>0 such that the following holds.

Let J(n) ∈ Z>0 be any integer as provided by theorem 3.1. For any normal

subgroup Γ′ of Γ of index [Γ : Γ′] ≤ J(n), for every prime p and every finite

simple subgroup of Lie type G ⊂ GL(n,Fp) of characteristic p acting semisimply

on Fnp , the number of GL(n,Fp)-conjugacy classes of surjective morphisms ρ :

Γ′ � G is bounded above by cn.
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Then (iv) =⇒ (iii) =⇒ (ii)⇐⇒ (i).

Proof. Theorem 1.1 says that the conditions (i) and (ii) of theorem 3.2 are equivalent.

The implication (iii) =⇒ (ii) is clear.

Hence we only have to show that (iv) implies (iii).

3.0.1. The case of finite groups. Notice that any finite group Γ obviously satisfies condi-

tion (iv). We first show that (iv) implies (iii) in this particular case:

Lemma 3.3. Let Γ be a finite group. Then Γ satisfies condition (iii) of theorem 3.2.

Proof. This follows from the description of irreducible Fp-representations of Γ for p not

dividing m := |G|.
Let p not dividing m. First, the number of irreducible Fp-representations of Γ cöıncide

with the number of conjugacy classes of Γ. Any such representation is in fact defined over k,

where k denotes the smallest finite extension of Fp containing all m-th roots of unity. Hence

irreducible kΓ-modules are in bijection with conjugacy classes of elements of Γ.

The Galois group Gal(k/Fp) is naturally a subgroup of (Z/mZ)∗. Two elements γ, γ′ ∈ Γ

are said to be in the same Fp-class if there exists t ∈ Gal(k/Fp) ⊂ (Z/mZ)∗ such that γ and

γt are conjugated in Γ. Then the number of irreducible FpΓ-modules is equal to the number

of Fp-classes in Γ, which is uniformly bounded by the number of conjugacy classes of Γ. �

3.0.2. The general case. We first fix some notations. Let p be a prime. Let (ρ : Γ −→
GL(Vρ), Vρ ' Fnp ) be an irreducible representation. Let Gρ := ρ(Γ) and let

GL(Vρ) ' GLn(Fp) ⊃ Gρ ⊃ G1,ρ ⊃ G2,ρ ⊃ G3,ρ

be the sequence of normal subgroups of Gρ provided by theorem 3.1. First notice that any

Fp-representation of a p-group fixes a non-zero vector hence G3,ρ fixes a non-zero vector of

Vρ . As G3,ρ is normal in Gρ and ρ is irreducible this implies that G3,ρ = 1. Let Γi,ρ ⊂ Γ,

1 ≤ i ≤ 3, be the subgroup ρ−1(Gi,ρ). Hence one has the sequence of normal subgroups

Γ ⊃ Γ1,ρ ⊃ Γ2,ρ ⊃ Γ3,ρ = ker ρ .

The property (c) of theorem 3.1 then implies that the restriction of ρ to Γ2,ρ is an abelian

character of Γ2,ρ of order prime to p.

Assume (iv) and suppose by contradiction that (iii) does not hold. Hence there exists

a positive integer n such that the cardinality of the set of conjugacy classes of irreducible

representations ρ : Γ −→ GLn(Fp) is unbounded as p ranges through P. For such a rep-

resentation ρ consider the subgroup Γ1,ρ of Γ. By property (a) of theorem 3.1 the index

[Γ : Γ1,ρ] is bounded above by J(n). As Γ is finitely generated it has only a finite number

of subgroups of index at most J(n). Hence there exists a normal subgroup Γ′ ⊂ Γ of index

at most J(n) such that the cardinality of the set Cn,Γ1=Γ′(Γ)(Fp) of conjugacy classes of

irreducible representations ρ : Γ −→ GLn(Fp) satisfying moreover Γ1,ρ = Γ′ is unbounded

as p ranges through P.
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By property (b) in theorem 3.1 one can decompose

Cn,Γ1=Γ′(Γ)(Fp) = Cn,Γ2=Γ′(Γ)(Fp)q Cn,Γ2 6=Γ′(Γ)(Fp) ,

where Cn,Γ2=Γ′(Γ)(Fp) denotes the subset of conjugacy classes of representations such that

moreover Γ2,ρ = Γ1,ρ(= Γ′). For [ρ] ∈ Cn,Γ2=Γ′(Γ)(Fp) the representation ρ restricted to

Γ′ = Γ2 is an abelian character of Γ′. By assumption the group Γ has property (FAb).

Hence (Γ′)ab := Γ′/[Γ′,Γ′] is finite. The subgroup [Γ′,Γ′] of Γ is normal of finite index and

any [ρ] ∈ Cn,Γ2=Γ′(Γ)(Fp), p ∈ P, factorizes through the finite quotient G := Γ/[Γ′,Γ′]. It

follows from lemma 3.3 that the cardinality of Cn,Γ2=Γ′(Γ)(Fp) is bounded uniformly as p

ranges through P.

Hence the cardinality of Cn,Γ2 6=Γ′(Γ)(Fp) has to be unbounded as p ranges through P.

Let [ρ] ∈ Cn,Γ2 6=Γ′(Γ)(Fp). As G2,ρ is abelian of order prime to p, the restriction to Γ2,ρ of

ρ⊗Fp Fp decomposes into isotypical components

(4) Vρ ⊗Fp Fp :=
⊕

χ∈X∗(Vρ)

Vρ,χ ,

where X∗(Vρ) denotes the set of characters χ of G2,ρ whose isotypical component Vρ,χ ⊂
Vρ ⊗Fp Fp is non-zero. Notice that |X∗(Vρ)| ≤ n. As G2,ρ is normal in Gρ the group

Gρ acts by permutation on X∗(Vρ) hence a morphism λ : Gρ/G2,ρ −→ Sn. The group

G1,ρ/G2,ρ is a product of finite simple groups of Lie type. The restriction of λ to such

a simple factor is necessarily injective or trivial. As there are only finitely many primes

p such that there exists a finite simple subgroup of Lie type in characteristic p injecting

into Sn, we can assume without loss of generality that λ is trivial on G1,ρ/G2,ρ for every

[ρ] ∈ Cn,Γ2 6=Γ′(Γ)(Fp) as p ranges through P. This means that the action of G1,ρ stabilizes

the isotypical decomposition (4). Equivalently:

G1,ρ = G2,ρ ×G1,ρ/G2,ρ ,

which implies that the abelian group G2,ρ is a quotient of Γ′ = Γ1,ρ. But Γ has property

(FAb) hence (Γ′)ab is finite. Without loss of generality we can thus assume that the group

G2,ρ is constant (we denote by G2 this group) and all the morphisms Γ′ −→ G2,ρ = G2

cöıncide as p ranges through P and [ρ] ranges through Cn,Γ2 6=Γ′(Γ)(Fp).
Let Γ′′ be the kernel of the projection Γ′ −→ G2. The restriction ρ|Γ′′ : Γ′′ −→ GLn(Fp)

has for image the product G1,ρ/G2 of finite simple groups of Lie type of characteristic p in

GLn(Fp) for every [ρ] ∈ Cn,Γ2 6=Γ′(Γ)(Fp) as p ranges through P. Notice the following two

facts:

(i) For every [ρ] ∈ Cn,Γ2 6=Γ′(Γ)(Fp), p ∈ P, the representation ρΓ′′ is semi-simple: this

is not automatic as we work in the defining characteristic but follows from the fact

that ρ is irreducible and Γ′′ is normal in Γ′ which is normal in Γ.

(ii) Given a representation α of degree n of Γ′′ there exist at most [Γ : Γ′′] · n irreducible

representations ρ of Γ whose restrictions to Γ′′ is isomorphic to α (this follows from

Frobenius reciprocity HomΓ′′(α, ρ|Γ′′) = HomΓ(IndΓ
Γ′′α, ρ)).
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It follows from these two facts that if the cardinality of Cn,Γ2 6=Γ′(Γ)(Fp) is unbounded as

p ranges through P then the number of GLn(Fp)-conjugacy classes of surjections from Γ′′

(hence also from Γ′) to a finite simple subgroup of Lie type of GLn(Fp) acting semi-simply

on Fnp is unbounded as p ranges through P. By lemma B.1 it follows a fortiori that one gets

a contradiction to the condition (b) of (iv).

This finishes the proof of theorem 3.2. �

4. Solvability of the congruence kernel: proof of theorem 1.3

For simplicity we assume m = 1 and write k = k1 and S = S1,Γ. The general case is left

to the reader.

It is enough to show that if Γ satisfies the conditions of theorem 1.3 then Γ satisfies

property (ii) of theorem 1.2. Let n ∈ Z>0. Let J(n) ∈ Z>0 be any integer as provided by

theorem 3.1. Let Γ′ ⊂ Γ be a normal subgroup of index [Γ : Γ′] ≤ J(n). Let p be a prime

number and H be a finite simple group of Lie type of characteristic p. Let ρ : Γ′ � H be a

surjective morphism. It extends continuously to a surjective morphism ρ : Γ̂′ � H.

Consider the commutative diagram

(5) 1 // C(Γ′) //

��

Γ̂′ //

��

Γ′ //

��

1

1 // C(Γ) // Γ̂ // Γ // 1

where Γ′ (resp. Γ) denotes the closure of Γ′ (resp. Γ) in G(ASk ). As Γ′ is of finite index in

Γ the vertical map Γ̂′ −→ Γ̂ is injective. Hence the map C(Γ′) −→ C(Γ) is injective.

By assumption the group C(Γ) is prosolvable hence C(Γ′) is also prosolvable. Thus

ρ(C(Γ′)) is a normal solvable subgroup of the simple non-Abelian group H. Hence ρ(C(Γ′))

is trivial and ρ factorizes through ρ : Γ′ −→ H.

Under the hypotheses of theorem 1.3 the group Γ′ satisfies strong approximation (cf. [27]

and [18]): the group Γ′ is a compact open subgroup of G(ASk ). In particular it contains a

finite normal index subgroup of the form U =
∏
v∈V \S Uv, where Uv ⊂ G(Okv) is a compact

open subgroup of G(Okv), equal to G(Okv) for all v ∈ V \S′ where S′ is a finite subset of V

containing S. As U is normal in Γ′ and H is simple the image ρ(U) is trivial or equal to H.

As Γ contains only finitely many subgroups Γ′ of index at most n the following lemma

implies that Γ satisfies property (ii) of theorem 1.2:

Lemma 4.1. Let G be a connected simply connected absolutely simple linear algebraic group

over a global field k. Let S be a finite subset of V and U :=
∏
v∈V \S Ul be a compact open

subgroup of G(ASk ). There exists a constant c such that for any finite simple group H of Lie

type the number of H-conjugacy classes of surjections ρ : U � H is bounded above by c.

Proof. For v ∈ V \S the group Uv is normal in U hence its image ρ(Uv) is normal in H = ρ(Γ).

As H is simple ρ(Uv) is trivial or equal to H. For v ∈ V \S′ one has Uv = G(Okv) hence Uv

admits a unique non-abelian simple quotient Fv (usually Fv = Gad(Okv/mkv)). Hence we
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are reduced to count the number of H-conjugacy classes of surjections
∏
v∈V \S′ Fv −→ H.

Given H there exists at most one v such that Fv ' H. Hence the result. �

Appendix A. Rigidity and finite index subgroups

The following lemma seems to be well-known, we provide a proof for completeness.

Lemma A.1. Let Γ be a finitely generated group. The following conditions are equivalent:

(i) Γ is rigid.

(ii) there exists a subgroup Γ′ of Γ of finite index which is rigid.

(iii) every subgroup of Γ of finite index is rigid.

Proof. We use the results of [2] and follow its notations. In particular A(Γ) denotes the

complex proalgebraic completion of Γ; for all n ∈ Z>0 the group An(Γ) is the quotient of

A(Γ) by the normal subgroup Kn(Γ) intersection of kernels of all algebraic representations of

A(Γ) of degree at most n. By [2, theor.2.] the group Γ is rigid if and only if for all n ∈ Z>0

the proalgebraic group An(Γ) is finite dimensional.

Let Γ′ be a subgroup of Γ of finite index r. By [2, prop.1] the natural morphism A(Γ′) −→
A(Γ) is an injection and the natural map q : Γ/Γ′ −→ A(Γ)/A(Γ′) is an isomorphism. Hence

A(Γ′) is a proalgebraic subgroup of A(Γ) of index r. By [2, cor.1] the map A(Γ′)0 −→ A(Γ)0

is an isomorphism.

Let n ∈ Z>0. Any representation ρ : A(Γ) −→ GLn(C) defines by restriction a represen-

tation Res
A(Γ′)
A(Γ) ρ : A(Γ′) −→ GLn(C). As A(Γ′) ↪→ A(Γ) this implies that Kn(Γ) ⊃ Kn(Γ′)

hence

(6) An(Γ′) � An(Γ) .

On the other hand let ρ : A(Γ′) −→ GLn(C) be an n-dimensional representation of A(Γ′).

The kernel of the induced algebraic representation Ind
A(Γ)
A(Γ′)ρ : A(Γ) −→ GLnr(C) contains

the kernel of ρ. This shows that Kn(Γ′) contains Knr(Γ). Hence An(Γ′)0 = A(Γ′)0/Kn(Γ′)0

is a quotient of A(Γ′)0/Knr(Γ)0 = A(Γ)0/Knr(Γ)0 = Anr(Γ)0:

(7) Anr(Γ)0 � An(Γ′)0 .

If Γ′ is rigid then for any n ∈ Z>0 the proalgebraic group An(Γ′) is finite dimensional.

By (6) its quotient An(Γ) is finite dimensional. Hence Γ is rigid.

Conversely if Γ is rigid then for all n ∈ Z>0 the proalgebraic group Anr(Γ)0 is finite

dimensional. By (7) its quotient An(Γ′)0 is finite dimensional, hence also An(Γ′). This

shows that Γ′ is rigid.

�

Appendix B. Finite groups of Lie type

We follow the conventions of [12, p.1120]. A finite group of Lie type in characteristic p is

a finite group of fixed points G(Fp)F , where:



12 BRUNO KLINGLER

(1) G is a connected simple adjoint linear algebraic group over Fp; we denote by Φ its

root system.

(2) F : G −→ G is a Frobenius maps (also called a Steinberg map), i.e. there exists

some positive integer n such that Fn is a standard Frobenius map defining a form

G0 of G over Fq, q = pr.

Lemma B.1. Let n be a positive integer. The number of GLn(Fp)-conjugacy classes of

finite simple subgroups G of Lie type of characteristic p of GLn(Fp) acting semi-simply on

Fnp is uniformly bounded as p ranges through P.

Proof. It is enough to show that for each n ∈ Z>0 the number of GLn(Fp)-conjugacy classes

of finite simple subgroups of Lie type G = G(Fp)F of characteristic p of GLn(Fp) acting

irreducibly on Fnp is uniformly bounded as p ranges through P.

Let G = G(Fp)F be a finite simple group of Lie type and ρ : G −→ GLn(Fp) an irreducible

representation. As the extension Fp of Fp is separable the representation ρ ⊗Fp Fp : G −→
GLn(Fp) is semisimple ([4, theor.7.5]):

(8) ρ⊗Fp Fp =

iρ⊕
i=1

ρi ,

where 1 ≤ iρ ≤ n, 1 ≤ rρi ≤ n and each ρi : G −→ GLrρi (Fp) is a simple Fp-representation

of G of degree rρi ≤ n.

First notice that the number of simple groups of Lie type of characteristic p admitting

a faithful irreducible representation over Fp of degree at most n is bounded uniformly as p

ranges through p. Hence by (8) we are reduced to showing to showing that the number of

isomorphism classes of irreducible representations over Fp of degree at most n of a simple

group of Lie type G of characteristic p is bounded independently of p. Because of the

decomposition (8) it is enough to show that the number of isomorphism classes of irreducible

representations over Fp of degree at most n of a simple group of Lie type G of characteristic

p is bounded independently of p.

By a theorem of Steinberg [26, theor. 1.3] any irreducible Fp-representation of G is the

restriction to G of an algebraic irreducible representation of G. Hence we have to show

that the number of isomorphism classes of algebraic irreducible representations over Fp of

degree at most n of a connected simple adjoint linear algebraic group G over Fp is bounded

independently of p.

Such a representation is parametrized by a highest weight of G. The dimension of such a

highest weight representation is given by Weyl’s character formula, which is independent of

p. The result follows. �

Appendix C. On the structure of the congruence kernel C(Γ) when it is

central in Γ̂

We follow the notations of section 5 and the discussion in [21, p.6].
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Consider the short exact sequence of groups

(9) 1 −→ C(Γ) −→ Γ̂ −→ Γ −→ 1 .

Let I = R/Z. The Hochschild-Serre spectral sequence for continuous cohomology with

coefficients in I yields from (9) the following exact sequence:

(10) H1
ct(Γ)

ϕ−→ H1
ct(Γ̂) −→ H1

ct(C(Γ))Γ ψ−→ H2
ct(Γ) .

Notice that the short exact sequence (9) splits over Γ. Hence

(11) 1 −→ Cokerϕ −→ H1
ct(Γ̂)) −→ H1

ct(C(Γ))Γ −→M(Γ) := ker(H2
ct(Γ) −→ H2(Γ)) .

From now on we assume that C(Γ) is central in Γ̂. In this case the group

(12) H1
ct(C(Γ))Γ = Homct(C(Γ), I)Γ = Homct(C(Γ)/[C(Γ], Γ̂], I)

is the Pontrjagin dual PD(C(Γ)) := Homct(C(Γ), I) of the compact abelian group C(Γ).

Hence we obtain

(13)

1 −→ Coker(H1
ct(Γ) −→ H1

ct(Γ̂)) −→ PD(C(Γ)) −→M(Γ) := ker(H2
ct(Γ) −→ H2(Γ)) .

The short exact sequence (13) describes the structure of C(Γ) in case it is central in Γ̂. When

Γ is S-arithmetic then one can show that C(Γ) is central, and the cokernel on the left and

the (metaplectic) kernel on the right are both finite.
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