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1. Introduction

The main open question concerning lattices of Lie groups is certainly the study of complex

hyperbolic lattices and their finite dimensional representations. Let n > 1 be an integer.

Let V denote the (n+ 1)-dimensional C-vector space and let h denote the Hermitian form

h(z,w) = z0w0 + · · · + zn−1wn−1 − znwn on V . We denote by SU(n, 1) the real algebraic

group SU(V, h). Let Γ
i
→֒ SU(n, 1)(R) = SU(n, 1) be a lattice (discrete subgroup of finite

co-volume). What are the finite dimensional Γ-modules ? What can we say about the

algebraic structure of Γ ?

Recall that these questions are completely understood if we replace SU(n, 1) by a simple

real Lie group L of real rank r > 1 (respectively by Sp(n, 1) or the exceptional group F−20
4 ).

Let Γ be a lattice in L and ρ : Γ −→ G = G(k) be an unbounded morphism of Γ into the

group of k-points of a simple algebraic k-group G, k local field. Then k is archimedean and ρ

is standard, i.e. the restriction to Γ of a Lie morphism ρ : L −→ G (Margulis’s super-rigidity

theorem, respectively Corlette [3] and Gromov-Schoen [11]). This implies that such a lattice

is arithmetic, i.e. commensurable to L(Z) where L denotes a Q-algebraic group such that

L(R) = L up to compact factors.

The remaining possible cases are the two families of real hyperbolic groups SO(n, 1),

n ≥ 2 and complex hyperbolic groups SU(n, 1), n ≥ 2. Lattices in SO(n, 1) do not have
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many rigidity properties. Many of them are non-arithmetic (c.f. Makarov [17] and Vinberg

[28] for small n, Gromov and Piatetski-Shapiro [10] for any n ∈ N), thus admit unbounded

representations not coming from SO(n, 1). Concerning SU(n, 1), Mostow [20] exhibited a

striking counterexample to super-rigidity for n = 2 : namely two co-compact (arithmetic)

lattices Γ and Γ′ in SU(2, 1) and a surjective morphism ρ : Γ −→ Γ′ with infinite kernel.

A few examples of non-arithmetic lattices are known in SU(2, 1) and SU(3, 1) ([16], [20],

[6]). In particular in [16] Livne exhibited a non-arithmetic lattice in SU(2, 1) surjecting onto

a non-Abelian free group, thus admitting many non-standard representations. Nothing is

known for n > 3.

In this paper we investigate the local rigidity problem for standard representations of

complex hyperbolic lattices. Let Γ
i
→֒ SU(n, 1) be a co-compact lattice and ρ : SU(n, 1) →֒

G be a representation of the complex hyperbolic group SU(n, 1) in a simple real algebraic

group G. Does there exist any non-trivial deformation of ρ|Γ : Γ −→ G = G(R), i.e. a

continuous family of morphisms ρt : Γ −→ G, t ∈ I = [0, 1], with ρ0 = ρ not of the form

ρt = gt · ρ · g
−1
t for some continuous family gt ∈ G, t ∈ I ?

Notice that for higher rank lattices (or lattices in Sp(n, 1) or F−20
4 ) super-rigidity implies

local rigidity. On the other hand lattices in SO(n, 1) are usually not locally rigid : one can

deform many of them into SO(n+ 1, 1) or other groups [12].

1.1. First order deformations. Let M(Γ,G)(R) = (Hom(Γ,G)//G)(R) be the moduli

space of representations of Γ in G up to conjugacy. The space of first-order deformations of

ρ, i.e. the real Zariski tangent space at [ρ] to M(Γ,G)(R), naturally identifies with the first

cohomology group H1(Γ,Ad ρ), where Ad ρ : Γ
ρ
→֒ G

Ad
→ Aut(g) is the natural representation

deduced from ρ and the adjoint action of G on its Lie algebra g. Thus the non-vanishing of

H1(Γ,Ad ρ) is a necessary condition for M(Γ,G)(R) not being trivial at the point [ρ].

1.1.1. Raghunathan’s theorem. The following result of Raghunathan restricts the possible

first-order non-rigid standard representations :

Theorem 1.1.1 (Raghunathan). Let λ : SU(n, 1) −→ GL(W ) be a real finite dimensional

irreducible representation of SU(n, 1). Let Γ be a co-compact lattice in SU(n, 1). Then

H1(Γ,W ) = 0 except possibly if W = SjVR for some j ≥ 0, where Sj denotes the j−th

symmetric power and VR denotes V seen as a real representation of SU(n, 1) (by convention

S0VR is the trivial representation 1R).

Remark 1.1.2. Notice that the Hermitian form h on V identifies the complex SU(n, 1)-

modules V ∗ (contragredient of V ) and V (complex conjugate of V ). The real SU(n, 1)-

modules VR and V ∗
R

are thus isomorphic.

As a corollary to this theorem the point [ρ] ∈ M(Γ,G)(R) is isolated except possibly

if the real SU(n, 1)-module g under Ad ρ contains an SU(n, 1)-direct factor isomorphic to

SjVR for some j ≥ 0.
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Example 1.1.3. Let ρ = Id : SU(n, 1) −→ SU(n, 1) be the identity morphism. As the

irreducible SU(n, 1)-module su(n, 1) does not belong to Raghunathan’s list any cocompact

lattice Γ of SU(n, 1) is first-order (thus locally) rigid in SU(n, 1). This was already proven

by Weil [29].

1.1.2. Notice that Raghunathan’s result is essentially optimal : for any j ≥ 0 there exist

co-compact lattices Γ ∈ SU(n, 1) such that H1(Γ, SjVR) 6= 0, c.f. [13], [1].

1.1.3. Trivial first-order deformations. The simplest possible first-order deformations of ρ :

Γ −→ G are those belonging to the subspace H1(Γ, g1R
) ≃ H1(Γ,R)d of H1(Γ, g), where

g1R
≃ (1R)d denotes the trivial isotypic component of g as an SU(n, 1)-module. As g1R

is the

Lie algebra of the centralizer ZG(SU(n, 1)) of ρ(SU(n, 1)) in G such first-order deformations

may integrate to deformations of ρ : Γ −→ G of the form ρ · χt (up to G-conjugacy), where

χt : Γ −→ ZG(SU(n, 1)) is a deformation of the trivial representation χ0 = 1R of Γ in the

centralizer ZG(SU(n, 1)) of SU(n, 1) in G.

Example 1.1.4. Let ρ : SU(n, 1) = SU(V, h) →֒ SO(2n, 2) = SO(VR,Reh) be the natural

embedding. Notice that ρ factorizes as SU(n, 1) →֒ U(n, 1) →֒ SO(2n, 2). One easily

checks that the Lie algebra so(2n, 2) is isomorphic as an SU(n, 1)-module to the direct sum

of irreducible modules R ⊕ su(n, 1) ⊕ Λ2VR, where R is the Lie algebra of the centralizer

ZG(SU(n, 1)) ≃ U(1) of SU(n, 1) in U(n, 1). Thus H1(Γ,Ad ρ) = H1(Γ,R) and any

deformation of ρ in SO(2n, 2) is (up to conjugacy) of the form ρ · χt, where χt : Γ −→

ZG(SU(n, 1))(R) = S1 is a unitary character of Γ.

In this paper such deformations will be considered as trivial (even if the integrability

problem for first order deformations in H1(Γ, g1R
) is non-trivial when ZG(SU(n, 1)) is non-

Abelian, c.f. section 1.2).

Remark 1.1.5. A well-known conjecture asserts that any complex hyperbolic lattice admits

a finite index subgroup Γ with H1(Γ,R) 6= 0.

1.1.4. Non-trivial first-order deformation. A first-order deformation x ∈ H1(Γ, g) will be

considered as non-trivial if x 6∈ H1(Γ, g1R
).

Example 1.1.6. Let ρ : SU(n, 1) = SU(V, h) −→ SU(n + 1, 1) be the natural embedding.

Then for a lattice Γ of SU(n, 1),

H1(Γ, su(n+ 1, 1)) = H1(Γ,R) ⊕H1(Γ, VR) ,

where once more H1(Γ,R) denotes the tangent space to the deformations of Γ in the cen-

tralizer ZG(SU(n, 1)) ≃ U(1) of SU(n, 1) in SU(n+ 1, 1). As H1(Γ, VR) may be non-zero,

there might be non-trivial deformations of Γ in SU(n+ 1, 1).

Example 1.1.7. Let V ⊗C H be the quaternionic right vector space of dimension n+ 1 (thus

of real dimension 4n + 4) endowed with the quaternionic Hermitian form hH of signature
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(n, 1) deduced from h. The complex Hermitian part H of hH is a complex Hermitian form

on V ⊗C H = V ⊕ jV of signature (2n, 2). Let Sp(n, 1) = SU(V ⊗C H, hH) be the special

unitary algebraic R-group of linear transformation of (VH, hH), U(2n, 2) the unitary R-group

of complex linear transformations of (V ⊕jV,H) and SO(4n, 4) the special orthogonal group

of linear transformation of ((VH)R,ReH). One obtains a natural sequence of embeddings

SU(n, 1)
jU(n,1)

→֒ U(n, 1)
jSp(n,1)

→֒ Sp(n, 1)
jU(2n,2)

→֒ U(2n, 2)
jSO(4n,4)

→֒ SO(4n, 4) .

One easily checks that modulo H1(Γ,R) the 1-cohomology of Γ with coefficient in sp(n, 1),

resp. su(2n, 2), resp. so(4n, 4) identifies with H1(Γ, S2VR), resp. H1(Γ, S2VR), resp.

H1(Γ, 2 · S2VR) which may be non-trivial.

1.2. Integrability and local rigidity : some earlier results. Basic obstruction theory

shows that if a first-order deformation x ∈ H1(Γ, g) is tangent to a one-parameter family

ρt : Γ −→ G (one says that x is integrable) then necessarily [x, x] = 0 ∈ H2(Γ, g). By [7]

this necessary condition for integrability is in fact sufficient (c.f. section 2.5).

I don’t know of many examples in deformation theory where one is able to prove that a first

order deformation is non-integrable. However in [7] Goldman and Millson showed that none

of the non-trivial first-order deformation for the example 1.1.6 can be integrated. Thus any

representation λ : Γ −→ SU(n+1, 1) sufficiently close to the standard ρ = i : Γ →֒ SU(n, 1)

is conjugate to a representation of the form ρ ·χ, where χ : Γ −→ ZSU(n+1,1)(SU(n, 1)) = S1

a unitary character of Γ.

In [14] we proved a similar result for the example 1.1.7. Thus let ρG : SU(n, 1) −→ G =

Sp(n, 1),U(2n, 2) or SO(4n, 4) be one of the embedding of example 1.1.7 and Γ
i
→֒ SU(n, 1)

a co-compact lattice. Then any morphism λ : Γ −→ G = G(R) close enough to ρG is

conjugate to a representation of the form ρG · χ, where χ : Γ −→ ZG(SU(n, 1)) (thus

ZSp(n,1)(SU(n, 1)) = S1 and ZU(2n,2)(SU(n, 1)) = ZSO(4n,4)(SU(n, 1)) = S1 × S1).

1.3. Results. In this paper we prove non-integrability results for first order deformations

of co-compact complex hyperbolic lattices vastly generalizing [7] and [14]. Our main re-

sult is theorem 1.3.3. As its statement is a bit technical we give three explicit corollaries

(theorem 1.3.4, 1.3.7, 1.3.8).

1.3.1. Notations. We denote by Coh1
R the set of isomorphism classes of cohomological real

SU(n, 1)-modules in degree 1 :

Coh1
R = {SkVR for k ≥ 0} .

Let U(n) be the maximal compact subgroup of SU(n, 1). As a U(n)-module the standard

SU(n, 1)-module VR splits as VR = (Cn ⊕ det−1)R. For π = SkVR ∈ Coh1
R one denotes by

Wπ the (SkCn ⊗ det−k)R-isotypic U(n)-component of the U(n)-module π.
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Definition 1.3.1. Let ρ : SU(n, 1) →֒ G be a non-trivial representation of SU(n, 1) into

a real simple algebraic group G with Lie algebra g. For π ∈ Coh1
R let gπ be the π-isotypic

component of the SU(n, 1)-module g under Ad ρ. We denote by Coh1
R(ρ) the subset {π ∈

Coh1
R, gπ 6= 0}. For π ∈ Coh1

R(ρ) let Vπ ⊂ gπ be the Wπ-isotypic U(n)-component of gπ.

Fix KG a maximal compact subgroup of G containing U(n), with Cartan involution CG,

and Cartan decomposition g = kG ⊕ pG. As this decomposition of g is U(n)-stable each

U(n)-module Vπ decomposes into a “compact” and a “non-compact” part :

Vπ = Vπ,c ⊕ Vπ,n ,

where Vπ,c = Vπ ∩ kG and Vπ,n = Vπ ∩ pG. We say that Vπ is of compact type if Vπ = Vπ,c.

This decomposition of Vπ induces the decomposition gπ = gπ,c ⊕ gπ,n, where gπ,c (resp.

gπ,n) is the SU(n, 1)-module generated by Vπ,c (resp. Vπ,n).

1.3.2. Our main result is as follows. Let Z(ρ) be the (connected) centralizer of U(n) in G

and let T(ρ) be a maximal torus of Z(ρ)∩KG. As explained in section 3.4 these groups are

always non-trivial. The t(ρ) × u(n)-module Vπ , π ∈ Coh1
R(ρ), decomposes as :

Vπ,c =
⊕

χ∈Φπ,c

χdχ ⊗Wπ and Vπ,n =
⊕

χ∈Φπ,n

χdχ ⊗Wπ ,

with Φπ,c ∪ Φπ,n ⊂ (it(ρ))∗.

Definition 1.3.2. We denote by Λ(ρ) ⊂ it(ρ) the open cone

Λ(ρ) =
⋂

π∈Coh1
R
(ρ)\{1}

(
⋂

χ∈Φπ,c

(it(ρ))χ>0 ∩
⋂

χ∈Φπ,n

(it(ρ))χ<0) .

Theorem 1.3.3. Let i : Γ →֒ SU(n, 1) be a co-compact complex hyperbolic lattice. Let

ρ : SU(n, 1) →֒ G be a morphism of SU(n, 1) into a real simple algebraic group G. If

the cone Λ(ρ) is not empty then any morphism λ : Γ −→ G = G(R) close enough to

ρ is conjugate to a representation of the form ρ · χ, where χ : Γ −→ ZG(SU(n, 1)) is a

deformation of the trivial representation in the centralizer ZG(SU(n, 1)) of SU(n, 1) in G.

In other words under the assumption Λ(ρ) 6= ∅ any deformation of ρ is trivial.

1.3.3. The first corollary of theorem 1.3.3 is :

Theorem 1.3.4. Let i : Γ →֒ SU(n, 1) be a co-compact complex hyperbolic lattice. Let

ρ : SU(n, 1) →֒ G be a morphism of SU(n, 1) into a real simple algebraic group G. If the

Vπ’s, π ∈ Coh1
R(ρ)\{1}, are all of compact type then any morphism λ : Γ −→ G = G(R) close

enough to ρ is conjugate to a representation of the form ρ · χ, where χ : Γ −→ ZG(SU(n, 1)

is a deformation of the trivial representation in the centralizer ZG(SU(n, 1)) of SU(n, 1) in

G.

Example 1.3.5. This theorem immediately implies the results of [7] and [14] : in each of

these example all the Vπ ’s are of compact type and the centralizer ZG(SU(n, 1)) is a torus.
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1.3.4. An other corollary of theorem 1.3.3 is as follows. Let Z0(ρ) be the (connected) central-

izer of SU(n, 1) in G and let T0(ρ) be a maximal torus of Z0(ρ)∩KG. The to(ρ)× su(n, 1)-

modules gπ,c and gπ,n decompose as

gπ,c =
⊕

χ0∈Φπ,c

χ
dχ0

0 ⊗ π and gπ,n =
⊕

χ0∈Φπ,n

χ
dχ0

0 ⊗ π ,

with Φπ,c ∪ Φπ,n ⊂ (it0(ρ))
∗.

Definition 1.3.6. We denote by Λ0(ρ) ⊂ it0(ρ) the open cone

Λ0(ρ) =
⋂

π∈Coh1
R
(ρ)\{1}

(
⋂

χ0∈Φπ,c

(it0(ρ))
χ0>0 ∩

⋂

χ0∈Φπ,n

(it0(ρ)))
χ0<0) .

Theorem 1.3.7. Let i : Γ →֒ SU(n, 1) be a co-compact complex hyperbolic lattice. Let

ρ : SU(n, 1) →֒ G be a morphism of SU(n, 1) into a real simple algebraic group G. If

the cone Λ0(ρ) is not empty then any morphism λ : Γ −→ G = G(R) close enough to ρ is

conjugate to a representation of the form ρ·χ, where χ : Γ −→ ZG(SU(n, 1) is a deformation

of the trivial representation in the centralizer ZG(SU(n, 1)) of SU(n, 1) in G.

1.3.5. An explicit example of theorem 1.3.7 is the following generalization of [7] and [14] :

Theorem 1.3.8. Let i : Γ →֒ SU(n, 1) be a co-compact complex hyperbolic lattice. Let

ρ : SU(n, 1) →֒ SU(n + p, 1 + q) (resp. ρ : SU(n, 1) →֒ Sp(n + p, 1 + q)) be the standard

embedding. Then any morphism λ : Γ −→ G = G(R) close enough to ρ is conjugate to

a representation of the form ρ · χ, where χ : Γ −→ U(p, q) is a deformation of the trivial

representation in the centralizer U(p, q) of SU(n, 1) in SU(n+p, 1+q) (resp. Sp(n+p, 1+q)).

1.3.6. Remarks. Notice that the condition in the theorem 1.3.3 is really a property of the

morphism ρ : SU(n, 1) −→ G, not of the group G alone. However there is a class of group

G for which the condition Λ(ρ) 6= ∅ is never satisfied : if G is not absolutely simple, in other

words if G(R) is a complex Lie group (up to isogeny). The conceptual explanation is quite

clear : as we will see the proof of theorem 1.3.3 is purely Hodge theoretic. When the group

G(R) is complex real variations of Hodge structures are replaced by complex variations of

Hodge structures and we loose a lot of information (like symmetry of the Hodge numbers).

1.4. Strategy of the proof : Deligne’s result and Eichler-Shimura isomorphism.

Both the results of [7] and [14] were obtained from two ingredients :

• Hodge theory for flat bundles as developed in [19]. Vectors of H1(Γ,Ad ρ) are

understood as harmonic one-forms with value in the flat bundle Eg on the ball

quotient X = Γ\Hn
C
.

• basic obstruction theory : if a first-order deformation x ∈ H1(Γ,Ad ρ) is integrable

then [x, x] = 0 ∈ H2(Γ,Ad ρ).

In both cases a quite tricky and painful computation showed that any x ∈ H1(Γ,Ad ρ)

satisfying [x, x] = 0 ∈ H2(Γ,Ad ρ) necessarily vanishes.
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Our proof of the general theorem 1.3.3 on the other hand relies on more sophisticated

Hodge theory. We use not only the existence of harmonic representatives for vectors of

H1(Γ,W ) = H1(X, EW ) for any real representation ρ : Γ −→ GL(W ) but the existence of a

canonical polarized real Hodge structure on the cohomologyH•(X, EW ) of the polarized real

variation of Hodge structure EW on the compact Kähler manifold X . This result of Deligne

was explained (and generalized to the quasi-projective case) a long time ago by Zucker [30],

[31] but (as far as I know) never systematically used in deformation theory.

The first step in our proof is a corollary of Deligne’s result : the De Rham cohomology

H•(X, EW ) can be completely computed in holomorphic terms (Dolbeault cohomology).

This computation is particularly nice in the complex hyperbolic locally homogeneous case

and gives rise to the following “Eichler-Shimura isomorphism” (c.f. section 6) :

Theorem 1.4.1. Let i : Γ →֒ SU(n, 1) = SU(V, h) be a co-compact complex hyperbolic

lattice. Let k > 0 be a positive integer. Then

H1(Γ, SkV ) = H1(X,SkTX ⊗ L−k)

H1(Γ, SkV ∗) = H0(X,Sk+1Ω1
X ⊗ Lk)) ,

where TX denotes the holomorphic tangent bundle of X, Ω1
X its sheaf of holomorphic one-

forms and L−1 the natural n-th root of the canonical line bundle KX.

The proof of this theorem is particularly pleasant. On the one hand all the algebraic

computations reduces to manipulating truncated tautological Koszul complexes. On the

other hand it relies on a purely Hodge theoretic vanishing theorem (c.f. proposition 6.5.1)

for which I don’t know any other argument.

The second step is an analysis of Hodge types for the equation [x, x] = 0 ∈ H2(X, Eg).

Theorem 1.4.1 is crucial here : it says that the complex Hodge structures H1(Γ, SkV ) and

H1(Γ, SkV ∗) have only one non-vanishing Hodge type. Together with the condition Λ(ρ) 6= ∅

and the existence of a polarization on H•(X, Eg) suitably compatible with the Lie bracket,

it forces x to belong to H1(Γ, zg(su(n, 1)).

1.5. Organization of the paper. Theorem 1.3.3 confirms two general ideas :

• complex hyperbolic lattices have an intermediate behavior between the essentially

non-rigid real hyperbolic lattices and all the other super-rigid lattices.

• all the rigidity features of a co-compact complex hyperbolic lattice Γ
i
→֒ SU(n, 1)

arise from its Kähler property : Γ is the fundamental group of a compact Kähler

manifolds, namely the locally homogeneous Hermitian symmetric space M = Γ\Hn
C

quotient of the complex hyperbolic n-space. Thus the natural context for study-

ing representations of Γ is the study of finite dimensional representations of Kähler

groups, i.e. non-Abelian Hodge theory as developed by Hitchin, Corlette and Simp-

son.
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Even if the Hodge theoretical results we use in this paper strictly predate Simpson’s non-

Abelian Hodge theory, I decided to develop the most general approach for two reasons. On

the one hand it clarifies the results we use as it generalizes them from the case of a complex

variation of Hodge structures (CVHS) and its monodromy to the case of any semi-stable

G-Higgs bundle on a Kähler manifold X and the corresponding reductive representation

ρ : π1(X) −→ G. On the other hand we will need the general case in a future paper

studying non-standard representations of Γ and their deformations.

Section 2 gives a compact review of Simpson’s correspondence. Section 3 develops the

properties of G-CVHS for the group-minded reader. Section 4 clarifies the link between

G-CVHS and usual variations of Hodge structures, in particular weight issues crucial for

our proof. Section 5 studies the cohomology of G-CVHS. First one recovers Deligne’s results

as a particular case of the Higgs formalism. Second one studies in details the link between

Lie bracket and polarization also crucial for our proof. Section 6 contains the proof of

theorem 1.4.1 and section 7 the proof of the main theorem 1.3.3 and its corollaries.

1.6. Notations. Let X be a smooth complex analytic space. Any flat complex vector

bundle E on X is endowed with a structure of holomorphic vector bundle on X , still denoted

E . We will denote by O(E) the associated sheaf of holomorphic sections. It will always be

clear from the context if we refer to E as a flat or a holomorphic vector bundle. The notation

H•(X, E) will always refer to the de Rham cohomology of the flat bundle E (equivalently :

to the Betti cohomology of the associated local system) while H•(X,O(E)) refers to the

coherent cohomology.

2. Non-Abelian Hodge theory

2.1. The moduli space M(Γ,G). In this section, Γ is a finitely presented group, K is the

field R or C, G a reductive K-algebraic group. We refer to [21], [22] and [15, chap. 6] as

nice references for geometric invariant theory.

Definition 2.1.1. We denote by R(Γ,G) the representation scheme of Γ in G, namely the

K-affine scheme representing the functor

K − algebras −→ Set

R −→ HomGroup(Γ,G(R)) .

The group G acts (factorizing through the adjoint group Gad ) on R(Γ,G) by G-conjugation

on the target. The moduli space M(Γ,G) is the quotient R(Γ,G)//G in the GIT sense.

Notice that we may a priori choose many different G-linearizations on the line bundle

R(Γ,G) ×SpecK A1 if G is not semi-simple, leading to different notions of unstable points

and different quotients. In order to proceed canonically we will always consider R(Γ,G)

as a Gad -scheme. We choose R(Γ,G) ×SpecK A1 with the trivial Gad -action on A1 as our

Gad -linearized line bundle on the affine Gad -variety R(Γ,G).
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Definition 2.1.2. We denote by M(Γ,G) the affine K-scheme universal categorical quotient

R(Γ,G)//Gad , and by [·] : R(Γ,G) −→ M(Γ,G) the canonical quotient map.

Notice that our choice of Gad -linearization ensures that all the points of R(Γ,G) are

semi-stable : R(Γ,G) = R(Γ,G)ss, and the quotient map [·] : R(Γ,G) −→ M(Γ,G) is a

good quotient. Recall the

Definition 2.1.3. A point ρ of R(Γ,G)ss(K) = R(Γ,G)(K) is said to be stable if the orbit

map φρ : Gad −→ R(Γ,G) defined by φρ(g) = Ad g(ρ) is proper.

By [15, lemma 6.1.9] and [12, theor 1.1], one obtains the following characterization of

stable points in R(Γ,G) :

Lemma 2.1.4. A point ρ of R(Γ,G) is stable if and only if one of the following equivalent

assertion is satisfied :

(1) The orbit Gad · ρ = φρ(G) is closed in R(Γ,G) and the stabilizer Z(ρ) of ρ in Gad

is finite.

(2) The image of ρ is not contained in a proper K-parabolic subgroup of G.

2.2. The moduli space MDol(X,G). In this section G is a reductive C-algebraic group

and G = G(C) its Lie groups of complex points. We fix once for all a maximal compact

subgroup K of G. Let X be a smooth connected polarized complex projective variety

with fundamental group Γ = π1(X) (the role of the base point will be unimportant in our

discussion). We refer to [25] and [27] for the theory of G-principal Higgs bundles and their

moduli spaces and recall only the main definitions.

Definition 2.2.1. A G-principal Higgs bundle on X is a pair (P, θ), where

• P is a principal holomorphic G-bundle on X

• θ ∈ Ad P ⊗ Ω1
X satisfies [θ, θ] = 0 (where Ad P := P ×G g).

A G-principal Higgs bundle (P, θ) on X is said to be of semi-harmonic type if its Chern

classes vanish and for some irreducible G-module V (and then for any) the Higgs vector-

bundle P ⊗G V is Higgs semi-stable.

Definition 2.2.2. We denote by MDol(X,G) the C-scheme moduli space of G-principal

Higgs bundles of semi-harmonic type on X constructed in [27, section 9].

2.3. Simpson’s correspondence. Let ρ : Γ −→ G be a reductive representation and

P = (P,D) the associated flat complex G-bundle on X . Here P denotes the principal G-

bundle X̃ ×ρ G with flat connection D ∈ A1(AdP ). As X is polarized and ρ is reductive

there exists an essentially unique ρ-equivariant harmonic map

f : X̃ −→ G/K
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(where G/K denotes the symmetric space of G), defining an harmonic K-reduction PK of

P . Decompose the flat connexion D as

D = ∇ + α ,

where ∇ is the canonical connexion on the K-principal bundle PK and α ∈ A1(X,AdP ).

Decompose furthermore using types :

∇ = ∂K + ∂ ,

α = θ + θ∗ ,

where ∂K is of type (1, 0), ∂ is of type (0, 1), θ ∈ A1,0(AdP ) and θ∗ = τ(θ) ∈ A0,1(AdP ) is

the conjugate of θ with respect to the K-reduction. Define D′ = ∂K + θ∗, D′′ = ∂ + θ, thus

D = D′ +D′′. As D is flat and the K-reduction PK is harmonic, (D′′)2 = 0, that is :

∂
2

= ∂(θ) = [θ, θ] = 0 .

Finally (P = (P, ∂), θ) is a G-Higgs bundle (of semi-harmonic type). Notice that knowing

(P, θ) is equivalent to knowing (P,D′′).

Let G − dR be the differential graded-category of flat G-bundles on X : an object is a

flat bundle P = (P,D) on X and

HomG−dR(P ,P ′) = (A•(Hom(AdP,AdP ′), DHom(P,P ′)) .

Let G −Dol be the differential graded-category of semi-harmonic G-Higgs bundles on X :

an object is a semi-harmonic G-Higgs bundle (P, θP) on X and

HomG−Dol(P, θP), (P′, θP′)) = (A•(Hom(AdP,AdP ′), D′′
Hom(P,P ′)) .

Theorem 2.3.1 (Simpson). The functor F : G − dR −→ G −Dol associating to the flat

bundle P the Higgs bundle (P, θ) is a quasi-equivalence of differential graded categories.

It implies the geometric (weaker) version [27, theor. 9.11 and lemma 9.14] :

Theorem 2.3.2 (Simpson). The functor F induces a real-analytic diffeomorphism

φG : M(Γ,G)(C) −→ MDol(X,G)(C) .

2.4. Tangent spaces. A direct corollary of theorem 2.3.1 is the following isomorphism of

tangent spaces :

Corollary 2.4.1. Suppose (P,D) is a reductive flat G-bundle with monodromy ρ and (P, θ)

the corresponding G-Higgs semi-harmonic bundle. There are canonical quasi-isomorphisms

of complexes of sheaves :

(A•(AdP ), D) ≃ (A•(AdP ), D′′) ≃ (Ω•
X(Ad P), θ) .
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In particular the real-analytic diffeomorphism φG : M(Γ,G)(C) −→ MDol(X,G)(C) induces

a sequence of natural isomorphisms of tangent spaces :

T[ρ]M(Γ,G)(C) = H1(Γ,Ad ρ) = H1((A•(AdP ), D))

≃ H1((Ω•
X(Ad P), θ)) = T[(P,θ)]MDol(X,G)(C) .

2.5. Formality. The previous analysis (and its generalization to real representations) im-

plies that deforming locally a reductive representation of the fundamental group of a smooth

complex projective variety is a formal problem : it reduces to studying second-order defor-

mations.

Theorem 2.5.1 ([8], [25]). Let X be a connected smooth complex projective variety with

fundamental group Γ, G a real reductive algebraic group and ρ : Γ −→ G = G(R) a reductive

representation. Let Cρ ⊂ H1(Γ,Ad ρ) be the affine cone defined by

Cρ = {u ∈ H1(Γ,Ad ρ) /[u, u] = 0 ∈ H2(Γ,Ad ρ)} .

Then the formal completion of M(Γ,G)(R) at [ρ] is isomorphic to the formal completion of

the good quotient Cρ/Eρ, where Eρ denotes the centralizer of ρ(Γ) in G.

3. G-variations of Hodge structures

The moduli space MDol(X,G) carries a natural C∗-action : an element t ∈ C∗ maps

[(P, θ)] to [(P, t · θ)] [27, p.62]. The fixed points of this action are of particular importance :

they are systems of G-Hodge bundles [25, p.44] and correspond by Simpson’s correspondence

to (isomorphism classes of) G-complex variations of Hodge structure (G-CVHS). We refer

to the appendix A for notations in Hodge theory, to [4], [5], [25] for more details on G-VHS,

and to [9] for a detailed study of period domains.

3.1. Hodge datum.

Definition 3.1.1. A (pointed) Hodge datum is a pair (L, u), where L is a real reductive

algebraic group and u : U(1) −→ Aut(L)0 ⊂ Lad is a morphism of real algebraic groups

such that C = u(−1) is a Cartan involution of L (that is : C2 = 1 and τ := Cσ = σC is the

conjugation of LC with respect to a compact real form U, where σ denotes the conjugation

of LC with respect to L).

In particular the Cartan involution C is inner. One easily shows (c.f. [25, section 4.4])

that an algebraically connected real reductive group L admits a Hodge datum (L, u) (one

says that L is of Hodge type) if and only if L contains an anisotropic maximal torus T.

In other words the reductive real Lie group L(R) has the same real rank than any of its

maximal compact subgroups.
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3.2. Period domains.

Definition 3.2.1. Let (L, u) be a Hodge datum. We denote by :

• V = ZL(u) the centralizer of u in L = L(R). As V is invariant by C, V is contained

in U = U(R), in particular V is compact.

• K the centralizer of C in L. Notice that K cöıncide with the intersection U ∩ L.

Thus the group K is a maximal compact subgroup of L.

Finally the Hodge datum (L, u) defines canonically the chain of inclusions of compact

groups V ⊂ K ⊂ U .

Let (L, u) be a Hodge datum. Let λ : L −→ GL(E) be a real (resp. complex) represen-

tation λ : L −→ GL(E) of L. If L = Lad (or more generally if λ factorizes through Lad )

the composite λ ◦ u : U(1) −→ Lad −→ GL(E) defines a weight 0 real (resp. complex)

Hodge structure on E polarized by λ ◦ u(−1) (c.f. appendix 6.4). In particular the adjoint

representation of L defines on the Lie algebra l a weight 0 polarized real Hodge structure :

lC = ⊕i∈ZliC ,

where u(z) acts on li
C

via multiplication by z−i. We will denote by F •lC the corresponding

decreasing Hodge filtration. The polarization is given by the Killing form βL.

Definition 3.2.2. One denotes by q ⊂ lC the Lie sub-algebra F 0lC and Q ⊂ LC the corre-

sponding subgroup.

One easily check that q is a parabolic sub-algebra of lC, with Levi sub-algebra vC the

complexified Lie algebra of v = Lie(V ).

Definition 3.2.3. Let (L, u) be a Hodge datum. The period domain D associated to (L, u)

is the L-conjugacy class of u.

Thus D naturally identifies with L/V . Let Ď = LC/Q be the flag manifold of LC = L(C)

defined by Q, the natural morphism D = L/V →֒ Ď = LC/Q is open and thus defines a

natural L-invariant complex structure on D.

3.3. Elliptic orbits. Let (L, u) be a Hodge datum an ρ : L →֒ G an embedding of real

connected algebraic groups. The previous geometric picture generalizes as follows.

Let u(U(1)) ⊂ V be the inclusion of compact subgroups of L canonically defined by the

Hodge datum (L, u) (c.f. section 3.2) It generates the diagram :

(3.1) u(U(1))
� _

��

V � _

��

Z(L(ρ)) � � // L(ρ) ,

where L(ρ) denotes the centralizer of ρ ◦ u(U(1)) in G and Z(L(ρ)) its connected center.
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Let us choose KG a maximal compact subgroup of G containing K, CG the corresponding

Cartan involution and

g = kG ⊕ pG

the corresponding Cartan decomposition. We denote by σGC
(resp. τGC

) the complex conju-

gation of the Lie algebra gC with respect to g (resp. to the compact form ugC
of gC defined

by CG).

Remark 3.3.1. In general CG is not interior.

As the restriction to L of CG is C the diagram 3.1 is CG-stable. Let T be a maximal torus

of KG containing ρ ◦ u(U(1)) and H the centralizer of T in G. This is a Cartan subgroup of

G, with Cartan decomposition H = TA where a is the centralizer of T in pG.

Definition 3.3.2. We write Φc ⊂ it the set of roots of T in (kG)C, Φn ⊂ it the set of

non-zero weights of T in (pG)C and Φ = Φc ∪ Φn.

One can regard an element of Φ as a character of the group generated by T and CG, thus

remembering whether an element of Φ comes from Φc or Φn : CG acts by +1 on Φc and by

−1 on Φn.

Definition 3.3.3. One denotes by Eρ ∈ it the vector i(ρ ◦ u)∗(
∂
∂t ).

Definition 3.3.4. One defines the CG-stable parabolic sub-algebra q(ρ) of gC associated to

ρ as

q(ρ) = h ⊕
⊕

γ∈Φ
γ(Eρ)≥0

gγ .

Its Levi sub-algebra is :

l(ρ)C = h ⊕
⊕

γ∈Φ
γ(Eρ)=0

gγ .

It follows immediately that :

• as a vector space q(ρ) is nothing else than the 0-th Hodge filtration F 0gC defined in

section 4.2.

• σG(q(ρ)) ∩ q(ρ) = l(ρ)C.

• the complex Levi sub-algebra l(ρ)C is defined over R, the corresponding Levi sub-

group L(ρ) ⊂ G being the centralizer of Eρ in G.

In other words, the Hodge datum (L, u) and the representation ρ : L −→ G defines an

holomorphic embedding of elliptic (co)adjoint orbits :

D = L/V →֒ G/L(ρ) .

In general the adjoint elliptic orbit G/L(ρ) is not a period domain as L(ρ) is not necessarily

compact.
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Notice that the compact part of the torus Z(L(ρ) center of L(ρ) is non-trivial as it contains

u(U(1)).

3.4. More centralizers.

Definition 3.4.1. We denote by Z(ρ) the centralizer of V in G.

Thus one has the sequence of CG-stable inclusions :

Z(L(ρ)) ⊂ Z(ρ) ⊂ L(ρ) .

Definition 3.4.2. We denote by T(ρ) the CG-stable compact maximal torus T ∩ Z(ρ) of

Z(ρ).

Once more T(ρ) contains u(U(1)), thus is non-trivial.

3.5. G-CVHS.

3.5.1. Horizontality. The holomorphic tangent bundle TD naturally identifies with the L-

equivariant bundle (LC ×Q lC/q)|D.

Definition 3.5.1. The horizontal tangent bundle ThD is the holomorphic sub-bundle (LC×Q

F−1lC/q)|D of TD.

Definition 3.5.2. Let C be the category whose objects are pairs (Y,RY ), where Y is a

complex smooth analytic space, RY ⊂ TY a holomorphic distribution, and a morphism

f : (Y,RY ) −→ (X,RX) in C is a holomorphic horizontal map f : X −→ Y : one requires

that df(RY ) ⊂ RX . We will look at the category of smooth analytic spaces as a subcategory

of C, the distribution being the full tangent space.

3.5.2. With all these definitions we can define the main actors in Simpson’s theory :

Definition 3.5.3. Let X be a complex analytic manifold with fundamental group Γ and

universal cover X̃. Let G be a complex reductive algebraic group. A G-complex variation

of Hodge structure (G-CVHS) is a Hodge datum (L, u) with period domain D, an injection

i : L →֒ ResC/RG, a representation ρ : Γ −→ L = L(R) ⊂ G (called the monodromy of

the variation) and a holomorphic horizontal ρ-equivariant map f : X̃ −→ D (called period

map).

4. G-CVHS and µ-CVHS

4.1. G-CVHS and G-bundles.

Definition 4.1.1. Let (i : L →֒ ResC/RG, u, ρ, f : X̃ −→ D) be a G-CVHS on X. Let

τ : Q −→ VC

i
→֒ G be the reduction of i to the Levi VC of Q. One associates to it the

following principal G-bundles on X :
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• the flat G-bundle P = X̃ ×Γ,ρ G, which is naturally a holomorphic bundle. Notice

that this holomorphic structure is compatible with the identification P := f∗((LC×Q,i

G)|D) (descent to X of the) pull-back via f of the holomorphic G-bundle LC ×Q,i G

on Ď.

• the holomorphic G-bundle P = f∗((LC ×Q,τ G)|D (descent to X of the) pull-back via

f of the holomorphic G-bundle LC ×Q,τ G on Ď.

4.2. µ-CVHS attached to a G-CVHS and a G-module. As noted above if (L, u) is a

Hodge datum and λ : L −→ GL(E) is a complex representation factorizing through Lad

then the composite λ ◦ u : U(1) −→ Lad −→ GL(E) defines a weight 0 complex Hodge

structure on E polarized by λ ◦ u(−1). Thus if (i : L →֒ ResC/RLC, u : U(1) −→ Lad , ρ :

Γ −→ L, f : X̃ −→ D) an LC-CVHS on X , such a representation defines canonically a

CVHS on the bundle Eλ := P ×LC,λ E. If moreover ER is a real form of E and λ is defined

over R then Eλ is a weight 0 polarized RVHS.

What if λ does not factorize through Lad ?

4.2.1. Index.

Definition 4.2.1. Let (L, u : U(1) −→ Lad ) be a Hodge datum. Its index µ is the smallest

positive integer n such that the co-character ũ := un ∈ X∗(L
ad ) belongs to the finite index

subgroup X∗(L
der) of X∗(L

ad ).

Thus the diagram

U(1)

µ

��

ũ
// Lder

Ad

��

U(1)
uad

// Lad

is commutative and µ is the smallest positive integer for which such a diagram exists.

4.2.2.

Definition 4.2.2. Let (L, u : U(1) −→ Lad ) be a Hodge datum and λ : L −→ GL(E) a

complex representation. We define a weight 0 complex Hodge structure on E :

E < p >= {v ∈ E / ∀z ∈ C∗, ũ(z) · v = z−p · v}

so that E =
⊕

p∈Z
E < p >. This complex Hodge structure on E is polarizable by λ(c) for

any choice of c ∈ ũ(U(1)) ⊂ L = L(R) a lifting of C (thus C = Int(c)).

Remark 4.2.3. For example li
C

= lC < µ · i >

Assume that λ is irreducible. We still denote by λ : lC −→ End(E) the induced Lie

algebra morphism. The following properties follow from the definitions :

• λ(l−1
C

) · E < n >⊂ E < n− µ >.
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• {n / E < n > 6= 0} = {n0, n0 + µ, n0 + 2µ, · · · , n0 + kµ}.

• If ER is a real form of E and λ is defined over R then E < −n >= E < n >.

The appearance of the index µ in the action of l−1
C

= lC < −µ > on E suggests the

following definition of a µ-CVHS (essentially the same object as a usual CVHS up to some

index convention in the transversality condition ; in particular a CVHS is a 1-CVHS) :

Definition 4.2.4. Let X be a complex analytic space. A µ-complex variation of Hodge struc-

tures of weight 0 on X is a flat complex vector bundle (E , D) on X and a C∞ decomposition

E =
⊕

p∈Z
Ep,−p of C∞-vector bundles such that :

(1) For any x ∈ X the induced decomposition of the x-fiber Ex =
⊕

p∈Z
Ep,−px is a weight

0 complex Hodge structure on Ex.

(2) For any p ∈ Z the fiber bundle F pE =
⊕

r≥p E
r,−r is a holomorphic sub-bundle of E

and the fiber bundle F
p
E :=

⊕

r≤−p E
r,−r is an anti-holomorphic sub-bundle of E.

(3) If D is the flat connection on E then D(F pE) ⊂ F p−µE ⊗ Ω1
X and D(F

p
E) ⊂

F
p−µ

E ⊗ Ω1
X .

Let (i : L →֒ ResC/RLC, u : U(1) −→ Lad , ρ : Γ −→ L, f : X̃ −→ D) be an LC-CVHS on

X . Let λ : LC −→ GL(E) be a finite dimensional representation. Notice that the Hodge

filtration F •E on the complex Hodge structure E =
⊕

p∈Z
E < p > is naturally Q-invariant.

Thus :

Definition 4.2.5. Let (i : L →֒ ResC/RLC, u : U(1) −→ Lad , ρ : Γ −→ L, f : X̃ −→ D) an

LC-CVHS on X. Let λ : LC −→ GL(E) be a finite dimensional representation. It defines

canonically a weight 0 µ-complex variation of Hodge structures Eλ on X (with fiber E) :

Eλ := P ×LC,λ E = Γ\f∗(LC ×Q,λ E) , F •Eλ := Pf ×G,λ F
•E = Γ\f∗(LC ×Q,λ F

•E) .

The horizontality of f guaranties property (3) of definition 4.2.4 (µ-Griffiths’s transver-

sality). If ER is a real form of E and λ is defined over R then Eλ is a µ-RVHS.

As explained in the appendix B any µ-CVHS can be considered as a usual CVHS by

relabeling the Hodge types. However this process is non-canonical, in particular usually

not compatible with other algebraic structures on the µ-CVHS. We will deal with such an

example in section 5.2 : for ρ : L −→ G a morphism and λ = Ad ρ : LC −→ Aut(gC),

the Lie bracket on gC induces a Lie bracket on EAd ρ, compatible with its natural µ-CVHS

structure but usually not with any relabeled CVHS.

4.3. G-CVHS and moduli spaces. Let (i : L →֒ ResC/RG, u : U(1) −→ Lad , ρ : Γ −→

L, f : X̃ −→ D) be a G-CVHS on X .

On the Betti side it canonically defines a point in M(Γ,G) : the isomorphism class of

the flat G-bundle P defined in 4.1.1.

On the Dolbeault side : the adjoint bundle Ad P = P ×G,Ad g = f∗((LC ×Q,Ad ◦τ g)|D)

identifies with the graded bundle GrF AdP of the weight 0 µ-complex variation of Hodge
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structure AdP = Eg associated to the representation LC −→ GL(g) :

Ad P =
⊕

p∈Z

(Ad P)p,−p .

Definition 4.3.1. Define θf ∈ (Ad P)−µ,µ ⊗ Ω1
X as the differential of f .

Thus (P, θ) is a semi-stable G-Higgs-bundle and the G-CVHS (i : L →֒ ResC/RG, ρ, f :

X̃ −→ D) canonically defines the point [(P, θ)] (called a system of G-Hodge bundles by

Simpson) in MDol(X,G).

Proposition 4.3.2. [25, cor 4.2] Let [ρ] ∈ M(Γ,G)(C) with ρ reductive. Then φG([ρ]) ∈

MDol(X,G)(C) is C∗-fixed if and only if ρ is the monodromy of a G-complex variation of

Hodge structure f : X̃ −→ D. Moreover φG([ρ]) = [(P, θ)].

5. Cohomology

5.1. Cohomology of µ-CVHS. Let (i : L →֒ ResC/RG, u : U(1) −→ Lad , ρ : Γ −→ L, f :

X̃ −→ D) be a G-CVHS. Let λ : G −→ GL(E) be a complex representation of G. The

Higgs bundle φ GL(E)(λ ◦ ρ) associated by Simpson’s correspondence to the monodromy

λ ◦ ρ : Γ −→ G of the weight 0 µ-CVHS Eλ defined in 4.2.5 is (GrF Eλ, θλ), where θλ =

adλ(θ) ∈ Ω1
X ⊗ End(GrF Eλ) and adλ : g −→ End(E) is deduced from λ : G −→ GL(E).

The Dolbeault complex (Ω•
X(GrF Eλ), θλ) decomposes as a direct sum :

(5.1)

(Ω•
X(GrF Eλ), θλ) =

⊕

p∈Z

(

GrpF Eλ
θλ−→ Grp−µF Eλ ⊗ Ω1

X
θλ−→ Grp−2µ

F Eλ ⊗ Ω2
X

θλ−→ · · ·
)

.

Thus the isomorphism from theorem 2.3.1

(5.2) Hi(X, Eλ) = Hi(X, (Ω•
X(GrF Eλ), θλ))

particularizes to

Proposition 5.1.1. Let (i : L →֒ ResC/RG, u : U(1) −→ Lad , ρ : Γ −→ L, f : X̃ −→ D) be

a G-complex variation of Hodge structure and λ : G −→ GL(E) be a representation of G.

Then

(5.3) Hi(X, Eλ) =
⊕

p∈Z

Hi(X, (GrpFEλ
θλ−→ Grp−µF Eλ ⊗ Ω1

X
θλ−→ Grp−2µ

F Eλ ⊗ Ω2
X

θλ−→ · · · )) .

Notice that equality (5.3) is nothing else than the classical result of Deligne [31] putting a

complex Hodge structure of weight µi on the cohomology H i of the weight 0 µ-CVHS Eλ on

X : the Hodge filtration F • on Eλ defines a Hodge filtration F •Ω•
X(Eλ) on the holomorphic

De Rham complex Ω•
X(Eλ) by

F rΩkX(Eλ) = ΩkX ⊗ F rEλ .
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This induces a Hodge filtration on Hi(X, Eλ) = Hi(Ω•
X(Eλ)) :

(5.4) Hi(X, Eλ) =
⊕

p+q=iµ

Hp,q(X, Eλ) .

The Hodge to De Rham spectral sequence degenerates at E1 thus

(5.5) Hp,iµ−p(X, Eλ) = Hi(X,GrpFΩ•
X(Eλ)) .

But this last complex GrpFΩ•
X(Eλ)) is nothing else than

(

GrpFEλ
θλ−→ Grp−µF Eλ ⊗ Ω1

X
θλ−→ Grp−2µ

F Eλ ⊗ Ω2
X

θλ−→ · · ·
)

.

Notice moreover that Deligne’s construction is fonctorial : if Eλ
ψ

−→ Eν is a morphism of

weight 0 µ-CVHS on X then the induced morphism on cohomology :

H•(X, Eλ)
ψ

−→ H•(X, Eν)

is a morphism of Hodge structures.

5.2. The case of the adjoint representation. Let (i : L →֒ ResC/RLC, u : U(1) −→

Lad , ρ : Γ −→ L, f : X̃ −→ D) be an LC-CVHS. We fix a real morphism η : L −→ G and

we particularize the previous section to the case where λ = Ad ◦ η : L −→ GL(g). In this

case the Lie bracket on R-VHS Eg := Eλ induced by the Lie bracket on g enriches the Hodge

theory of H•(X, Eg).

5.2.1. Polarization. In general g is not a simple L-module thus the R-VHS Eg admits many

nonequivalent polarization. We choose the one compatible with the Lie bracket on Eg. Let

Bg : g × g −→ R be the Killing form on g. The symmetric bilinear form on g defined by

β0(X,Y ) = −Bg(CGC
−1
L ·X,Y )

is L-invariant and its associated Hermitian form β0(CG · X,σG(X)) is positive definite on

g ⊗ C. Thus one can define :

Definition 5.2.1. We still denote by β0 : Eg ⊗ Eg −→ R the polarization on Eg defined by

β0 : g ⊗ g −→ R.

This polarization satisfies the following compatibility with the Lie bracket on Eg :

β0(Y, [X,Z]) + β0([CLCGX,Y ], Z) = 0 .

5.2.2. Cohomology.

Definition 5.2.2. A graded µ-Hodge R-Lie algebra is a Z-graded real Lie algebra m• such

that :

• each mi, i ∈ Z, is a weight µ · i polarized R-HS.
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• for any i, j ∈ Z, the Lie bracket

[·, ·] : mi ⊗ mj −→ mi+j

is a morphism of polarized R-HS.

One immediately obtains the :

Lemma 5.2.3. The cohomology H•(X, Eg) is a graded µ-Hodge R-Lie algebra.

Moreover the natural polarization on H•(X, Eg) obtained from β0 is naturally enriched.

As the formation of the Hodge structure on the cohomology of an RVHS is functorial and

β0 : Eg ⊗ Eg −→ R(0) = R

is a morphism of weight 0 RVHS (where we consider R as the constant local system on X)

we obtain the following canonical morphism of graded R-Hodge structures :

H•(X, Eg) ⊗H•(X, Eg)
∼

//

β

&&L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L

H•(X ×X, p∗1(Eg) ⊗ p∗2(Eg))

∆∗

��

H•(X, Eg ⊗ Eg)

β0

��

H•(X,R)

,

where the horizontal isomorphism is Künneth’s one.

The positivity properties of β0 and its compatibility with the Lie bracket immediately

implies the :

Lemma 5.2.4. The morphism β satisfies the following two properties :

1. ∀x, y, z ∈ H•(Γ, g), β(x, [y, z])+ (−1)d(x)·d(y)β([CG ·C−1
L x, y], z) = 0 where d(x)

denotes the degree of x divided by µ.

2. for any x 6= 0 in Hp,q(Γ, g), β(CG · x, x) > 0 in Hp+q,p+q(X) where positivity in

Hp+q,p+q(X) is induced by weak positivity on forms.

6. Eichler-Shimura for cohomological complex hyperbolic representations

6.1. Locally homogeneous CVHS and Eichler-Shimura type isomorphisms. From

now on we assume for simplicity that the group L is simple.

Definition 6.1.1. Let (i : L →֒ ResC/RG, ρ : Γ −→ L, f : X̃ −→ D) be a G-CVHS. It is

called locally homogeneous if f is a biholomorphism.

Equivalently : the group L is a real form of G of Hermitian type, V = K is a maximal

compact subgroup of L, the Hodge datum u : U(1) −→ Lad is the canonical isomorphism

of U(1) with the connected center Z(Kad ) of the maximal compact subgroup Kad of Lad

such that for the (complexified) Cartan decomposition g = lC = kC ⊕ pC the K-module pC
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decomposes as pC = p+ ⊕ p− with u(z) acting via multiplication by z on p+ and by z−1 on

p−. The variety X = Γ\L/K is an Hermitian locally symmetric space.

We refer to [30] for a detailed study of locally homogeneous CVHS. Notice that the index

µ of definition 4.2.1 is nothing else in this case than the index µ(L) of [30, p.247], namely

the degree of the covering map Z(K) −→ Z(Kad ).

From the general point of view of non-Abelian Hodge theory the main interest of locally

homogeneous CVHS is a computational one : all the Higgs bundles appearing geometrically

are of automorphic nature (i.e. given by a representation of K). As a result Dolbeault

complexes split into direct sums of (shifted) sheaves. In particular the Hodge factors in the

decomposition (5.3) greatly simplify.

Definition 6.1.2. Let KC ⊂ LC be the complexified group of K. We denote by

F : KC − mod −→ Bun(X)

the functor from the category of finite dimensional KC-modules to the category of holomor-

phic vector bundles on X which associates to (π,EC) ∈ KC − mod the holomorphic vector

bundle F (π) := Γ\(G×Q,π◦τ EC)|D (with the obvious definition of F on morphisms).

In particular the holomorphic tangent bundle TX identifies with the automorphic bundle

F (p+), the bundle Ω1
X with F (p−).

Let λ : G −→ GL(EC) be a representation. As KC = VC is the centralizer in G of

u(S1), every term GrpF Eλ ⊗ΩiX in the decomposition (5.1) is an automorphic vector bundle

and the differential θλ preserves the automorphic structure. For example the G-Higgs field

θρ : TX = F (p+) −→ AdPf = F (g) of the Higgs bundle EAd = AdPf is given by the

obvious inclusion of KC-modules p+ →֒ g. As KC is reductive, the complex GrpF (Ω•
X(Eλ))

completely splits. As a corollary, one obtains Eichler-Shimura type isomorphisms :

Corollary 6.1.3. Let X = Γ\L/K be a co-compact locally Hermitian symmetric space. Let

λ : G −→ GL(EC) be a finite dimensional representation. Then for any positive integer i

one has a canonical decomposition

Hi(Γ, EC) =
⊕

0≤j≤i

Hj(X,F (τj)) ,

where τj is a sub-KC-module of EC.

An explicit formula for the τj can be given in terms of highest weight, but we won’t give

it here.

6.2. The complex hyperbolic case.
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6.2.1. Notations. Let n > 1 be a positive integer. Let V denote the (n + 1)-dimensional

C-vector space endowed with the Hermitian form h(z,w) = z0w0 + · · ·+ zn−1wn−1 − znwn.

Let L = SU(n, 1) := SU(V, h) and Γ
i
→֒ SU(n, 1) be a co-compact torsion-free lattice. We

denote by U(n) the maximal compact subgroup of L, KC ≃ GL(n,C) = {
(

X 0
0 χ−1(X)

)

, X ∈

GL(n,C)} ⊂ SL(n+ 1,C) = LC. Here χ : U(n) −→ U(1) denotes the determinant.

The canonical Hodge datum u : U(1) −→ SU(n, 1)ad is given by

u(z) = [
(

zIdn 0
0 1

)

] ,

where [A] denote the class in U(n, 1)ad of a matrix A ∈ U(n, 1). The index µ is n+ 1 and

ũ : U(1) −→ SU(n, 1) is defined by

ũ(z) =
(

zIdn 0

0 z−n

)

.

6.2.2. The result.

Definition 6.2.1. Let j be a positive integer. We say that a finite dimensional SU(V, h)-

module π is j-cohomological if for some co-compact lattice Γ ⊂ SU(n, 1) one has Hj(Γ, π) 6=

0. We denote by Cohj
R

(respectively Cohj
C
) the set of isomorphism classes of real (respectively

complex) irreducible j-cohomological representations of SU(n, 1).

As explained in the introduction by Raghunathan’s theorem :

Coh1
R = {SkVR for k ≥ 0}, Coh1

C = {SkV for k ∈ Z}

with the usual notation SkV = S−kV ∗ for k < 0.

The main result of this section is a description of the complex Hodge structures on

H1(Γ, SkV ) or H1(Γ, SkV ∗). A crucial point in the proof of theorem 1.3.3 is that they are

extremely simple, with only one non-vanishing Hodge type (recall that the functor F was

defined in section 6.1) :

Theorem 6.2.2. Let k > 0 be a positive integer. Then

H1(Γ, SkV ) = H1(Γ, SkV )(−k,µ+k) = H1(X,F (Skp+ ⊗ χ−k))

H1(Γ, SkV ∗) = H1(Γ, SkV ∗)(µ+k,−k) = H0(X,F (Sk+1p∗+ ⊗ χk)) .

6.3. Decomposition of SpV and SpV ∗ as U(n)-modules.

Lemma 6.3.1. Let V be the standard real SU(n, 1)-module. Let χ : K = U(n) −→ S1

be the character det. Then for all integers k ∈ Z the following decomposition of complex

K-modules holds :

(6.1) SkV = (

k
⊕

i=0

Sip+) ⊗ χ−k, SkV ∗ = (

k
⊕

i=0

Sip∗+) ⊗ χk.
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Proof. The decomposition of V as complex K-module is its decomposition in KC-modules.

As the embedding KC = GL(n,C)
i

−→ LC = SL(n+ 1,C) is given by

i(X) =
(

X 0
0 χ−1(X)

)

,

V is the direct sum of the standard KC-module Z of rank n and χ−1. Now notice that p+

is the tensor product Z ⊗ χ. We thus get

V = (p+ ⊕ 1) ⊗ χ−1 .

The lemma follows. �

6.3.1. Hodge structure. Let λ : LC −→ GL(V ). The weight 0 complex Hodge structure V

has the following Hodge decomposition :

V = V −1 ⊕ V +n with V −1 = p+ · χ−1 and V n = χ−1 .

On symmetric powers this naturally leads to :

(6.2) GrpFS
kV =







Sjp+ ⊗ χ−k if p = (k − j)n− j and 0 ≤ j ≤ k

0 otherwise
.

On the dual V ∗ :

V = V 1 ⊕ V −n with V 1 = p∗+ · χ and V −n = χ .

This similarly yields :

(6.3) GrpFS
kV ∗ =







Sjp∗+ ⊗ χk if p = n(j − k) + j and 0 ≤ j ≤ k

0 otherwise
.

6.4. The Dolbeault complex. As an intermediary step towards theorem 6.2.2, we first

prove the

Proposition 6.4.1. One has the following equalities :

(6.4) H1(Γ, SkV ) = H1(X,F (Skp+ ⊗ χ−k)) ⊕H0(X,F (
Skp+ ⊗ p∗+

Sk−1p+
⊗ χ−k)),

and

(6.5) H1(Γ, SkV ∗) = H1(X,F (χk)) ⊕H0(X,Sk+1p∗+ ⊗ χk) .

Proof. We first deal with SkV . We can apply equality (5.3) for Eλ = SkV . As we compute

hyper-cohomology in degree one, we can truncate our complexes in degree 2, thus obtaining :

H1(Γ, SkV ) = H1(X,F (χ−k ⊗ Ck)) , where Ck denotes the complex(6.6)












1

((RRRRRRRRR ⊕ p+

))TTTTTTTTT ⊕ · · ·

**UUUUUUUUUUUU ⊕ Sk−2p+

**UUUUUUU
⊕ Sk−1p+

**UUUUUUU
⊕ Skp+

1 ⊗ p∗+

((RRRRRR
⊕ p+ ⊗ p∗+

))TTTTTTT
⊕ S2p+ ⊗ p∗+

**TTTTTTT
⊕ · · ·

**TTTTTTTTTTTT ⊕ Sk−1p+ ⊗ p∗+

**TTTTTTT
⊕ Skp+ ⊗ p∗+

1 ⊗ Λ2p∗+ ⊕ p+ ⊗ Λ2p∗+ ⊕ S2p+ ⊗ Λ2p∗+ ⊕ S3p+ ⊗ Λ2p∗+ ⊕ · · · ⊕ Skp+ ⊗ Λ2p∗+













.
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In this complex the maps of KC-modules are the standard ones induced by 1 −→ p+⊗p∗+

and contractions :

Sip+ ⊗ Λkp∗+ −→ Sip+ ⊗ (p+ ⊗ p∗+) ⊗ Λkp∗+ −→ Si+1p+ ⊗ Λk+1p∗+ .

Notice that for all non-negative integers i the following short sequence of KC-modules is

exact :

0 −→ Sip+ −→ Si+1p+ ⊗ p∗+ −→ Si+2p+ ⊗ Λ2p∗+ .

As a result,

H1(Γ, SkV ) = H1(X,F (Skp+ ⊗ χ−k) ⊕H0(X,F (
Skp+ ⊗ p∗+

Sk−1p+
⊗ χ−k)).

Similarly applying equality (5.3) for Eλ = SkV ∗, we obtain :

H1(Γ, SkV ) = H1(X,F (χk ⊗ Ck)) , where Ck denotes the complex(6.7)













1 ⊕ p∗+

vvllllllll
⊕ S2p∗+

uulllllll
⊕ S3p∗+

ttjjjjjjjjj
⊕ · · ·

tthhhhhhhhhhhhhh ⊕ Skp∗+
ttiiiiiiiii

1 ⊗ p∗+ ⊕ p∗+ ⊗ p∗+

vvllllll

⊕ S2p∗+ ⊗ p∗+

uullllll

⊕ · · ·

ttjjjjjjjjjjjj ⊕ Sk−1p∗+ ⊗ p∗+

tthhhhhhhh

⊕ Skp∗+ ⊗ p∗+

ttiiiiiii

1 ⊗ Λ2p∗+ ⊕ p∗+ ⊗ Λ2p∗+ ⊕ · · · ⊕ Sk−2p∗+ ⊗ Λ2p∗+ ⊕ Sk−2p∗+ ⊗ Λ2p∗+ ⊕ Skp∗+ ⊗ Λ2p∗+













.

Once more the maps of KC-modules are the standard ones induced by 1 −→ p+ ⊗p∗+ and

contractions :

Sip∗+ ⊗ Λkp∗+ −→ Sip∗+ ⊗ (p+ ⊗ p∗+) ⊗ Λkp∗+ −→ Si−1p∗+ ⊗ Λk+1p∗+

Once more for all non-negative integers i the following short sequence of KC-modules is

exact :

0 −→ Sip∗+ −→ Si−1p∗+ ⊗ p∗+ −→ Si−2p∗+ ⊗ Λ2p∗+ .

As a result,

H1(Γ, SkV ∗) = H1(X,F (χk)) ⊕H0(X, ker(Skp∗+ ⊗ p∗+ → Sk−1p∗+ ⊗ Λ2p∗+) ⊗ χk)

= H1(X,F (χk)) ⊕H0(X,F (Sk+1p∗+ ⊗ χk)) .

�

Remark 6.4.2. Notice that the complexes Ck appearing in (6.4) and (6.7) are nothing else

than a truncated tautological Koszul complex. The only terms giving rise to cohomology

are the ones on the boundary created by the truncation.



LOCAL RIGIDITY FOR COMPLEX HYPERBOLIC LATTICES AND HODGE THEORY 25

6.5. Vanishing theorem : a Hodge type argument. To conclude the proof of theo-

rem 6.2.2 from proposition 6.4.1 we have to show the :

Proposition 6.5.1. H0(X,F (
Sk

p+⊗p
∗

+

Sk−1p+
⊗ χ−k))) = H1(X,F (χk)) = 0.

Proof. This is provided by a Hodge type argument. Using the equation (5.5), we can com-

pute the Hodge decomposition of the weight 1 complex Hodge structures H1(Γ, SkV ) and

H1(Γ, SkV ∗) :

H1(Γ, SkV ) = H1(Γ, SkV )(−k,µ+k) ⊕H1(Γ, SkV )(−k+µ,k)

with







H1(Γ, SkV )(−k,µ+k) = H1(X,F (Skp+ ⊗ χ−k)

H1(Γ, SkV )(−k+µ,k) = H0(X,F (
Sk

p+⊗p
∗

+

Sk−1p+
⊗ χ−k))

.(6.8)

Similarly :

H1(Γ, SkV ∗) = H1(Γ, SkV )(k+µ,−k) ⊕H1(Γ, SkV )(−nk,µ+nk)

with







H1(Γ, SkV ∗)(k+µ,−k) = H0(X,F (Sk+1p∗+ ⊗ χk))

H1(Γ, SkV ∗)(−nk,µ+nk) = H1(X,F (χk))

.(6.9)

As VR is a real representation of L, the bundle ESkVR
is a RVHS on X . As SkVR ⊗R C =

SkV ⊕ SkV ∗, this Hodge structure is nothing else than

ESkVR
⊗R C = ESkV ⊕ ESkV ∗ .

In particular its cohomology

H1(Γ, SkVR ⊗R C) = H1(Γ, SkV ) ⊕H1(Γ, SkV ∗)

has a weight µ real Hodge structure. The Hodge type symmetry Hp,q = Hq,p for real Hodge

structures forces at once

H1(Γ, SkV )(−k+µ,k) = H1(Γ, SkV ∗)(−nk,µ+nk) = 0

and the result.

�

Remark 6.5.2. I don’t know of any direct proof of proposition 6.5.1.

7. All the deformations are trivial

Let X be a compact Kähler manifold and ρ : π1(X) −→ G a representation of the funda-

mental group π1(X). Then by definitionH1(π1(X),Ad ρ) = H1(X, Eg) andH2(π1(X),Ad ρ) ⊂

H2(X, Eg). In the case where Eg is an RVHS it is not known whether H2(π1(X),Ad ρ) is

a Hodge substructure of H2(X, Eg). In the case we consider the manifold X = Γ\Hn
C

is a

K(Γ, 1) and the cohomologies H•(π1(X),Ad ρ) and H•(X, Eg) coincide. We will freely use

this identification.
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7.1. Hodge decomposition. The sequence

H1(Γ,Ad ρ) ⊗H1(Γ,Ad ρ) −→ H2(Γ,Ad ρ⊗ Ad ρ)
[·,·]
−→ H2(Γ,Ad ρ)

of weight 2µ real Hodge structures decomposes (after complexification) accordingly to Hodge

types. For any p ∈ Z one obtains :

(7.1)

⊕

a,b∈Z

a+b=p
H1(Γ,Ad ρ)(a,µ−a) ⊗H1(Γ,Ad ρ)(b,µ−b)

↓

H2(Γ,Ad ρ⊗ Ad ρ)(p,2µ−p)

↓ [·, ·]

H2(Γ,Ad ρ)(p,2µ−p) .

Let us analyze the first term of the sequence (7.1). By Ragunathan’s theorem 1.1.1 one has :

H1(Γ,Ad ρ) =
⊕

π∈Coh1
R
(ρ)

H1(Γ, gπ) .

For any π ∈ Coh1
R(ρ) the inclusion gπ →֒ g is a morphism of real Hodge structures.

Definition 7.1.1. Let π = SkVR ∈ Coh1
R. One defines iπ = −k, WC

π = Skp+ ⊗ χ−k and

WC
π∗ = Sk+1p∗+ ⊗ χk.

Definition 7.1.2. For π ∈ Coh1
R(ρ) one defines V C

π as the complex WC
π -isotypic component

of the complex U(n)-module gπ ⊗C. Similarly one defines V C
π∗ as the complex WC

π∗-isotypic

component of the complex U(n)-module p∗+ ⊗C (gπ ⊗ C).Thus Vπ ⊗ C = WC
π ⊕WC

π as a

U(n)-module.

By section 6 we know that as a real Hodge structure H1(Γ, gπ) has only two non-trivial

Hodge types :

H1(Γ, gπ) ⊗R C = H1(Γ, gπ)
iπ ,µ−iπ ⊕H1(Γ, gπ)iπ ,µ−iπ .

Explicitly :

H1(Γ, gπ)
iπ ,µ−iπ = H1(X,F(V C

π )) .

Thus

H1(Γ,Ad ρ) ⊗R C =
⊕

π∈Coh1
R
(ρ)

H1(Γ, gπ) ⊗R C

=
⊕

π∈Coh1
R
(ρ)

(H1(Γ, gπ)
iπ ,µ−iπ ⊕H1(Γ, gπ)iπ ,µ−iπ ) .

(7.2)

In particular for any a ∈ Z :

(7.3) H1(Γ,Ad ρ)(a,µ−a) =
⊕

π∈Coh1
R
(ρ)

iπ=a

H1(Γ, gπ)
iπ ,µ−iπ ⊕

⊕

π∈Coh1
R
(ρ)

iπ=µ−a

H1(Γ, gπ)iπ ,µ−iπ .

Remark 7.1.3. Notice that the right hand side of equality (7.3) contains at most one non-zero

term for a 6= 0 : this follows immediately from the fact that iπ ≤ 0 for π ∈ Coh1
R(ρ).
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Let z ∈ H1(Γ,Ad ρ). By equation (7.2) z uniquely decomposes as

z =
∑

π∈Coh1
R
(ρ)

(zπ + zπ) ,

with zπ ∈ H1(Γ, gπ)
iπ ,µ−iπ . Thus :

[z, z] =
∑

π∈Coh1
R
(ρ)

π′∈Coh1
R
(ρ)

[zπ, zπ′ ] ⊕ 2
∑

π∈Coh1
R
(ρ)

π′∈Coh1
R
(ρ)

[zπ, zπ′ ] ⊕
∑

π∈Coh1
R
(ρ)

π′∈Coh1
R
(ρ)

[zπ, zπ′ ] .

For π ∈ Coh1
R, π

′ ∈ Coh1
R(ρ), notice that [zπ, zπ′ ] is of type (iπ + iπ′ , 2µ− (iπ+ iπ′)), [zπ, zπ′ ]

is of type (µ + iπ − iπ′ , µ + iπ′ − iπ) and [zπ, zπ′ ] is of type (2µ − (iπ + iπ′), iπ + iπ′). As

iπ ≤ 0 for any π ∈ Coh1
R the (µ, µ)-component of [z, z] is :

[z, z](µ,µ) =
∑

π∈Coh1
R
(ρ)

[zπ, zπ] .

Thus we obtain :

Lemma 7.1.4. If [z, z] = 0 in H2(Γ,Ad ρ) then
∑

π∈Coh1
R
(ρ)[zπ, zπ] = 0 in H2(Γ,Ad ρ)(µ,µ).

7.2. Compact versus non-compact. Fix KG a maximal compact subgroup of G con-

taining U(n), with Cartan involution CG, and Cartan decomposition g = kG ⊕ pG. As the

Cartan decomposition of g is U(n)-stable each U(n)-module Vπ , π ∈ Coh1
R(ρ), decomposes

into a “compact” and a “non-compact” part :

Vπ = Vπ,c ⊕ Vπ,n ,

where Vπ,c = Vπ ∩ kG and Vπ,n = Vπ ∩ pG. We say that Vπ is of compact type if Vπ = Vπ,c

and of non-compact type if Vπ = Vπ,n.

As a corollary the SU(n, 1)-module gπ, π ∈ Coh1
R(ρ), uniquely decomposes as gπ =

gπ,c ⊕ gπ,n, where gπ,c (resp. gπ,n) is the SU(n, 1)-module generated by Vπ,c (resp. Vπ,n).

Once more the inclusions gπ,c →֒ g and gπ,n →֒ g are morphisms of real Hodge structures.

Thus the decomposition 7.3 refines to :

H1(Γ, ρ) =
⊕

π∈Coh1
R
(ρ)

(H1(Γ, gπ,c)
iπ ,µ−iπ ⊕H1(Γ, gπ,c)iπ ,µ−iπ)

⊕
⊕

π∈Coh1
R
(ρ)

(H1(Γ, gπ,n)
iπ ,µ−iπ ⊕H1(Γ, gπ,n)iπ ,µ−iπ ) .

(7.4)

Explicitly : H1(Γ, gπ,c)
iπ ,µ−iπ ≃ H1(X,F(V C

π,c)) and H1(Γ, gπ,n)
iπ ,µ−iπ ≃ H1(X,F(V C

π,n)).

Each zπ ∈ H1(Γ, gπ)
iπ ,µ−iπ thus uniquely decomposes as

zπ = zπ,c + zπ,n ,

with zπ,c ∈ H1(Γ, gπ,c)
iπ ,µ−iπ and zπ,n ∈ H1(Γ, gπ,n)

iπ ,µ−iπ .

Taking the CG-fixed part of [z, z], we deduce from lemma 7.1.4 :
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Lemma 7.2.1. If [z, z] = 0 in H2(Γ,Ad ρ) then

(7.5)
∑

π∈Coh1
R
(ρ)

([zπ,c, zπ,c] + [zπ,n, zπ,n]) = 0 ∈ H2(Γ,Ad ρ)(µ,µ) .

7.3. Proof of theorem 1.3.7. Although theorem 1.3.7 is a corollary of theorem 1.3.3 we

first give a proof of the easier theorem 1.3.7.

With the notations of the introduction one has for any π ∈ Coh1
R(ρ) :

H1(Γ, gπ,c) =
⊕

χ0∈Φπ,c

χ
dχ0

0 ⊗H1(Γ, π) and H1(Γ, gπ,n) =
⊕

χ0∈Φπ,n

χ
dχ0

0 ⊗H1(Γ, π)

as a T0(ρ)-module. Let zπ,c =
∑

χ0∈Φπ,c
zπ,c,χ0 and zπ,n =

∑

χ0∈Φπ,n
zπ,n,χ0 be the corre-

sponding decomposition. The restriction of equation 7.2.1 to the 0-eigenspace of t0(ρ) in

H2(Γ,Ad ρ)(µ,µ) leads to :

Lemma 7.3.1. If [z, z] = 0 in H2(Γ,Ad ρ) then

(7.6)
∑

π∈Coh1
R
(ρ)

(
∑

χ0∈Φπ,c

[zπ,c,χ0, zπ,c,χ0 ] +
∑

χ0∈Φπ,n

[zπ,n,χ0 , zπ,n,χ0 ]) = 0 ∈ H2(Γ,Ad ρ)(µ,µ) .

LetH ∈ it0(ρ) ⊂ iz0(ρ). As z0(ρ) is a trivial SU(n, 1)-module, the bundle Et0(ρ) is a trivial

sub-RVHS of Eg. In particular any element H ∈ it0(ρ) defines a flat section, still denoted

H , in H0(X, Eg⊗C) = H0(Γ,Ad ρ)C. From the definition of the polarization morphism β

defined in section 5.2 and from equation (7.3.1) one obtains :

0 = β(H,
∑

π∈Coh1
R
(ρ)

(
∑

χ0∈Φπ,c

[zπ,c,χ0 , zπ,c,χ0 ] +
∑

χ0∈Φπ,n

[zπ,n,χ0 , zπ,n,χ0 ]))

=
∑

π∈Coh1
R
(ρ)

(
∑

χ0∈Φπ,c

β([H, zπ,c,χ0 ], zπ,c,χ0) +
∑

χ0∈Φπ,n

β([H, zπ,n,χ0 ], zπ,n,χ0))

=
∑

π∈Coh1
R
(ρ)\1R

(
∑

χ0∈Φπ,c

β([H, zπ,c,χ0 ], zπ,c,χ0) +
∑

χ0∈Φπ,n

β([H, zπ,n,χ0 ], zπ,n,χ0))

=
∑

π∈Coh1
R
(ρ)\1R

(
∑

χ0∈Φπ,c

χ0(H)β(zπ,c,χ0 , zπ,c,χ0) +
∑

χ0∈Φπ,c

χ0(H)β(zπ,n,χ0 , zπ,n,χ0))

∑

π∈Coh1
R
(ρ)\1R

(
∑

χ0∈Φπ,c

χ0(H)β(CG · zπ,c,χ0 , zπ,c,χ0) −
∑

χ0∈Φπ,c

χ0(H)β(CG · zπ,n,χ0 , zπ,n,χ0)); .

(7.7)

The second line follows from the compatibility of β with the Lie bracket and the fact that

CGC
−1
L is trivial on H .

From now on we suppose the cone Λ0(ρ) is non-empty and pick H ∈ Λ0(ρ). Thus

χ0(H) > 0 for χ0 ∈ Φπ,c, π ∈ Coh1
R(ρ) \ 1R and χ0(H) < 0 for χ0 ∈ Φπ,n, π ∈ Coh1

R(ρ) \ 1R.

We deduce from equation (7.7) and from the positivity properties of β that all the zπ,c,χ0’s
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and zπ,n,χ0 ’s vanish for π ∈ Coh1
R(ρ)\1R. Thus z = z1R

+z1R
and any integrable deformation

z occurs in H1(Γ, zg(su(n, 1))), which implies theorem 1.3.7.

7.4. Proof of theorem 1.3.3.

7.4.1. Holomorphic interpretation. Theorem 1.3.3 can be seen as a refinement of theo-

rem 1.3.7. By equation (5.3) the sequence (7.1) for p = µ can be written holomorphically

as :

(7.8)

⊕

π∈Coh1
R
(ρ) H1(X, (Griπ Ω•

X(Egπ⊗C), θAd ρ)) ⊗ H1(X, (Grµ−iπ Ω•
X(Egπ⊗C), θAd ρ))

↓
⊕

π∈Coh1
R
(ρ) H2(X, (GriπΩ•

X(Egπ⊗C), θAd ρ)
L

⊗ (Grµ−iπ Ω•
X(Egπ⊗C), θAd ρ))

↓ [·, ·]

H2(X, (GrµΩ•
X(Eg⊗C), θAd ρ)) .

As we have seen in section 6, for π ∈ Coh1
R(ρ) the complex (Griπ Ω•

X(Egπ⊗C), θAd ρ) admits

as a direct factor the complex (F(V C
π ) −→ 0 −→ 0 −→ · · · ) which generates its 1-hyper-

cohomology. Similarly the complex (Grµ−iπ Ω•
X(Egπ⊗C), θAd ρ) admits as a direct factor the

complex (0 −→ F((V C
π∗)) −→ 0 −→ 0 −→ · · · ) which generates its 1-hyper-cohomology. As

a corollary in the sequence (7.8) the image of

H1(X, (Griπ Ω•
X(Egπ⊗C), θAd ρ)) ⊗ H1(X, (Grµ−iπ Ω•

X(Egπ⊗C), θAd ρ)

is contained in the 2-hyper-cohomology of the sub-complex

Cπ = (0 −→ F([V C

π , (V
C

π∗)]) −→ 0 −→ 0 −→ · · · )

of (GrµΩ•
X(Eg⊗C), θAd ρ). Notice that all these complexes Cπ are natural sub-complexes of the

sub-quotient (0 −→ Ω1
X⊗F(l(ρ)C) = GrµΩ1

X(Eg⊗C) −→ 0 −→ · · · ) of (GrµΩ•
X(Eg⊗C), θAd ρ).

As a corollary lemma 7.2.1 implies the

Lemma 7.4.1. If [z, z] = 0 in H2(Γ,Ad ρ) then

(7.9)
∑

π∈Coh1
R
(ρ)

([zπ,c, zπ,c] + [zπ,n, zπ,n]) = 0 ∈ H1(X,Ω1
X ⊗F(l(ρ)C)) .

7.4.2. One proceeds similarly to section 7.3. With the notations of the introduction one has

for any π ∈ Coh1
R(ρ) :

H1(Γ, gπ,c)
(iπ ,µ−iπ) =

⊕

χ∈Φπ,c

χdχ ⊗H1(X,F (V C

π,c))

H1(Γ, gπ,c)(iπ ,µ−iπ) =
⊕

χ∈Φπ,c

χdχ ⊗H0(X,F(V C

π∗,c)) ⊂
⊕

χ∈Φπ,c

χdχH0(X,Ω1
X ⊗F(V C

π,c)
∗)
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as a T(ρ)-module. Similarly for H1(Γ, gπ,n)
(iπ ,µ−iπ) and H1(Γ, gπ,c)(iπ ,µ−iπ). Let

zπ,c =
∑

χ∈Φπ,c

zπ,c,χ , zπ,c =
∑

χ∈Φπ,c

zπ,c,χ ,

zπ,n =
∑

χ∈Φπ,n

zπ,n,χ , zπ,n =
∑

χ∈Φπ,n

zπ,c,χ

be the corresponding decompositions.

The restriction of equation 7.4.1 to the 0-eigenspace of t(ρ) in H0(X,Ω1
X⊗F(l(ρ)C)) leads

to :

Lemma 7.4.2. If [z, z] = 0 in H2(Γ,Ad ρ) then

(7.10)
∑

π∈Coh1
R
(ρ)

(
∑

χ∈Φπ,c

[zπ,c,χ, zπ,c,χ]+
∑

χ∈Φπ,n

[zπ,n,χ, zπ,n,χ]) = 0 ∈ H0(X,Ω1
X⊗F(l(ρ)C)) .

The Hermitian metric β0(CG · X,X) on Eg⊗C induces the harmonic Hermitian metric

still denoted β0 on Gr•Eg⊗C. The cohomology of the holomorphic Hermitian vector bundle

Gr•Eg⊗C can thus be computed using ∆∂ -harmonic forms :

Hp,q(X,Gr•Eg⊗C) ≃ Hp,q

∂
(X,Gr•Eg⊗C) .

From know on we will always use this identification. In particular zπ,c,χ is an element of

H0,1(X,GriπEg⊗C). Moreover the Hermitian metric β0(CG ·X,X) on Gr•Eg⊗C extends to a

natural L2-metric β̃(CG.x, x) on Hp,q

∂
(X,Gr•Eg⊗C). One easily checks the following lemma

analogous to lemma 5.2.4 :

Lemma 7.4.3. The pairing β̃ satisfies the following two properties :

1. ∀x, y, z ∈ H•(X,Gr•Eg⊗C), β̃(x, [y, z]) + (−1)d(x)·d(y)β̃([CG · C−1
L x, y], z) = 0

where d(x) denotes the degree of x divided by µ.

2. for any x 6= 0 in Hp,q(X,Gr•Eg⊗C), β̃(CG · x, x) > 0.

Let H ∈ it(ρ) ⊂ iz(ρ). As z(ρ) is a trivial U(n)-module, the bundle F(t(ρ)) is a triv-

ial holomorphic sub-bundle of Gr0Eg⊗C. In particular any element H ∈ it(ρ) defines a
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holomorphic section, still denoted H , in H0(X,Gr0Eg⊗C). From lemma 7.4.2 one obtains :

0 = β̃(H,
∑

π∈Coh1
R
(ρ)

(
∑

χ∈Φπ,c

[zπ,c,χ, zπ,c,χ] +
∑

χ∈Φπ,n

[zπ,n,χ, zπ,n,χ]))

=
∑

π∈Coh1
R
(ρ)

(
∑

χ∈Φπ,c

β̃([H, zπ,c,χ], zπ,c,χ) +
∑

χ∈Φπ,n

β̃([H, zπ,n,χ], zπ,n,χ))

=
∑

π∈Coh1
R
(ρ)\1R

(
∑

χ∈Φπ,c

β̃([H, zπ,c,χ], zπ,c,χ) +
∑

χ∈Φπ,n

β̃([H, zπ,n,χ], zπ,n,χ))

=
∑

π∈Coh1
R
(ρ)\1R

(
∑

χ∈Φπ,c

χ(H)β̃(zπ,c,χ, zπ,c,χ) +
∑

χ∈Φπ,c

χ0(H)β̃(zπ,n,χ, zπ,n,χ))

∑

π∈Coh1
R
(ρ)\1R

(
∑

χ∈Φπ,c

χ(H)β̃(CG · zπ,c,χ, zπ,c,χ) −
∑

χ∈Φπ,c

χ(H)β̃(CG · zπ,n,χ, zπ,n,χ)); .

(7.11)

If we assume that the cone Λ(ρ) is non-empty and pick H in Λ(ρ) then as before the

previous equation forces :

∀ π ∈ Coh1
R(ρ) \ 1R, zπ,c = zπ,n = 0 .

Thus z = z1R
+ z1R

and any integrable deformation z occurs in H1(Γ, zg(su(n, 1))), which

implies theorem 1.3.3.

7.5. Proof of theorem 1.3.4. If all the Vπ , π ∈ Coh1
R(ρ) \ 1R, are of compact type, then

by definition the generator −Eρ of iρ∗(u(1)) belongs to Λ(ρ) which is thus non-empty. Thus

Theorem 1.3.4 follows immediately from theorem 1.3.3.

7.6. Proof of theorem 1.3.8. For the standard embedding ρ of SU(n, 1) in SU(n+p, 1+q)

the centralizer Zp(ρ) of SU(n, 1) in SU(n + p, 1 + q) is U(p, q) whose maximal compact

subgroup is U(p) × U(q). In this case :

• Coh1
R(ρ) \ 1R = {VR},

• gVR,c ≃ (Cp)R ⊗R VR as a U(p)×U(q)×SU(n, 1)-module (with the standard action

of U(p) on Cp),

• gVR,n ≃ (Cq)R ⊗R VR as a U(p)×U(q)×SU(n, 1)-module (with the standard action

of U(q) on Cq).

It follows trivially that the cone Λ0(ρ) ⊂ Rp × Rq is non-empty.

Appendix A. Some Hodge theory

A.1. Real Hodge structure.

Definition A.1.1. A real Hodge structure on a real (finite-dimensional) vector space ER is

a bi-graduation of EC := ER ⊗R C

EC =
⊕

p,q∈Z

Ep,q
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such that Ep,q = Eq,p (where x denote the complex-conjugate of x). One says that the real

structure is of pure weight n ∈ Z if Ep,q = 0 for p+ q 6= n.

Of course any real Hodge structure on ER decomposes uniquely as a direct sum of real

Hodges structures of pure weight ER =
⊕

n∈Z
ER,n.

A first variant of this definition is :

Definition A.1.2. A weight n real Hodge structure on ER is a finite decreasing filtration

F • on EC (the Hodge filtration) such that for any p ∈ Z

F pEC ⊕ F
n+1−p

EC = EC .

The equivalence of definitions A.1.1 and A.1.2 is given by F pEC =
⊕

p′≥pE
p′,n−p′ and

Ep,n−p = F pEC ∩ F
n−p

EC.

A second variant if given by :

Definition A.1.3. A real Hodge structure on ER is a structure of S-module h : S −→

GL(ER) on ER, where S denotes the real algebraic torus ResC/RGm.

Thus S(C) = C∗×C∗ with complex conjugation (z, w) = (w, z) and the embedding S(R) =

C∗ −→ S(C) = C∗×C∗ is given by z 7→ (z, z). The equivalence between definitions A.1.1 and

A.1.3 is given by defining the action of (z, w) ∈ S(C) = C∗ × C∗ on Ep,q by multiplication

by z−pw−q.

The real torus S is the non-trivial extension

1 −→ Gm
w

−→ S −→ U(1) −→ 1 ,

where the weight homomorphism on real points Gm(R) = R∗ w
−→ S(R) = C∗ is given by

r 7→ r−1. The pure weight n Hodge substructure ER,n is the eigenspace of h ◦ w : Gm −→

GL(ER) for the character z −→ zn.

The real torus S can also be seen as the non-trivial extension

1 −→ U(1) −→ S
Nm
−→ Gm −→ 1 ,

where Nm(z, w) = zw.

Definition A.1.4. A polarization of the real Hodge structure ER is a kerNm-invariant

bilinear form β on ER such that the Hermitian form β(C · v, v) is positive definite on EC

and the Ep,q are orthogonal for it (where C = h(i) ∈ GL(ER) is the Weil operator of the

Hodge structure, acting by iq−p on Ep,q).

A.2. Complex Hodge structure. This notion is essentially trivial but of interest when

considered in variations.
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Definition A.2.1. A weight n complex Hodge structure on a complex (finite-dimensional)

vector space EC is a decomposition EC =
⊕

p+q=n E
p,q. Alternatively, this is a decreasing

filtration F • on EC or a complex representation h : SC −→ GL(EC).

Definition A.2.2. A polarization of a complex Hodge structure EC is a kerNm(R)-invariant

sesquilinear pairing ψ : EC × EC −→ C such that ψ(C · v, v) > 0 for v 6= 0.

Example A.2.3. If ER is a weight n real Hodge structure with polarization β then EC is a

weight n complex Hodge structure with polarization ψ(v, w) = βC(v, w) (where βC denotes

the complexified bilinear form extension of β).

A.2.1. Let R(i) be the 1-dimensional structure of weight 2i defined by the action h(z, w) =

z−iw−i on C. Any real Hodge structure of pure weight is isomorphic (modulo tensorisation

by some R(i)) to a real Hodge structure of weight 0 or 1. On the other hand any complex

Hodge structure of pure weight is isomorphic (modulo tensorisation by some C(i)) to a

complex Hodge structure of weight 0. This more generally indicates that the notion of

weight is much less useful for complex Hodge structures than for real Hodge structures.

A.3. Weight 0 Hodge structures. Let EC be a weight 0 complex Hodge structure. For

simplicity we denote by Ei the weight space Ei,−i.

Let µ : Gm(C) −→ S(C) be the co-character z 7→ (z, 1). The weight 0 complex Hodge

structure h : SC −→ GL(EC) is entirely determined by the algebraic morphism u = h ◦ µ :

Gm(C) −→ GL(EC) via the formula :

∀z, w ∈ C∗, h(z, w) = u(z) · u(w)−1 .

The u-action on Ei is via multiplication by z−i. Notice that the Weil operator C is nothing

else than u(−1).

If ψ : EC ×EC −→ C is a polarization for h and U(EC) denotes the real form of GL(EC)

defined by the positive definite Hermitian form ψ(Cz,w) then the morphism u is defined

over R : u : U(1) −→ U(EC) as u(α) = h(α1/2) for α ∈ U(1).

If moreover EC = ER ⊗R C and u : U(1) −→ GL(ER) then ER is a weight 0 real Hodge

structure.

This is the point of view emphasized in the definition of a Hodge datum.

A.4. Variation of Hodge structures.

Definition A.4.1. Let X be a complex analytic space. A polarizable real variation of Hodge

structures of weight n ∈ Z on X is a flat real vector bundle (E , D) on X, a C∞ decomposition

EC =
⊕

p+q=n E
p,q of C∞-vector bundles and a flat bilinear form β : E ×E −→ R such that :

(1) For any x ∈ X the induced decomposition on the fiber at x (Ex)C =
⊕

p+q=n E
p,q
x is

a weight n real Hodge structure on Ex polarized by βx.

(2) The fiber bundle F pEC =
⊕

r≥p E
r,n−r is a holomorphic sub-bundle of EC.

(3) If D is the flat connection on E then D(F pEC) ⊂ F p−1EC ⊗ Ω1
X .
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Definition A.4.2. Let X be a complex analytic space. A polarizable complex variation

of Hodge structures of weight n ∈ Z on X is a flat complex vector bundle (E , D) on X,

a C∞ decomposition E =
⊕

p+q=n E
p,q of C∞-vector bundles and a flat sesquilinear form

ψ : E × E −→ C such that :

(1) For any x ∈ X the decomposition Ex =
⊕

p+q=n E
p,q
x is a weight n complex Hodge

structure on Ex polarized by ψx.

(2) For any p ∈ Z the fiber bundle F pE =
⊕

r≥p E
r,n−r is a holomorphic sub-bundle of

E and the fiber bundle F
p
E :=

⊕

r≤n−p E
r,n−r is an anti-holomorphic sub-bundle of

E.

(3) If D is the flat connection on E then D(F pE) ⊂ F p−1E ⊗ Ω1
X and D(F

p
E) ⊂

F
p−1

E ⊗ Ω1
X .

Example A.4.3. If (E , D, β) is a weight n polarizable real variation of Hodge structure on X

then (EC, D, ψ) is a weight n polarizable complex variation of Hodge structure on X , with

ψ(x, y) = βC(x, y).

Appendix B. Labeling

The difference between a µ-CVHS and a usual CVHS is essentially a difference in the

labeling of the Hodge types.

First notice that the labeling of the Hodge types in a CHS is ambiguous : if EC =
⊕

p∈Z
E < p > is a weight 0 complex Hodge structure on EC and ψ : Z −→ Z is an affine

function of the form ψ(p) = a+ bp then EC =
⊕

p∈Z
E < ψ(p) > is also one, isomorphic to

the previous one up to the relabeling ψ of the Hodge types. In general there is no canonical

way to choose a labeling. A strong restriction appears when we want to glue together

different complex Hodge structures EC into a complex variation of Hodge structure (EC, D)

on a variety X , as the Griffiths’s transversality condition D(F pEC) ⊂ F p−1EC⊗Ω1
X uniquely

determines the dilation factor b of ψ. Thus when considering an irreducible weight 0 complex

variation of Hodge structures the Hodge-types are uniquely fixed up to a translation a ∈ bZ.

This leads to the :

Definition B.0.4. (a) Let λ : L −→ GL(EC) be an irreducible complex representation.

Let Λ = α+ µ(u)Z ⊂ Z where α denotes any weight of ũ in EC. An element β ∈ Λ

is called an admissible labeling for λ. For any such labeling β ∈ Λ one labels the

complex Hodge structure on EC by EC =
⊕

p∈Z
Ep(β), with

Ep(β) = E < β + pµ > .

(b) Let λ : L −→ GL(EC) be a complex representation. Let λ = ⊕iλi be its decompo-

sition into isotypical components. An admissible labeling for λ is the datum of an

admissible labeling for every isotypical component λi. The corresponding complex



LOCAL RIGIDITY FOR COMPLEX HYPERBOLIC LATTICES AND HODGE THEORY 35

Hodge structure is the direct sum of the corresponding complex Hodge structure on

each isotypical component.

(c) A labeled representation (λ : L −→ GL(EC), β) is a complex representation λ of L

with an admissible labeling β.
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canoniques, dans Automorphic Forms, Representations, and L-functions part. 2; Editeurs: A. Borel

et W Casselman; Proc. of Symp. in Pure Math. 33, American Mathematical Society (1979) p. 247-290.

[6] Deligne P., Mostow G.D, Monodromy of hypergeometric functions and non-lattice integral monodromy,

Publ. Math. IHES 63 (1986), 5-89

[7] Goldman W.M., Millson J.J., Local rigidity of discrete groups acting on complex hyperbolic space,

Inventiones Math. 88 (1987) 495-520

[8] Goldman W.M., Millson J.J., The deformation theory of representations of fundamental groups of

compact Kähler manifolds. Publ. Math. I.H.E.S. 67, (1988), 43-96.

[9] Griffiths P., Schmid W., Locally homogeneous complex manifolds, Acta Math. 123 1969 253–302

[10] Gromov M., Piatetski-Shapiro I., Non-arithmetic groups in Lobachevsky spaces, Publ. Math. IHES 65

(1988), 93-103

[11] Gromov M., Schoen R., Harmonic maps into singular spaces and p-adic superrigidity for lattices in

groups of rank one, Publ. Math. IHES 76 (1992), 165-246

[12] Johnson D., Millson J.J., Deformation spaces associated to compact hyperbolic manifolds. Discrete

groups in geometry and analysis (New Haven, Conn., 1984), , Progr. Math., 67, Birkhuser Boston,

Boston, MA, 1987, 48-106

[13] Kazhdan D., Some applications of the Weil representation, J. Analyse Math. 32 (1977), 235-248

[14] Kim I., Klingler B., Pansu P., Local quaternionic rigidity for complex hyperbolic lattices, preprint

[15] Le Potier J., Lectures on vector bundles. Translated by A. Maciocia, Cambridge Studies in Advanced

Mathematics 54, Cambridge University Press, Cambridge, 1997

[16] Livne R., Harvard thesis

[17] Makarov V.S, On a certain class of discrete subgroups of Lobachevsky space having an infinite funda-

mental region of finite measure, Soviet Math. Dokl. 7 (1966), 328-331

[18] Margulis G.A, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer

Grengebiete 17, Springer-Verlag, (1991)

[19] Matsushima Y., Murakami S., On vector bundle valued harmonic forms and automorphic forms on

symmetric spaces, Ann. Math. 78 (1963), 365-416

[20] Mostow G.D., On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86,

(1980), 171-276

[21] Mumford D., Fogarty J., Kirwan F., Geometric invariant theory. Third edition. Ergebnisse der Math-

ematik und ihrer Grenzgebiete (2) 34. Springer-Verlag, Berlin, 1994.



36 B. KLINGLER

[22] Newstead P.E., Introduction to moduli problems and orbit spaces. Tata Institute of Fundamental

Research Lectures on Mathematics and Physics, 51, Tata Institute of Fundamental Research, Bombay;

by the Narosa Publishing House, New Delhi, 1978

[23] Raghunathan M.S., On the first cohomology of discrete subgroups of semi-simple Lie groups, American

Journal of Math. 87 (1965), 103-139

[24] Simpson C., The ubiquity of variations of Hodge structure, PSPM vol. 53 (1991)

[25] Simpson C., Higgs bundles and local systems, Publ. Math. IHES, 75, (1992), 5-95

[26] Simpson C., Moduli of representations of the fundamental group of a smooth projective variety I, Publ.

Math. IHES, 79, (1994), 47-129

[27] Simpson C., Moduli of representations of the fundamental group of a smooth projective variety II,

Publ. Math. IHES, 80, (1994), 5-79

[28] Vinberg E.B., Discrete groups generated by reflections in Lobachevsky spaces, Math. USSR SB 1

(1967) 429-444

[29] Weil A., Discrete subgroups of Lie groups, II, Annals of Mathematics 75 (1962), 97-123

[30] Zucker S., Locally homogeneous variations of Hodge structure, Enseign. Math. (2) 27 (1981), no. 3-4,

243-276 (1982)

[31] Zucker S., Hodge theory with degenerating coefficients. L2 cohomology in the Poincaré metric Ann.
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