
THE AX–SCHANUEL CONJECTURE FOR VARIATIONS OF MIXED

HODGE STRUCTURES

ZIYANG GAO, BRUNO KLINGLER
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1. Introduction

In this paper we prove the Ax-Schanuel conjecture for all admissible, graded polarized,
integral variation of mixed Hodge structures over a smooth complex quasi-projective
variety S.

Let (VZ,W•,F•) → San be an admissible, graded-polarized, integral variation of
mixed Hodge structures on the complex manifold San associated to S. Let [Φ] : San →
Γ\M be the associated complex analytic period map, where M denotes the period
domain classifying graded-polarized mixed Hodge structures of the relevant type and
Γ is an arithmetic subgroup in the group of automorphisms of M. The classifying
space M admits a natural realization as a real semi-algebraic subset, open in the usual
topology, of a complex algebraic varietyM∨. The Ax–Schanuel conjecture is a functional
transcendence statement comparing the algebraic structure on M∨ and the algebraic
structure on S, via [Φ] and u : M→ Γ\M . Consider the commutative diagram in the
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category of complex analytic spaces

San ×M∨ San ×M? _oo ∆ := San ×Γ\MM? _oo pM //

pS
��

M

u

��
San

[Φ]
// Γ\M

.

We prove the following result, conjectured in [Kli17, Conj. 7.5] (we refer to Definition 2.5
for the definition of weak Mumford–Tate subdomains of M):

Theorem 1.1. Let Z be a complex analytic irreducible subset of ∆. Then

(1.1) dimZZar − dimZ ≥ dim pM(Z)ws,

where ZZar denotes the Zariski closure of Z in S ×M∨, and pM(Z)ws is the smallest
weak Mumford–Tate subdomain of M containing pM(Z).

In the course of the proof, we also explain how to construct pM(Z)ws. Let S′ be
the Zariski closure of pS(Z). Let N be the connected algebraic monodromy group
of (VZ,W•,F•)|S′ → S′an. Then pM(Z)ws is the N(R)+Ru(N)(C)-orbit of any point
z̃ ∈ pM(Z), where Ru(N) is the unipotent radical of N ; see Remark 6.3.

Theorem 1.1 closes a long series of works. The idea of functional transcendence
statements related to Hodge theory first appeared in the context of Shimura varieties,
where [Φ] is the identity. Motivated by Pila’s pionner work [Pil11] on the André–Oort
conjecture for copies of moduli curves, the Ax–Lindemann conjecture (a special case
of the Ax–Schanuel conjecture) was proved for various cases in [PT13, UY14, PT14]
and ultimately for all pure Shimura varieties in [KUY16]; this was extended to mixed
Shimura varieties in [Gao17]. After the proof of the André–Oort conjecture [Tsi18]
(see [Gao16] for mixed Shimura varieties), and in order to attack the more general
Zilber–Pink conjecture, Theorem 1.1 was proved for copies of moduli curves in [PT16]
and for any pure Shimura variety in [MPT19]; this was extended to mixed Shimura
varieties of Kuga type in [Gao20b]. In [Kli17, Conj. 7.5] the second author suggested
that these functional transcendence statements should hold much more generally for
all admissible, graded polarizable, integral variation of mixed Hodge structures over a
smooth complex quasi-projective variety S and formulated Theorem 1.1; this was proved
in [BT19] if the variation of Hodge structures in question is pure.

All these works have been important ingredients in the proofs of various diophantine
results: the André–Oort conjecture for mixed Shimura varieties, results in the direc-
tion of the more general Zilber–Pink conjecture [DR18], use of [MPT19] to prove the
submersivity of the Betti map in [ACZ20], use of [BT19] for Shafarevich type results
in [LV20,LS20], use of [Gao20b] to fully study the Betti rank in [Gao20a] which eventu-
ally was applied to prove a rather uniform bound on the number of rational points on
curves [DGH20]. Hast [Has21] recently proved a transcendence property of the unipotent
Albanese map assuming Theorem 1.1. We expect Theorem 1.1 to have more applica-
tions in diophantine geometry, for instance in direction of the general Hodge-theoretical
atypical intersection conjecture [Kli17, Conj. 1.9] and its special case [Kli17, Conj. 5.2].

The strategy for proving Theorem 1.1 is similar in spirit to previous works, in par-
ticular [BT19], [MPT19] and [Gao20b]. However its implementation in the mixed non-
Shimura case contains serious new difficulties.

For readers’ convenience, we start the paper by recalling basic knowledge on variations
of mixed Hodge structures and mixed Mumford–Tate domains in Section 2, Section 3,
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Section 4 and Section 5. Unlike for the pure or the Shimura case, references to some
of the results recalled hereby are not easy to find. We also give proofs in these sections
and Appendix A to some results which are surely known to experts but whose proofs
we cannot find in existing references. For example, mixed Mumford–Tate domains are
complex spaces and are stable under intersection; as an upshot, the classifying spaceM
in Theorem 1.1 can be replaced by a suitable mixed Mumford–Tate domain D. We also
use mixed Hodge data developed in [Kli17] to prove that we are able to take quotients by
normal groups in the category of mixed Mumford–Tate domains, and each such quotient
is a holomorphic map. All these results are fundamental to the proof of Theorem 1.1.
In fact, with these preparation, we can prove a particular case of Theorem 1.1, called
the logarithmic Ax theorem, in Section 6.

Another formalism we do for our strategy is the fibered structure of mixed Mumford–
Tate domains. We also need to discuss the real points of mixed Mumford–Tate domains;
they correspond to mixed Hodge structures split over R. This is done in Section 7.

Then we move on to prove Theorem 1.1. We start by some dévissages in Section 8, and
reduce to the case where the projection of Z in S is Zariski-dense in S and that Z is an
irreducible component of the intersection of its Zariski-closure with ∆: see Lemma 8.1.
In order to obtain a better group theoretical control of Z, we also replace the classifying
spaceM by its refinement D, the mixed Mumford–Tate domain associated to the generic
Mumford–Tate group P of the variation (VZ,W•,F•).

The first step in the proof of Theorem 1.1 consists of proving that the inequality (1.1)
holds true if the Q-stabilizer ZZar (for the action of P on the second factor of San ×D),
denoted by HZZar , is zero dimensional; see Proposition 9.1. To do so we use o-minimal
geometry (more precisely the result of [BBKT20] generalizing [BKT20] saying that mixed
period maps are definable in some o-minimal structure, and the celebrated Pila-Wilkie
theorem [Pil11, 3.6]) to prove a counting result Theorem 9.2.

More precisely, take a suitable semi-algebraic fundamental set F for D → Γ\D. As
in all proofs of Ax–Schanuel type transcendence results via o-minimality, we start by
constructing a definable subset Θ of P (R) which contains all integer elements γ ∈ Γ such
that γ(S × F) ∩ Z 6= ∅. We wish to prove that Θ contains semi-algebraic curves with
arbitrarily many integer elements; this will yield the non-triviality of HZZar unless (1.1)
already holds true by induction. The Pila-Wilkie theorem then reduces the question
to showing that the number of elements in Γ ∩ Θ of height at most T grows at least
polynomially in T . The latter is precisely Theorem 9.2.

The first main new difficulty lies in the proof of this counting result. It occupies
the full section Section 9 and is quite technical. While in the pure case it follows from
an explicit description of the semi-algebraic fundamental set F for Γ in terms of Siegel
sets furnished by reduction theory and from the non-positive curvature in the horizontal
direction for pure Mumford–Tate domains (see [BT19]), in the mixed case we have
only an implicit knowledge of F: its construction in [BBKT20] relies fundamentally on
the rather mysterious retraction of D on its subvariety DR of real split mixed Hodge
structures furnished by the sl2-splitting of mixed Hodge structures. Instead, we use the
natural fibered structure

D = Dm → Dm−1 → · · · → D0

of mixed Mumford–Tate domains associated to the weight filtration of the variation of
Hodge structures. Each step is a vector bundle. Considering the successive projections
Zk of Z to the storeys S ×Dk, we proceed as follows:
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- assuming that the required estimate holds for Zk we prove that we can “lift” this
estimate to Zk+1: see Proposition 9.7 and Section 9.6. As in [Gao20b], there are two cases
to consider for this lifting process, namely the “horizontal” case treated by Lemma 9.10
and the “vertical” case treated by Lemma 9.11.

- we initiate the process at the smallest integer k0 such that the projection of Z to
Dk0 is not a point. If k0 = 0 the required estimate follows from [BT19] as D0 is a pure
Mumford–Tate domain; for technical reasons some suitable arrangement is needed; see
case 2 of Section 9.7. On the other hand there is some non-trivial work to be done
if k0 > 0 (the unipotent case, or equivalently when the maximal pure quotient of the
variation is constant): see Section 9.5, more precisely Proposition 9.4.

The second step in the proof of Theorem 1.1 consists of dealing with the case where
the group HZZar is positive dimensional. In that case one wants to reduce to the first
step by working in the quotient Mumford–Tate domain D/HZZar . Such a quotient exists
as a Mumford–Tate domain only if the group HZZar is normal in the generic Mumford–
Tate group P . Following the guideline of [MPT19], we prove in Section 10 that HZZar is
normal in the algebraic monodromy group of this variation of mixed Hodge structures.
While this immediately implies that HZZar is normal in P in the pure case, it turns out to
be more subtle in the mixed case. We solve this problem in Section 11 and the argument
is ultimately Hodge-theoretic.

Right before this paper is publicized, we received a preprint [Chi21] from Chiu inde-
pendently proving the same result. The approach and idea are similar to ours, but some
techniques are different.

Acknowledgements. ZG has received fundings from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement n◦ 945714).

2. Mixed Hodge structures, classifying space, and Mumford–Tate domains

2.1. Mixed Hodge structure. In this subsection we recall some definitions and prop-
erties of Q-mixed Hodge structures.

Definition 2.1. Let V be a finite dimensional Q-vector space and VC := V ⊗Q C its
complexification.

(i) A Q-pure Hodge structure on V of weight n is a decreasing filtration F • (the

Hodge filtration) on VC such that VC = F pVC ⊕ Fn+1−qVC for all p ∈ Z.
(ii) A Q-mixed Hodge structure on V consists of two filtrations, an increasing filtra-

tion W• on V (the weight filtration) and a decreasing filtration F • on VC (the
Hodge filtration) such that for each k ∈ Z the Q-vector space GrWk V = Wk/Wk−1

is a pure Hodge structure of weight k for the filtration on GrWk V ⊗Q C deduced
from F •.

The numbers hp,q(V ) = dimC GrpFGrWp+q(VC) are called the Hodge numbers of (V,W•, F
•).

Q-mixed Hodge structures, defined in terms of two filtrations, can be equivalently de-
scribed in terms of bigradings. This is classical in the pure case, where a weight n
Q-pure Hodge structure on V is equivalently given by a direct sum decomposition
VC = ⊕p+q=nV p,q (the Hodge decomposition) into C-vector spaces, such that the complex

conjugate V q,p coincides with V p,q for all p, q ∈ Z with p+ q = n. The relation between
the Hodge filtration and the Hodge decomposition is given by F pVC = ⊕p′≥pV p′,n−p′ . In
the general mixed case Deligne [Del71, 1.2.8] proved the following:
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Proposition 2.2. A Q-mixed Hodge structure on V is the datum of a bigrading

(2.1) VC =
⊕
p,q∈Z

Ip,q

satisfying that each complex vector subspace WkVC =
⊕

p+q≤k I
p,q of VC is defined over

Q and

(2.2) Ip,q ≡ Iq,p mod
⊕

r<p,s<q

Ir,s.

The Hodge filtration is then defined by F pVC =
⊕

r≥p I
r,q.

We will use a third, more group-theoretic, point of view on Q-mixed Hodge structures.
Let S = ResC/RGm,C be the Deligne torus, this is the real algebraic group such that
S(R) = C∗ and S(C) = C∗ × C∗, with the action of the complex conjugation twisted by
the automorphism that interchanges the two factors. The character group of S, denoted
by X∗(S), identifies with Z⊕ Z under

Z⊕ Z ∼−→ X∗(S)
(p, q) 7→

(
z ∈ S(R) = C∗ 7→ z−pz−q ∈ C∗

)
.

Given a Q-vector space V a bigrading VC = ⊕p,q∈ZIp,q is thus equivalent to a homomor-
phism h : SC → GL(VC). In particular we deduce from the paragraph above that any
mixed Hodge structure on V defines a homomorphism h : SC → GL(VC). In [Pin89] Pink
identified the conditions such a homomorphism has to satisfy to define a mixed Hodge
structure on V :

Proposition 2.3. [Pin89, 1.4 and 1.5] Let V be a finite dimensional Q-vector space.
A morphism h : SC → GL(VC) defines a MHS on V if and only if there exists a connected
Q-algebraic subgroup P ⊂ GL(V ) such that h factors through PC and which satisfies the
following conditions:

(i) The composite SC
h→ PC → (P/W−1)C is defined over R, where W−1 denotes the

unipotent radical of P .

(ii) The composite Gm,R
w→ S h→ P → (P/W−1)R is a cocharacter of the center of

(P/W−1)R defined over Q.
(iii) The weight filtration on LieP defined by AdP ◦ h satisfies W0 LieP = LieP and

W−1(LieP ) = LieW−1.

If h ∈M let us define the Mumford–Tate group MT(h) of the Q-mixed Hodge structure
(M,h) as the smallest Q-subgroup of GL(V ) whose complexification contains h(SC). One
easily checks that the groups P satisfying the conditions of Proposition 2.3 are precisely
the ones containing MT(h). Condition (iii) implies in particular that the unipotent
radical Ru(P ) of any such P coincides with Ru(PM) ∩ P .

We finish this subsection by recalling the definition of polarizations.

Definition 2.4. Let (V,W•, F
•) be a Q-mixed Hodge structure. A (graded) polarization

is a collection of non-degenerate (−1)k-symmetric bilinear forms

Qk : GrWk (V )⊗GrWk (V )→ Q
such that

(i) Qk(F
pGrWk VC, F

k−p+1GrWk VC) = 0 for each k (first Riemann bilinear relation);

(ii) the Hermitian form on GrWk (V )C given by Qk(Cu, v) is positive-definite, where
C is the Weil operator (C|Ip,q = ip−q for all p, q).
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One easily checks that the Mumford-Tate group of a polarizable pure Q-Hodge structure
is reductive.

2.2. Classifying space. In this subsection, we discuss the classifying space of all Q-
mixed Hodge structures with given weight filtration, graded polarization and Hodge
numbers.

Let V be a finite dimensional Q-vector space, endowed with the following additional
data:

(i) a finite increasing filtration W• of V ;
(ii) a collection of non-degenerate (−1)k-symmetric bilinear forms

Qk : GrWk (V )⊗GrWk (V )→ Q ;

(iii) a partition {hp,q}p,q∈Z of dimVC into non-negative integers.

Given these data, one forms the classifying space M parametrizing Q-mixed Hodge
structures (V,W•, F

•) with the following properties:

(1) the (p, q)-constituent V p,q := GrpF GrWp+q VC has complex dimension hp,q;

(2) Qk(F
pGrWk VC, F

k−p+1GrWk VC) = 0 for each k (first Riemann bilinear relation);
(3) (V,W•, F

•) is graded-polarized by Qk.

Let us summarize the construction and basic properties of M; see [Kap95], [Pea00,
below (3.7) to Lemma 3.9] for more details. First one defines the complex algebraic
variety M∨ parametrizing mixed Hodge structures satisfying only the conditions (1)
and (2) above (see [Pea00, Lem. 3.8]). This is a homogeneous space under PM(C),
where PM is the Q-algebraic group defined as follows: for any Q-algebra R,

(2.3) PM(R) := {g ∈ GL(VR) : g(Wk) ⊆Wk and GrWk (g) ∈ AutR(Qk) for all k ∈ Z}.

The classifying spaceM is defined as the real semi-algebraic open subset ofM∨ consist-
ing of mixed Hodge structures which satisfy moreover condition (3) above (see [Pea00,
Lem. 3.9 and above]). The fact thatM is open inM∨ endowsM with a natural complex
analytic structure. The real semi-algebraic group

(2.4) {g ∈ PM(C) : GrWk (g) ∈ AutR(Qk) for all k ∈ Z}

identifies with PM(R)+WM−1(C), where WM−1 is the unipotent radical of PM, see [Pea00,
Remark below Lem. 3.9]. It acts transitively on M.

2.3. Adjoint Hodge structure. For each h ∈M Proposition 2.3 defines a natural Q-
mixed Hodge structure on LiePM via AdM◦h : SC → PMC → GL(LiePM)C: the adjoint
Hodge structure associated with h. One easily checks that the corresponding weight
filtration and graded polarization are independent of h. Indeed the weight filtration W•
on LiePM ⊆ End(V ) = V ⊗ V ∨ is the one deduced from the weight filtration W• on V .
Similarly for the graded-polarization.

2.4. (Weak) Mumford–Tate domains. Proposition 2.3 suggests to attack the prob-
lem of classifying mixed Hodge structures by rather considering mixed Hodge structures
with prescribed Mumford-Tate group. This leads abstractly to the notion of mixed
Hodge data, see Section 4.1; and geometrically to the notion of (weak) Mumford-Tate
domain refining the classifying space M.

Definition 2.5. (i) A subset D of the classifying spaceM is called a Mumford–Tate
domain if there exists an element h ∈ D such that D = P (R)+W−1(C)h, where
P = MT(h) and W−1 = Ru(P ) is the unipotent radical of P .
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(ii) A subset D of the classifying space M is called a weak Mumford–Tate domain
if there exist an element h ∈ D and a normal subgroup N of P = MT(h) such
that D = N(R)+Ru(N)(C)h, where Ru(N) is the unipotent radical of N .

In the definition, as N C P , we have Ru(N) = W−1 ∩N . One easily checks that M
is a Mumford-Tate domain in itself, for P = PM. A closer look at the geometry of
general Mumford–Tate domains is given in Appendix A.1. In particular we will prove
the following results (well-known in the pure case):

Proposition 2.6. Every weak Mumford–Tate domain in M is a complex analytic sub-
space of M.

Lemma 2.7. Let D1 and D2 be Mumford–Tate domains in M. Then every irreducible
component of D1 ∩ D2 is again a Mumford–Tate domain in M.

This lemma has the following immediate corollary.

Corollary 2.8. Let Z be a complex analytic irreducible subset of M. Then there exists
a smallest Mumford–Tate domain, denoted by Zsp and called the special closure of Z,
which contains Z.

We close this subsection with some discussion on the generic Mumford–Tate group of
a complex analytic irreducible subvariety of M. In particular the discussion applies to
weak Mumford–Tate domains. The trivial local system V = M× V underly a natural
family of mixed Hodge structures: for each h ∈M the triple (V, (W•)h, (F•)h) is a mixed
Q-Hodge structure. For any complex analytic irreducible subset Z of M, the first part
of the proof of [And92, §4, Lemma 4] applies: for a very general element h ∈ Z, the
Mumford–Tate group P (h) does not depend on h. Such an h is said to be Hodge–generic
in Z and its Mumford-Tate group is called the generic Mumford–Tate group of Z. We
write MT(Z) to denote the generic Mumford–Tate group of Z. It satisfies the following
property: MT(h′) < MT(Z) for any h′ ∈ Z.

Lemma 2.9. Let D = P (R)+W−1(C)h be a Mumford-Tate domain in M (thus h ∈ D,
P = MT(h) and W−1 is the unipotent radical of P ). Then P = MT(D).

Proof. By definition of MT(D) the group P is a subgroup of MT(D) . Thus we are
reduced to proving the converse inclusion.

Each h′ ∈ D is of the form ghg−1 for some g ∈ P (R)+W−1(C), and hence the ho-
momorphism h′ =: SC → GL(VC) factors through gPCg

−1 = PC. This implies that
MT(h′) < P for all h′ ∈ D. Looking at a Hodge generic point h′ we are done. �

The following lemma, whose proof is given Appendix A.1, is useful to determine when
an orbit is a Mumford–Tate domain.

Lemma 2.10. Let P be a Q-subgroup of GL(V ) with W−1 = Ru(P ) and let D be
a P (R)+W−1(C)-orbit in M. If some h ∈ D satisfies that h : SC → GL(VC) factors
through PC then D is a Mumford–Tate domain and MT(D)C P .

3. Variation of mixed Hodge structures

Let f : X → S be a morphism of algebraic varieties. If f satisfies a sharp notion of
topological local constancy (suffice it to say here it is automatically satisfied if f is proper
smooth, and is true over a Zariski-open subset of S for any morphism of varieties), then
f gives rise to a family of mixed Hodge structures (pure when f is proper smooth) on
Hn(Xs,Q), as s varies over San, subject to certain rules. This leads to the notion of a
(graded-polarizable) variation of mixed Hodge structures, which we now recall:
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Definition 3.1. Let S be a connected complex manifold. A variation of mixed Hodge
structures (abbreviated VMHS) on S is a triple (VZ,W•,F•) consisting of:

(i) a local system VZ of free Z-modules of finite rank on S;
(ii) a finite increasing filtration W• of the local system V := VZ ⊗ZS QS by local

subsystems (weight filtration);
(iii) a finite decreasing filtration F• of the holomorphic vector bundle V := VZ⊗ZOS

by holomorphic subbundles (Hodge filtration),

satisfying the following conditions:

(1) for each s ∈ S, the triple (Vs,W•(s),F•(s)) is a mixed Hodge structure;
(2) the connection ∇ : V → V ⊗OS Ω1

S whose sheaf of horizontal sections is VC :=
V⊗Q C satisfies the Griffiths’ transversality condition

∇(Fp) ⊆ Fp−1 ⊗ Ω1
S .

Definition 3.2. A VMHS (VZ,W•,F•) on S is called graded-polarizable if the induced
variations of pure Q-Hodge structures (VHS) GrWk V, k ∈ Z, are all polarizable, i.e. for
each k ∈ Z there exists a morphism of local systems

Qk : GrWk V⊗GrWk V→ QS

inducing on each fiber a polarization of the corresponding Q-Hodge structure of weight k.

From now on all VMHS are assumed to be graded-polarizable.

3.1. Mumford-Tate group and monodromy group. Let S be a connected com-
plex manifold and (VZ,W•,F•) a VMHS on S. The pull-back π∗VZ of VZ along the

universal covering map π : S̃ → S is canonically trivialized: π∗VZ ' S̃ × VZ, with

VZ = H0(S̃, π∗VZ).
For s ∈ S, we denote by MTs ⊆ GL(Vs) the Mumford–Tate group of the Hodge

structure Vs and by Hmon
s ⊆ GL(Vs) the connected algebraic monodromy group at s,

that is the connected component of identity of the smallest Q-algebraic subgroup of
GL(Vs) containing the image under monodromy of π1(S, s).

By definition the algebraic monodromy group Hmon
s is locally constant on S. By

[And92, §4, Lemma 4], following [Del87, § 7.5] in the pure case, the Mumford-Tate
group MTs ⊂ GL(Vs) is locally constant on S◦ = S \ Σ where Σ denotes a meager
subset of S; and Hmon

s is a subgroup of Ps for all s ∈ S◦ as (VZ,W•,F•) is graded-
polarizable. We call S◦ the Hodge-generic locus. For s ∈ S◦ the group MTs0 is called
the generic Mumford–Tate group MT(S) of (VZ,W•,F•).

3.2. Admissible VMHS. Admissible VMHSs are the ones with good asymptotic prop-
erties. The concept was introduced by Steenbrick–Zucker [SZ85, Properties 3.13] on a
curve and Kashiwara [Kas86, 1.8 and 1.9] in general. All VMHSs which arise from geom-
etry are admissible [EZ86] and all VHSs are automatically admissible. We recall briefly
the definition.

Definition 3.3 (admissible VMHS). A VMHS (VZ,W•,F•) over the punctured unit disc
∆∗ is called admissible if

(i) it is graded-polarizable;
(ii) the monodromy T around zero is quasi-unipotent and the logarithm N of the

unipotent part of T admits a weight filtration M(N,W•) relative to W• (see
[Kas86, §3.1]);
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(iii) Let V, resp. WkV, be Deligne’s canonical extension of V, resp. of O∆∗ ⊗QWkV,

to ∆. The Hodge filtration F• extends to a locally free filtration F• of V such
that GrpFGrWk V is locally free.

Let S be a connected complex manifold compactifiable by a compact complex analytic
space S. A graded-polarizable variation of mixed Hodge structure (VZ,W•,F•) on S is
said admissible with respect to S if for every holomorphic map i : ∆ → S which maps
∆∗ to S, the variation i∗(VZ,W•,F•) is admissible.

Let S be a smooth complex quasi-projective variety. The property for a VHMS on San

to be admissible with respect to a smooth projective compactification S
an

is easily seen
to be independent of the choice of S. Hence we can and will talk of admissible VMHSs
on San. From now on, and in order to simplify notations, we will not distinguish between
S and San, the meaning being clear from the context.

Admissible VMHSs have the following advantage (see André [And92, §5, Theorem 1],
following [Del87, §7.5] in the pure case):

Theorem 3.4. (Deligne, André) Let (VZ,W•,F•) be an admissible VMHS over a
smooth connected complex quasi-projective variety S. Then for any Hodge-generic point
s ∈ S◦, the connected algebraic monodromy group Hmon

s is a normal subgroup of the
derived group MT(S)der of the generic Mumford-Tate group of S.

4. Mixed Hodge data

Classifying mixed Hodge structures with prescribed Mumford-Tate group leads to the
formalism of mixed Hodge data introduced in [Kli17], following [Pin89] in the Shimura
case. This group theoretical formalism is useful to relate VMHS and Mumford-Tate
domains.

4.1. Mixed Hodge data.

Definition 4.1. A connected mixed Hodge datum is a pair (P,X ), where P is a connected
linear algebraic group over Q whose unipotent radical we denote by W−1, and X ⊆
Hom(SC, PC) is a P (R)+W−1(C)-conjugacy class such that one (and then any) h ∈ X
satisfies property (i), (ii) and (iii) of Proposition 2.3. A morphism (P,X )→ (P ′,X ′) of
mixed Hodge data is a morphism P → P ′ of Q-algebraic groups inducing an equivariant
map X → X ′.

Let (P,X ) be a mixed Hodge datum. As a homogeneous space under P (R)+W−1(C),
the set X is naturally endowed with a structure of real semi-algebraic variety. In general
however it does not carry any complex structure. To relate X to complex geometry,
let us fix ρ : P → GL(V ) a Q-representation. By Proposition 2.3, for each h ∈ X the
map ρ ◦ h endows V with a rational mixed Hodge structure, whose weight filtration
and Hodge numbers are easily seen to be independent of h ∈ X . We thus obtain a
P (R)+W−1(C)-equivariant map

ϕρ : X →M,

forM a classifying space as in Section 2.2. By [Pin89, 1.7], ϕρ factors through a complex

manifold D which is independent of ρ [1]. From now on we will just write

(4.1) ϕ : X → D

[1]Take ρ to be a faithful representation of P , then we can take D = ϕρ(X ).
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and call this map the classifying map of the Hodge datum (P,X ). The group P (R)+W−1(C)
acts on D preserving its complex structure, and the action of W−1(C) on D is holomor-
phic.

Lemma 4.2. ([Pin89, 1.8(b)]) For each x ∈ D, the fiber ϕ−1(x) is a principal homo-
geneous space under exp(F 0

x (LieW−1)C).

In particular ϕ is an isomorphism in the pure case.

4.2. Mixed Hodge data and Mumford-Tate domains. We now relate mixed Hodge
data and Mumford-Tate domains by showing that the complex space D in (4.1) is a
Mumford-Tate domain, and that conversely any Mumford-Tate domain appears as a
target in (4.1) for some connected mixed Hodge datum. We start with the case where
D =M is a classifying space.

Lemma 4.3. Let M be a classifying space of mixed Hodge structure as in Section 2.2,
PM the corresponding group, and WM−1 its unipotent radical.

There exists a mixed Hodge datum (PM,XM) such that the classifying map (4.1) for
(PM,XM) reads ϕM : XM → M. For any h ∈ XM, the mixed Hodge structures on
LiePM induced by h and by ϕM(h) coincide.

Proof. Take h ∈ M. Thus h ∈ Hom(SC, PMC ) satisfies conditions (i), (ii) and (iii) of

Proposition 2.3. In particular (PM,XM) is a mixed Hodge datum, where XM : =
PM(R)+WM−1(C)h ⊆ Hom(SC, PMC ). The existence of ϕM follows from [Pin89, 1.7]; it

is precisely the ϕ from (4.1) for (PM,XM). �

Proposition 4.4. Let M be a classifying space of mixed Hodge structure as in Sec-
tion 2.2, with associated connected mixed Hodge datum (PM,XM) and classifying map
ϕM : XM →M as in Lemma 4.3.

(i) For each Mumford–Tate domain D in M, there exists a sub-mixed Hodge datum
(MT(D),X ) of (PM,XM) such that ϕM(X ) = D. Moreover ϕ := ϕM|X : X →
D is precisely the classifying map (4.1) for (MT(D),X ).

(ii) Conversely for any sub-mixed Hodge datum (P,X ) of (PM,XM), the image
ϕM(X ) is a Mumford–Tate domain in M (whose generic Mumford–Tate group
is a normal subgroup of P ).

Proof. For (i): for simplicity we write P for MT(D) and W−1 for Ru(P ). Take a point
x ∈ D; it gives rise to a homomorphism hx : SC → PC. View hx ∈ XM, then ϕM(hx) ∈ D
by definition of ϕM. Let X = P (R)+W−1(C)hx ⊂ M. As ϕM is PM(R)+WM−1(C)-

equivariant, we have ϕM(X ) = P (R)+W−1(C)ϕM(hx) = P (R)+W−1(C)x = D. By
Proposition 2.3 the pair (P,X ) is a mixed Hodge datum and by construction ϕ = ϕM|X
is precisely the map in (4.1).

For (ii): Denote by D = ϕM(X ). Then D is a P (R)+W−1(C)-orbit because the
map ϕM is PM(R)+WM−1(C)-equivariant. Moreover for any x ∈ D, the corresponding
homomorphism hx : SC → GL(VC) factors through PC by definition of mixed Hodge data.
Thus D is a Mumford–Tate domain and MT(D)C P by Lemma 2.10. �

5. Quotients

5.1. Quotient of mixed Hodge datum. Given a connected mixed Hodge datum
(P,X ) and a normal subgroup N C P , the quotient mixed Hodge datum

(5.1) qN : (P,X )→ (P,X )/N
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is defined as follows. Given h ∈ X ⊆ Hom(SC, PC) we denote by h ∈ Hom(SC, (P/N)C)

the homomorphism SC
h−→ PC → (P/N)C. Note that Ru(P/N) = W−1/(W−1 ∩ N).

Denote by X/N = (P/N)(R)+(W−1/W−1 ∩ N)(C)h ⊆ Hom(SC, (P/N)C). One easily
checks that (P,X )/N : = (P/N,X/N) is a connected mixed Hodge datum, independent
of the choice of h ∈ X . The morphism qN : (P,X ) → (P/N,X/N) is what we desire.
Moreover qN : X → X/N is clearly real algebraic.

5.2. Quotient of Mumford–Tate domains. Next we prove that Mumford–Tate do-
mains are stable under taking quotients. This operation is important to understand the
structure of Mumford–Tate domains.

Let VZ be a free finite rank Z-module and V := VZ ⊗Z Q be the associated Q-vector
space. Let M be the classifying space of certain polarized mixed Hodge structures and
let PM be the Q-group, both from Section 2.2.

Proposition 5.1. Let D be a Mumford–Tate domain in M with P = MT(D), and let
(P,X ) and ϕ : X → D be as in (4.4)(i). Let N be a normal subgroup of P . Then there
exists a quotient pN : D → D/N , in the category of complex varieties, such that

(i) D/N is a Mumford–Tate domain in some classifying space of mixed Hodge struc-
tures, and MT(D/N) = P/N .

(ii) Each fiber of pN is an N(R)+(W−1 ∩N)(C)-orbit, where W−1 = Ru(P ).
(iii) For the quotient mixed Hodge datum qN : (P,X ) → (P/N,X/N) defined in

(5.1), the classifying map (4.1) for (P/N,X/N) has image D/N , thus defining
ϕ/N : X/N → D/N .

(iv) The following commutative diagram commutes

(5.2) X
ϕ

��

qN // X/N
ϕ/N

��
D

pN // D/N.

Proof. Consider the quotient mixed Hodge datum qN : (P,X ) → (P/N,X/N) defined
in (5.1). Any h ∈ X/N ⊆ Hom(SC, (P/N)C) induces a Q-mixed Hodge structure on
Lie(P/N), via AdP/N ◦ h : SC → (P/N)C → GL(Lie(P/N))C, which satisfies the three

properties listed in Definition 4.1 with P replaced by P/N and h replaced by h.
Fix a faithful representation ρ : P/N → GL(V ′) defined over Q. Then the morphism

ρ◦h induces a Q-mixed Hodge structure on V ′ by Proposition 2.3 for each h ∈ X/N , and
the weight filtration and the Hodge numbers does not depend on the choice of h ∈ X/N .
Thus we obtain a map

ϕ/N : X/N → {mixed Hodge structures on V ′}.

Set D/N = ϕ/N (X/N). Then we get ϕ/N : X/N → D/N , which by [Pin89, 1.7] is

(P/N)(R)+(W−1/(W−1∩N))(C)-equivariant (hereW−1 = Ru(P ) and henceRu(P/N) =
W−1/(W−1 ∩N)). This establishes (iii) for the space D/N .

By [Pin89, 1.12] the Q-mixed Hodge structures on V ′ thus obtained are graded-
polarized by the some collection of non-degenerate bilinear forms (same for all h). So
D/N is a contained in some classifying space M′. This establishes (i).

Now let us construct the map pN : D → D/N and prove properties (ii) and (iv).
Take x ∈ D, and take any hx ∈ ϕ−1(x). Then ϕ−1(x) = exp(F 0

x (LieW−1)C)hx by
Lemma 4.2. Denote for simplicity by F 0

x = exp(F 0
x (LieW−1)C); it is a subgroup of PC.

Then qN (ϕ−1(x)) = qN (F 0
xhx) = (F 0

x/(N(C) ∩ F 0
x ))qN (hx).
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On the other hand define x := ϕ/N (qN (hx)). Then ϕ−1
/N (x) = exp(F 0

x (LieW−1/(W−1∩
N))C)qN (hx) again by Lemma 4.2.

We claim that F 0
x/(N(C)∩F 0

x ) = exp(F 0
x (LieW−1/(W−1∩N))C). Indeed it suffices to

check for Lie algebras, i.e. it suffices to prove F 0
x (LieW−1)C/(LieNC∩F 0

x (LieW−1)C) '
F 0
x (LieW−1/(W−1 ∩ N))C canonically. As N C P , we have AdP (LieN) ⊆ LieN . So

LieN is a sub-mixed Hodge structure of the adjoint Hodge structure on LieP . Thus
LieNC ∩ F 0

x (LieW−1)C = F 0
x (LieW−1 ∩N)C. Thus we proved the desired claim.

By the last three paragraphs, we have qN (ϕ−1(x)) = ϕ−1
/N (x). So the map D → D/N ,

x 7→ x := ϕ/N (qN (hx)) is well-defined. Call this map pN . Then property (iv) holds true
by construction of pN . Property (ii) then is not hard to check.

Now the map is complex analytic by property (ii). �

6. Period Map and Logarithmic Ax

6.1. Period map. Let S be an irreducible algebraic variety defined over C. Assume
that S carries a graded-polarized VMHS (VZ,W•,F•) → S. Then it induces a period
map [Φ] : S → Γ\M where M is the classifying space and Γ is an arithmetic subgroup
of PM(Q). It is known that [Φ] satisfies the Griffiths tranversality.

The period map [Φ] factors through a quotient space in the following way. Take a

complex analytic irreducible component S̃ of u−1([Φ](S)), where u : M → Γ\M. Let

D = S̃sp, the smallest Mumford–Tate domain containing S̃; see Corollary 2.8. Let

P = MT(S̃) and W−1 = Ru(P ), then D is a P (R)+W−1(C)-orbit. Now we have [Φ](S) ⊆
u(D).

Let ΓP = Γ ∩ P (Q), then [Φ] factors through S → ΓP \D.
Let ∆ = S×Γ\MM. We claim that ∆ = S×ΓP \DD. Indeed ⊇ is clear, and ⊆ follows

from [Φ](S) ⊆ ΓP \D and the definition ∆ = S ×Γ\M D.
So to prove Theorem 1.1, it suffices to work in the following diagram

(6.1) S ×D ⊇ ∆ //

uS

��

D
u

��
S

[Φ] // ΓP \D

.

This is our setup for the rest of the paper.

6.2. Quotient for the period map. Assume NCP . We have constructed the quotient
Mumford–Tate domain pN : D → D/N in Proposition 5.1. For the arithmetic group
ΓP/N := ΓP /(ΓP ∩N(Q)), we then have a map [pN ] : ΓP \D → ΓP/N\(D/N). Composing
with [Φ] : S → ΓP \D, we obtain

(6.2) [Φ/N ] : S → ΓP/N\(D/N).

Proposition 5.1 says that D/N is a Mumford–Tate domain in the classifying space of
some mixed Hodge structures. Thus [Φ/N ] is again a period map.

Let us summarize the notations involving this operation of taking quotient in the
following diagram:

(6.3) D
pN //

u

��

D/N
u/N

��
S

[Φ] //

[Φ/N ]
55

ΓP \D
[pN ] // ΓP/N\(D/N)
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6.3. Bi-algebraic system. Recall that M is a semi-algebraic open subset in some
algebraic variety M∨ over C. So D is a semi-algebraic open subset in some algebraic
variety D∨ over C.

Definition 6.1. (i) A subset of D is said to be irreducible algebraic if it is a complex
analytic irreducible component of U ∩ D, with U an algebraic subvariety of D∨.

(ii) An irreducible algebraic subset W of D is said to be bi-algebraic if [Φ]−1(u(W ))
is algebraic.

By [BBKT20, Cor. 6.7], every weak Mumford–Tate domain is bi-algebraic.

6.4. Logarithmic Ax. In this subsection we prove a particular case of Theorem 1.1.

Theorem 6.2. Let S̃ be as above There is a smallest weak Mumford–Tate domain in D,

denoted by S̃ws, which contains S̃. Moreover, let Z ⊆ ∆ be a complex analytic irreducible
set. Then

(i) ZZar ⊆ S × S̃ws.
(ii) Theorem 1.1 holds if uS(Z) = S.

In the proof, we will see that S̃ws is an N(R)+(W−1 ∩ N)(C)-orbit, where N is the
connected algebraic monodromy group of (V,W•,F•)→ S.

Proof. Let N be the connected algebraic monodromy group of (V,W•,F•) → S. Then
N C P by Theorem 3.4. Thus N(R)+(W−1 ∩N)(C)s̃ is a weak Mumford–Tate domain,

for any s̃ ∈ S̃.
As N CP , we have the quotient period map [Φ/N ] : S → ΓS/N\(D/N). constructed in

(6.2). Note that [Φ/N ] gives rise to a new VMHS over S, whose the connected algebraic
monodromy group is trivial. So [Φ/N ](S) is a point by [BZ98, Thm. 7.12]. Thus using

the notations in (6.3), we have that pN (S̃) is a point. So S̃ ⊆ N(R)+(W−1 ∩N)(C)s̃ for

any s̃ ∈ S̃.

In particular N(R)+(W−1 ∩N)(C)s̃ is independent of the choice of s̃ ∈ S̃.
On the other hand, the group P (R)+W−1(C) acts on S × D via its action on the

second factor. Let ρ : π1(S, s)→ GL(V ) be the monodromy representation. Then Im(ρ)

is a subgroup of Γ. By construction of S̃, we have Im(ρ)(s, s̃) ⊆ Z for any (s, s̃) ∈
Z. Taking Zariski closures of both sides and recalling that N = (Im(ρ)Zar)◦, we have
{s} ×N(R)+(W−1 ∩N)(C)s̃ ⊆ ZZar.

Let us start by proving part (ii). In the course of this proof, we will also show the

existence of S̃ws.
Assume uS(Z) = S. Then for each s ∈ S, there exists s̃ ∈ S̃ such that (s, s̃) ∈ Z. Thus

by the discussion above, we have {s}×N(R)+(W−1∩N)(C)s̃ ⊆ ZZar. As this holds true
for each s ∈ S, we then have S ×N(R)+(W−1 ∩N)(C)s̃ ⊆ ZZar.

To sum it up, we have Z ⊆ S×S̃ ⊆ S×N(R)+(W−1∩N)(C)s̃ ⊆ ZZar. By taking Zariski

closures, we have ZZar = S ×N(R)+(W−1 ∩N)(C)s̃ and S̃Zar = N(R)+(W−1 ∩N)(C)s̃.
By definition, N(R)+(W−1 ∩ N)(C)s̃ is a weak Mumford–Tate domain. Moreover

if W is a weak Mumford–Tate domain which contains S̃, then W contains S̃Zar =
N(R)+(W−1 ∩ N)(C)s̃ because W is algebraic. So N(R)+(W−1 ∩ N)(C)s̃ is the small-

est weak Mumford–Tate domain which contains S̃. Thus S̃ws exists and is precisely
N(R)+(W−1 ∩N)(C)s̃. Now part (ii) is established.

Let us prove part (i) now. Apply part (ii) to Z = ∆. Then we have ∆Zar = S × S̃ws.
Thus (i) holds for an arbitrary Z ⊆ ∆. �
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Remark 6.3. If we assume S = uS(Z)Zar, then S̃ws is the smallest weak Mumford–Tate

domain which contains pD(Z). Indeed, we have pD(Z) ⊆ S̃ws by Theorem 6.2.(i). So it
suffices to prove the following statement: for any W a weak Mumford–Tate domain in D
which contains pD(Z), we have S̃ws ⊆W . This is true: u(W ) ⊇ u(pD(Z)) = [Φ](uS(Z)),
so [Φ]−1(u(W )) ⊇ uS(Z), so [Φ]−1(u(W )) ⊇ S because [Φ]−1(u(W )) is algebraic (by

[BBKT20, Cor. 6.7]) and S = uS(Z)Zar. Therefore S̃ws ⊆W and hence we are done.

7. Fibered structure and real points

Let D be a Mumford–Tate domain in some classifying space M with P = MT(D).
Let the connected mixed Hodge datum (P,X ) and the P (R)+W−1(C)+-equivariant map
ϕ : X → D be as in Proposition 4.4.(i). In particular by Lemma 4.2, the fiber ϕ−1(x) is
a principal homogeneous space under exp(F 0

x (LieW−1)C) for each x ∈ D.

7.1. Fibered structure of Mumford–Tate domains. Let 0 = W−(m+1) ⊆ W−m ⊆
· · · ⊆W−1 be the sequence of unipotent normal subgroups of P defined in (B.1).

First for each k ∈ {0, . . . ,m}, let Xk = X/W−(k+1) and let

(7.1) pk : D → D/W−(k+1) =: Dk
be the quotient constructed in Proposition 5.1. Notice that Xm = X and pm is the
identity on D.

Observe that we have (P/W−k,Xk) = (P/W−(k+1),Xk+1)/(W−(k+1)/W−(k+2)) and
Dk = Dk+1/(W−(k+1)/W−(k+2)). Denote by qk+1,k : (P/W−(k+1),Xk+1)→ (P/W−k,Xk)
and pk+1,k : Dk+1 → Dk the quotients. Then by Proposition 5.1 we have the following
commutative diagram

(7.2) X = Xm
qm,m−1//

ϕm:=ϕ

��

Xm−1
qm−1,m−2//

ϕm−1

��

Xm−2
qm−2,m−3//

ϕm−2

��

· · ·
q2,1 // X1

q1,0 //

ϕ1

��

X0

ϕ0

��
D = Dm

pm,m−1// Dm−1
pm−1,m−2// Dm−2

pm−2,m−3// · · ·
p2,1 // D1

p1,0 // D0

.

By Lemma 4.2, ϕ0 is bijective. But the other ϕi’s are not injective in general.
Let k ∈ {0, . . . ,m − 1}. Recall that W−(k+1)/W−(k+2) = LieW−(k+1)/W−(k+2) is a

vector group. Thus for any xk ∈ Dk, the notation F 0
xk

(W−(k+1)/W−(k+2))C makes sense.

Lemma 7.1. For each k ∈ {0, . . . ,m} and any point xk ∈ Dk, we have that

(i) the fiber ϕ−1
k (xk) is a principal homogeneous space under F 0

xk
(W−(k+1)/W−(k+2))C.

(ii) (for k ≤ m− 1) the fiber p−1
k+1,k(xk) is a principal homogeneous space under

(W−(k+1)/W−(k+2))(C)/F 0
xk

(W−(k+1)/W−(k+2))C.

Proof. Part (i) follows directly from Lemma 4.2.
For (ii): By [Pin89, 1.8(a)], each fiber of qk+1,k is a principal homogeneous space under

(W−(k+1)/W−(k+2))(C). Combined with part (i) we can conclude. �

7.2. Real points. Define DR to be the set of x ∈ D such that the mixed Hodge structure
parametrized by x is split over R. Namely, DR = ϕ(XR) with XR = {h : SC → PC :
h is defined over R} ⊆ X .

It is known that DR = P (R)+x for some x ∈ D; see [Pea00, last Remark of §3].
Moreover for any x ∈ DR, it is not hard to check that F 0

x (LieW−1)C ∩ LiePR = {0}.
So by Lemma 4.2, p0 : P → G = P/W−1 induces

(7.3) StabP (R)+(x) ' StabG(R)+(π(x)).
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Consider the real semi-algebraic P (R)+-equivariant retraction induced by the sl2-
splitting [BP13, Thm. 2.18] (see also [BBKT20, Cor. 3.12])

(7.4) r : D → DR.

For each k ∈ {0, . . . ,m− 1}, Dk is a Mumford–Tate domain and hence we can define
Dk,R as above. Then Dk,R is a (P/W−(k+1))(R)+-orbit, and there is a real semi-algebraic

(P/W−(k+1))(R)+-equivariant retraction rk : Dk → Dk,R induced by the sl2-splitting.
Let pk : D → Dk be from (7.1). The following diagram is commutative by [BBKT20,

Lem. 6.6]:

(7.5) D
pk //

r

��

Dk
rk
��

DR
pk|DR // Dk,R.

We close this subsection with the following proposition, which states that DR can
be split (non-canonically) into the product of a Mumford–Tate domain for pure Hodge
structures and some vector spaces.

Proposition 7.2. There exists a real algebraic isomorphism

(7.6) DR ' D0 × (W−1/W−2)(R)× · · · × (W−(m−1)/W−m)(R)×W−m(R)

with the following properties.

(i) For any g = (g0, w1, . . . , wm) ∈ P (R)+ under the identification (B.6) and any
x = (x0, x1, . . . , xm) ∈ DR under (7.6), the action of P (R)+ on DR is given by
the formula

(7.7) gx = (g0x0, w1+g0x1, w2+g0x2+calb2(w1, g0x1), . . . , wm+g0xm+calbm(wm−1, g0xm−1))

where wk = (w1, . . . , wk) and xk = (x1, . . . , xk) for all k ≥ 1, and calb2, . . . , calbm
are the Q-polynomials of degree at most k − 1 given by Lemma B.3.

(ii) The decomposition (7.6) is compatible with taking quotients of W−(k+1) on both
sides for each k ∈ {0, . . . ,m− 1}, i.e., the following diagram commutes

DR
∼ //

pk|DR
��

D0 × (W−1/W−2)(R)× · · · × (W−(m−1)/W−m)(R)×W−m(R)

��
Dk,R

∼ // D0 × (W−1/W−2)(R)× · · · × (W−k/W−(k+1))(R)

where the top arrow is (7.6), the bottom arrow is (7.6) applied to Dk,R, and the
right arrow is omitting the last m− k factors.

Proof. First note that D0,R = D0 because every pure Hodge structure is split over R.
Now (B.6) and (7.3) together induce a real algebraic isomorphism as in (7.6). Part (ii)
is clear. Part (i) follows from the group law given by (B.7). �

7.3. Fundamental set.

Theorem 7.3. Let r : D → DR be the retraction defined in (7.4).
There exists an Ralg-definable subset FR of DR ' D0 ×

∏
1≤k≤m(W−k/W−k−1)(R) of

the following form

(7.8) FR = F0 ×
∏

1≤k≤m
(−M,M)dim(W−k/W−(k+1))(R),

for some real number M > 0, such that the followings hold. We have
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(i) u|r−1(FR) is surjective;

(ii) [Φ] is Ran,exp-definable for the Ralg-structure on ΓP \D defined by r−1(FR).

Proof. [BBKT20, Prop. 3.13 and Thm. 4.4]. In the pure case this is the main result
of [BKT20]. �

8. Dévissage and Preparation

In this section, we do some preparations. Recall the setup (6.1)

S ×D ⊇ ∆
pD|∆ //

uS

��

D
u

��
S

[Φ] // ΓP \D

.

Lemma 8.1. If Theorem 1.1 holds true under the following two additional assumptions:

(i) S = uS(Z)Zar.
(ii) Z is a complex analytic irreducible component of ZZar ∩∆.

then it holds true in full generality.

Proof. Let Z be as in Theorem 1.1. Notice that ZZar ⊆ uS(Z)Zar ×D. The assumptions
and the conclusion of Theorem 1.1 do not change if we replace S by uS(Z)Zar. So we
may assume S = uS(Z)Zar.

Let Z′ be a complex analytic irreducible component of ZZar ∩ ∆ which contains Z.
Note that Z ⊆ Z′ ⊆ ZZar. Thus by taking the Zariski closures, we obtain Z′Zar = ZZar.

Thus pD(Z′Zar) = pD(ZZar), for the projection pD : S × D → D. So for the algebraic
structure on D defined by Definition 6.1, we have pD(Z′)Zar = pD(Z)Zar because the
projection pD is algebraic. But each weak Mumford–Tate domain is algebraic. So

pD(Z′) ⊆ pD(Z′)Zar = pD(Z)Zar ⊆ pD(Z)ws = S̃ws,

where the last equality follows from Remark 6.3. But pD(Z) ⊆ pD(Z′) because Z ⊆ Z′.
So every weak Mumford–Tate domain containing pD(Z′) must also contain pD(Z), and

thus contains S̃ws by Remark 6.3. Combined with the inclusion above, we get that S̃ws

is also the smallest weak Mumford–Tate domain which contains pD(Z′). So

dimZ
′Zar − dimZ′ ≥ dim pD(Z′)ws =⇒ dimZZar − dimZ ≥ dim pD(Z)ws

as dimZ ≤ dimZ′ and pD(Z)ws = pD(Z′)ws = S̃ws. Replacing Z by Z′, it is thus enough
to prove Theorem 1.1 assuming furthermore (ii). �

Thus our main theorem is reduced to the following theorem, which we will prove in
the rest of the paper.

Theorem 8.2. Theorem 1.1 holds true under the additionnal assumption that Z is a
complex analytic irreducible component of ZZar ∩∆ and S = uS(Z)Zar.

The rest of the paper is devoted to prove Theorem 8.2.

9. Bigness of the Q-stabilizer

Recall our setup

(9.1) S ×D ⊇ ∆
pD|∆ //

uS

��

D
u

��
S

[Φ] // ΓP \D

.
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We consider a subset Z of ∆ satisfying the following properties: (i) Z is a complex
analytic irreducible component of ZZar ∩∆; (ii) S = uS(Z)Zar.

Let HZZar be the Q-stabilizer of ZZar, namely

(9.2) HZZar =
(
StabP (R)(Z

Zar) ∩ ΓP
)Zar,◦

=
(
{γ ∈ ΓP : γZZar = ZZar}Zar

)◦
.

In this section we prove the following case of Theorem 8.2:

Proposition 9.1. Theorem 8.2 holds true under the additional assumption HZZar is the
trivial group.

9.1. Auxiliary set. The following set is important for the proof of Ax-Schanuel.

(9.3) Θ = {g ∈ P (R) : dim(g−1ZZar ∩ (S × F)) = dimZ},

with F = r−1(FR), where FR is given by Theorem 7.3, or more precisely by (7.8).
It is clear that Θ is definable in Ran,exp, and

{γ ∈ ΓP : γ(S × F) ∩ Z 6= ∅} ⊆ Θ.

Denote for simplicity by Z̃ = pD(Z), then

pD (γ(S × F) ∩ Z) = pD(p−1
D (γF) ∩ Z) = γF ∩ Z̃.

Thus for any γ ∈ ΓP , we have

γ(S × F) ∩ Z 6= ∅ ⇔ γF ∩ Z̃ 6= ∅.

Therefore

(9.4) {γ ∈ ΓP : γF ∩ Z̃ 6= ∅} ⊆ Θ.

Theorem 9.2. Assume dim Z̃ > 0. Then there exist constants ε > 0, cε > 0 and a
sequence of real numbers {Ti}i∈N with Ti →∞ such that

(9.5) #{γ ∈ Θ ∩ ΓP : H(γ) ≤ Ti} ≥ cεT εi .

9.2. Proof of Proposition 9.1 assuming Theorem 9.2. If dim Z̃ = 0, then dim Z̃ws =

0 and hence Theorem 8.2 clearly holds true. So we assume dim Z̃ > 0.
We prove Proposition 9.1 by (downward) induction on dimZZar. The starting point for

this induction is when ZZar = S× S̃ws (see Theorem 6.2). In this case Z = S×ΓP \D S̃
ws,

and so dimZ = dimS. Thus Theorem 8.2 holds true in this case.
Let cε > 0, ε > 0 and {Ti} be as in Theorem 9.2. Then by the Pila–Wilkie counting

theorem [Pil11, 3.6], for each Ti there exists a connected semi-algebraic curve Ci ⊆ Θ
which contains ≥ cεT εi points in ΓP of height at most Ti. For Ti � 0 we have cεT

ε
i ≥ 2.

For each c ∈ Ci ∩ ΓP , we have c−1(ZZar ∩∆) = c−1ZZar ∩∆ since ΓP∆ = ∆. So c−1Z is
a complex analytic irreducible component of c−1ZZar ∩∆.

We have the following alternative:

(i) c−1ZZar is independent of c ∈ Ci ∩ Γ;
(ii) c−1ZZar is not independent of c ∈ Ci ∩ Γ.

Assume we are in case (ii). Consider Z′ the irreducible component of (C−1
i ZZar)Zar ∩∆

which contains cZ. We then have dimZ′Zar = dimZZar + 1 by the assumption (ii). Take
c, c′ ∈ Ci ∩ ΓP such that c−1ZZar 6= c′−1ZZar. Thus dimZ′ = dimZ + 1. Moreover
dim pD(Z′) = dim pD(Z) + 1 as P (R) acts on S ×D on the second factor.

Applying the induction hypothesis, we then have

dimZ′Zar − dimZ′ ≥ dim pD(Z′)ws.
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But the left hand side equals dimZZar − dimZ and the right hand side is at least
dim pD(Z)ws. Hence Theorem 8.2 holds true for Z.

Assume we are in case (i). Fix c0 ∈ Ci∩ΓP . Then c−1ZZar = c−1
0 ZZar for all c ∈ Ci∩ΓP .

Hence cc−1
0 ∈ StabP (R)(Z

Zar). This shows #(StabP (R)(Z
Zar) ∩ ΓP ) ≥ Ci ∩ ΓP ≥ cεT εi for

each i. Letting Ti →∞, we get #(StabP (R)(Z
Zar)∩Γ) =∞. Hence dimHZZar > 0. This

contradicts the triviality of HZZar .

9.3. Preparation of the proof of Theorem 9.2. We will prove Theorem 9.2, or more
precisely (9.5), in the rest of this section. The proof is long. It will be divided in several
steps for readers’ convenience. In this subsection, we fix some notations and sketch the
outline of the proof.

The proof of (9.5) uses the fibered structure of D and the discussion on its real points,
both explained in Section 7. We start by recollecting basic knowledge on both aspects.

Recall the sequence of normal subgroups 0 = W−(m+1) ⊆ W−m ⊆ · · ·W−1 = Ru(P )
of P from (B.1), and the quotient Mumford–Tate domains pk : D → Dk := D/W−k−1,
for each k ∈ {0, . . . ,m}, from (7.1). Notice that pm is the identity map on D.

Let r : D → DR be the P (R)+-equivariant retraction of the inclusion DR ⊆ D from
(7.4). Applying (7.5) successively to pk+1,k : Dk+1 → Dk (defined in the diagram (7.2)),
we obtain the following commutative diagram

(9.6) D
pm,m−1 //

r

��

Dm−1
pm−1,m−2//

rm−1

��

Dm−2
pm−2,m−3//

rm−2

��

· · ·
p2,1 // D1

p1,0 //

r1

��

D0

r0

��
DR // Dm−1,R // Dm−2,R // · · · // D1,R // D0,R

with each rk a (P/W−k−1)(R)+-equivariant retraction of Dk,R ⊆ Dk. Recall that D0 is
a Mumford–Tate domain in a classifying space of pure Hodge structures, and r0 is the
identity map. There is a metric on D0; see [BT19, §2].

In the proof, we often need to project subsets of D to different levels and consider the
real points. So it is convenient to fix the following notations.

Notation 9.3. For each k ∈ {0, 1, · · · ,m},
• For any subset A ⊆ D, denote by Ak := pk(A) ⊆ Dk. As convention Am = A.
• For any subset A ⊆ D, denote by AR := r(A) ⊆ DR, and Ak,R = rk(Ak) ⊆ Dk,R.

Let F = r−1(FR) where FR ⊆ DR is given by Theorem 7.3, or more precisely by (7.8).
Before moving on, let us sketch how (9.5) is proved when m = 0, namely when

D = D0 and P = P/W−1 is a reductive group. In this case, Z̃ = Z̃0, which has positive
dimension by assumption. For each real number T > 0, take B0(T ) ⊆ D0 to be the

ball centered at a fixed point of radius log T in D0. Let Z̃0(T ) be a complex analytic

irreducible component of Z̃ ∩B0(T ). Bakker and Tsimerman [BT19] proved that there
exist constants c0, ε0 > 0, independent of T , such that

#{γ ∈ ΓP : γF ∩ Z̃0(T ) 6= ∅, H(γ) ≤ T} ≥ c0T
ε0 .

By (9.4), the set on the left hand side is a subset of #{γ ∈ Θ ∩ ΓP : H(γ) ≤ T}. This
yields (9.5).

For a general m, we need to generalize this idea. A first thing to do is to find
an appropriate generalization of B0(T ) for D. To achieve this, we make use of the
retractions rk’s (with rm = r) and the following product structure on DR (7.6) (and the
truncated version given by Proposition 7.2.(ii) for each k ∈ {0, 1, · · · ,m})
(9.7) Dk,R ' D0,R × (W−1/W−2)(R)× (W−2/W−3)(R)× · · · × (W−k/W−k−1)(R).
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Now we are ready to give the generalization of the B0(T ) above. For each k ∈ {0, 1, · · · ,m}
and each real number T > 0, define the following subset Bk(T ) ⊆ Dk as follows.

• Let B0(T ) = B0(T ) ⊆ D0 be the ball centered at a fixed point of radius log T in
D0.
• For each k ≥ 1, letBk(T ) the |·|-ball centered at 0 of radius T in (W−k/W−k−1)(R).

Define Bk(T ) = r−1
k (
∏k
i=0Bi(T )). In particular, pk+1,k(Bk+1(T )) = Bk(T ).

Next, we generalize the set Z̃0(T ) as follows. For each k ∈ {0, 1, · · · ,m} and each real
number T > 0:

• Let Z̃k(T ) be a complex analytic irreducible component of Z̃k ∩ Bk(T ) ⊆ D.

Notice that Z̃k(T )→ Z̃k ∩Bk(T ) when T →∞. Denote also by Z̃(T ) = Z̃m(T ).

• We may choose such Z̃k(T )’s that pk+1,k(Z̃k+1(T )) ⊆ Z̃k(T ) for all k.[2]

9.4. Sketch of the strategy of the proof of Theorem 9.2. For simplicity, we use the
same notation pk to denote the projection P → P/W−k−1 and the projection D → Dk.

Suppose dim Z̃0 = dim p0(Z̃) > 0. Then by applying the results of Bakker and

Tsimerman as explained above, we find #{γ0 ∈ p0(ΓP ) : γ0F0 ∩ Z̃0(T ) 6= ∅, H(γ0) ≤
T} ≥ c0T

ε0 . We wish to lift at least polynomially many such γ0’s to elements in p1(ΓP ) of
height at most T with the following property: each such lift γ1 ∈ p1(ΓP ) satisfies γ1F1 ∩
Z̃1(T ) 6= ∅, or equivalently γ1r1(F1) ∩ r1(Z̃1(T )) 6= ∅ (since F1 = r−1

1 (F1,R) by definition

of F). This last condition, expressed with Notation 9.3, becomes γ1F1,R ∩ Z̃1(T )R 6= ∅.
The intersection is taken in D1,R, which is isomorphic to D0 × (W−1/W−2)(R) by (9.7).
If the desired lifting can be realized, then we do similar liftings to p2(ΓP ), etc., under
we obtain at least polynomially many elements γ in pm(ΓP ) = ΓP of height at most T

such that γFR ∩ Z̃(T )R 6= ∅.
At this stage, we can explain why the second bullet point in the constructions of the

Z̃k(T )’s is needed: in the lifting process, we need that Z̃k+1(T )R is mapped to Z̃k(T )R
under pk+1,k.

There is a problem in the procedure described above, namely it is possible that Z̃0

is a point. In this case, we need to work with the smallest k0 such that dim Z̃k0 > 0,
which serves as the base step of the lifting process. We need to find at least polynomially

many elements γk0 ∈ pk0(ΓP ) of height at most T such that γk0Fk0,R ∩ Z̃k0(T )R 6= ∅.
Whereas this is guaranteed by the result of Bakker and Tsimerman when k0 = 0, it
is not known when k0 ≥ 1. We will prove this result in Section 9.5, or more precisely
Proposition 9.4.(ii).

Once we have established the base step, we need to realize the lifting. By (9.7),
we have Dk+1 ' Dk × (W−k−1/W−k−2)(R). To realize the lifting process, we need to

compare the growth of Z̃k+1(T ) in the vertical direction (W−k−1/W−k−2)(R) with its
growth in the horizontal direction Dk. This lifting process is done in Section 9.6, more

precisely Lemma 9.10 (if Z̃k+1(T ) grows “faster” in the horizontal direction Dk) and

Lemma 9.11 (if Z̃k+1(T ) grows “faster” in the vertical direction (W−k−1/W−k−2)(R)).

9.5. Proof of Theorem 9.2: the base step and the statement for the lifting
process. The main goal of this subsection is to prove the base step for the lifting process,
namely Proposition 9.4. At the end of this subsection we also state the result for the

[2]Notice that Z̃k ∩Bk(T ) = pk(Z̃) ∩Bk(T ) = pk(Z̃ ∩ p−1
k (Bk(T ))). Thus Z̃k(T ) equals pk(Z̃(k, T ))

for some complex analytic irreducible component Z̃(k, T ) of Z̃∩p−1
k (Bk(T )). By definition of Bk(T ), we

have p−1
k+1(Bk+1(T )) ⊆ p−1

k (Bk(T )) for each k. Thus the Z̃(k, T )’s can be chosen such that Z̃(k+1, T ) ⊆
Z̃(k, T ) for each k. For these choices, we then have pk+1,k(Z̃k+1(T )) ⊆ Z̃k(T ).
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lifting process (Proposition 9.7) and explain how it implies Theorem 9.2. The proof of
the lifting process will be executed in the next subsection.

Let k0 ∈ {0, · · · ,m} be such that dim Z̃k0 > 0, smallest for this property.
For simplicity, we introduce the following notation. For each real number T ≥ 0, let

(9.8) Ξk0(T ) = {g ∈ (W−k0/W−k0−1)(R) : gFk0 ∩ Z̃k0(T ) 6= ∅}.
We also denote by Γ−k0/−k0−1 = (ΓP ∩W−k0(Q))/(ΓP ∩W−k0−1(Q)); it acts on Dk0 =
D/W−k0−1.

Proposition 9.4. (i) There exist constants αk0 > 0 and α′k0
> 0 satisfying the fol-

lowing property. Any γ−k0/−k0−1 ∈ Ξk0(T )∩Γ−k0/−k0−1 satisfies H(γ−k0/−k0−1) ≤
αk0T

α′k0 for all T � 1.
(ii) If k0 ≥ 1, then there exist constants ck0 , εk0 > 0 such that

#{γ−k0/−k0−1 ∈ Ξk0(T ) ∩ Γ−k0/−k0−1 : H(γ−k0/−k0−1) ≤ T} ≥ ck0T
εk0

for all T � 1.

Proof of Proposition 9.4. As Z̃ ⊆ u−1([i](S)), we have that Z̃ is Griffiths transverse.

Hence Z̃0 = p0(Z̃) is Griffiths transverse global analytic.

If k0 = 0, namely dim Z̃0 > 0, then part (i) follows directly from [BT19, Thm. 4.2],

which claims: if γ0/−1 ∈ Γ0/−1 satisfies γ0/−1F0 ∩ B0(T ) 6= ∅, then H(γ0/−1) ≤ α0T
α′0

for some α0 > 0 and α′0 > 0 when T � 1.

From now on, assume k0 ≥ 1. So Z̃k0−1 = h is a point in Dk0−1. Thus Z̃k0 ⊆
p−1
k0,k0−1(h). For rk0 : Dk0 → Dk0−1, notice that rk0(p−1

k0,k0−1(h)) can be identified with

(W−k0/W−k0−1)(R).

Lemma 9.5. Recall M > 0 the real number in the definition of FR from Theorem 7.3.
Denote for simplicity F′k0

= (−M,M)dim(W−k0
/W−k0−1)(R) ⊆ (W−k0/W−k0−1)(R). Then

(9.9) {γ−k0/−k0−1 ∈ Γ−k0/−k0−1 :
(
γ−k0/−k0−1 + F′k0

)
∩ Z̃k0,R ∩Bk0 (T ) 6= ∅} = Ξk0 (T ) ∩ Γ−k0/−k0−1

for T � 1.

Proof of Lemma 9.5. We have Z̃k0,R = rk0(Z̃k0) ⊆ rk0(p−1
k0,k0−1(h)) = (W−k0/W−k0−1)(R).

Since Bk0(T ) = r−1
k0

(
∏k0
i=0Bi(T )), we then have

(9.10) rk0(Z̃k0 ∩Bk0(T )) = rk0(Z̃k0) ∩Bk0(T ) = Z̃k0,R ∩Bk0(T ).

For any γ−k0/−k0−1 ∈ Γ−k0/−k0−1, we have, by the definition of FR (7.8),

(9.11) γ−k0/−k0−1Fk0,R ∩ (W−k0/W−k0−1)(R) = γ−k0/−k0−1 + F′k0
.

(⊇) Let γ−k0/−k0−1 ∈ Ξk0(T ) ∩ Γ−k0/−k0−1, namely γ−k0/−k0−1Fk0 ∩ Z̃k0(T ) 6= ∅. As

Z̃k0(T ) ⊆ Z̃k0 ∩Bk0(T ), we have γ−k0/−k0−1Fk0 ∩ Z̃k0 ∩Bk0(T ) 6= ∅.
Apply rk0 to both sides. We then get, by (9.10), γ−k0/−k0−1Fk0,R ∩ Z̃k0,R ∩

Bk0(T ) 6= ∅ because Fk0 = r−1
k0

(Fk0,R). Thus (γ−k0/−k0−1+F′k0
)∩Z̃k0,R∩Bk0(T ) 6=

∅ by (9.11). This proves ⊇.

(⊆) On the other hand note that Z̃k0(T )→ Z̃k0 ∩Bk0(T ) when T →∞. So by (9.10)

we have Z̃k0(T )R → Z̃k0,R ∩Bk0(T ) when T →∞.

Let γ−k0/−k0−1 ∈ Γ−k0/−k0−1 be such that (γ−k0/−k0−1+F′k0
)∩Z̃k0,R∩Bk0(T ) 6=

∅. Then by the last paragraph we have (γ−k0/−k0−1 + F′k0
) ∩ Z̃k0(T )R 6= ∅ when

T →∞. By (9.11) and Fk0 = r−1
k0

(Fk0,R), we then have γ−k0/−k0−1Fk0∩Z̃k0(T ) 6=
∅. Thus γ−k0/−k0−1 ∈ Ξk0(T ) ∩ Γ−k0/−k0−1. This proves ⊆ for T � 1. �
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Now we are ready to finish the proof of Proposition 9.4.
For (i): Recall the definition F′k0

= (−M,M)dim(W−k0
/W−k0−1)(R) ⊆ (W−k0/W−k0−1)(R).

It is clear that if γ−k0/−k0−1 ∈ Γ−k0/−k0−1 lies in the set on the left hand of (9.9), then

we have H(γ−k0/−k0−1) ≤ 1
M T . So by Lemma 9.5, part (i) holds true for αk0 = α′k0

= 1.
For (ii): By Lemma 9.5, it suffices to prove: There exist constants ck0 > 0 and εk0 > 0

such that

(9.12) #{γ−k0/−k0−1 ∈ Γ−k0/−k0−1 : (γ−k0/−k0−1 +F
′
k0

)∩ Z̃k0,R ∩Bk0 (T ) 6= ∅, H(γ−k0/−k0−1) ≤ T} ≥ ck0T
εk0 .

Consider {γ−k0/−k0−1 ∈ Γ−k0/−k0−1 : (γ−k0/−k0−1 + F′k0
) ∩ Z̃k0,R 6= ∅}. We claim that

it is infinite. Indeed, assume otherwise, then Z̃k0,R is contained in a bounded subset

of (W−k0/W−k0−1)(R). But p−1
k0,k0−1(h) ' (W−k0/W−k0−1)(C)/F 0

h
(W−k0/W−k0−1)C by

part (ii) of Lemma 7.1, and the composite (ϕk0 is the natural projection)

(W−k0/W−k0−1)(C)
ϕk0−−→ (W−k0/W−k0−1)(C)/F 0

h
(W−k0/W−k0−1)C = p−1

k0,k0−1(h)

rk0−−→ (W−k0/W−k0−1)(R)

is, up to an automorphism of (W−k0/W−k0−1)(R) sending bounded sets to bounded sets,

the projection to the real part.[3] So ϕ−1
k0

(Z̃k0) ⊆ ϕ−1
k0

(r−1
k0

(Z̃k0,R)) is contained in a set

whose real part is bounded. But ϕ−1
k0

(Z̃k0) is complex analytic, so ϕ−1
k0

(Z̃k0) is a point,

and so is Z̃k0 . This contradicts dim Z̃k0 > 0.
Now that F′k0

is a fundamental set for the action of Γ−k0/−k0−1 on the Euclidean

space (W−k0/W−k0−1)(R). So #{γ−k0/−k0−1 ∈ Γ−k0/−k0−1 : (γ−k0/−k0−1 +F′k0
)∩ Z̃k0,R∩

Bk0(T ) 6= ∅} ≥ T for all T � 0. This yields (9.12) by part (i). Hence we are done for
part (ii). �

We will furthermore fix the following notations, which generalize the notations above.
For each k ∈ {k0, . . . ,m} and each real number T ≥ 0:

• Let Γ−k0/−k−1 = (ΓP ∩W−k0(Q))/(ΓP ∩W−k−1(Q)). Then Γ−k0/−k−1 acts on
Dk = D/W−k−1.

• Let Ξk(T ) = {g ∈ (W−k0/W−k−1)(R) : gFk ∩ Z̃k(T ) 6= ∅}.
Before going on, we prove the following lemma on the naive lifting of elements from

Ξk(T ) to Ξk+1(T ). Here we call the lifting naive because an element of small height
needs not be lifted to an element of small height.

Lemma 9.6. For T � 1, the following holds true. For each γ−k0/−k−1 ∈ Ξk(T ) ∩
Γ−k0/−k−1, there exists γ−k0/−k−2 ∈ Ξk+1(T )∩Γ−k0/−k−2 such that pk+1,k(γ−k0/−k−2) =
γ−k0/−k−1 for the natural projection pk+1,k : P/W−k−2 → P/W−k−1.

Proof of Lemma 9.6. Let γ−k0/−k−1 ∈ Ξk(T )∩Γ−k0/−k−1. The definition of Ξk(T ) yields

a point z̃′k ∈ γ−k0/−k−1Fk ∩ Z̃k(T ). Take z̃′k+1 ∈ Z̃k+1(T ) which maps to z̃′k under the

projection pk+1,k : Dk+1 → Dk. Such an z̃′k+1 exists when T � 1.[4]

[3]Recall that rk0 is the retraction given by the sl2-splitting. If rk0 is replaced by the retraction induced
by the Deligne δ-splitting, then this composite is precisely the projection to the real part. But the sl2-
splitting is defined by universal Lie polynomials in the Hodge components of the Deligne δ-splitting, so
this claim holds true.

[4]We have that Z̃k(T ) = pk(Z̃(k, T )) for some complex analytic irreducible component Z̃(k, T ) of

Z̃ ∩ p−1
k (Bk(T )). In particular, Z̃(k + 1, T ) ⊆ Z̃(k, T ). Notice that Z̃(k, T ) → Z̃ when T → ∞. So

Z̃(k + 1, T )→ Z̃(k, T ) when T →∞. So the desired z̃′k+1 exists when T � 1.
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Let z̃k = rk(z̃
′
k) ∈ γ−k0/−k−1Fk,R ∩ Z̃k(T )R. Similarly let z̃k+1 = rk+1(z̃′k+1). Then

z̃k+1 7→ z̃k under the map pk+1,k|Dk+1,R : Dk+1,R → Dk,R.
Take γ−k0/−k−2 ∈ Γ−k0/−k−2 to be such that γ−k0/−k−2 7→ γ−k0/−k−1 under the nat-

ural projection P/W−k−2 → P/W−k−1. Then pk+1,k(γ
−1
−k0/−k−2z̃k+1) = γ−1

−k0/−k−1z̃k ∈
Fk,R. Notice that (9.7) induces a real-algebraic isomorphismDk+1,R ' Dk,R×(W−k−1/W−k−2)(R),

and under this isomorphism we have Fk+1,R ' Fk,R × (−M,M)dim(W−k−1/W−k−2)(R) by
construction (7.8). Thus up to adjusting γ−k0/−k−2 by an element in Γ−k−1/−k−2, we

obtain that γ−1
−k0/−k−2z̃k+1 ∈ Fk+1,R. Note that we stil have γ−k0/−k−2 7→ γ−k0/−k−1.

Thus z̃k+1 ∈ γ−k0/−k−2Fk+1,R∩Z̃k+1(T )R. So γ−k0/−k−2 ∈ Ξk+1(T ). We are done. �

The following proposition, which is the lifting statement, will be proved in the next
two subsections.

Proposition 9.7. There exists an integer k′0 ∈ {k0, · · · ,m− 1} with the following prop-
erty. For each k > k′0, there exist constants c′k, ε

′
k > 0, and a sequence {Ti ∈ R}i∈N with

Ti →∞, such that

#{γ−k0/−k−1 ∈ Ξk(Ti) ∩ Γ−k0/−k−1 : H(γ−k0/−k−1) ≤ Ti} ≥ c′kT
ε′k
i .

Let us finish the proof of Theorem 9.2 assuming this proposition. Apply Proposi-
tion 9.7 to k = m. As W−(m+1) = 0, the conclusion of the proposition becomes: there
exist constants c′ = c′m, ε

′ = ε′m > 0 and a sequence {Ti ∈ R}i∈N with Ti →∞, such that

#{γ ∈ Γ−k : H(γ) ≤ Ti, γF ∩ Z̃m(Ti) 6= ∅} ≥ c′T ε
′
i .

But Γ−k0 ⊆ ΓP and Z̃m(Ti) ⊆ Z̃, and so

#{γ ∈ ΓP : H(γ) ≤ Ti, γF ∩ Z̃ 6= ∅} ≥ c′T ε
′
i .

Thus by (9.4), we have

#{γ ∈ Θ ∩ ΓP : H(γ) ≤ Ti} ≥ c′T ε
′
i .

So Theorem 9.2 follows from Pila–Wilkie, because Θ is a definable set in Ran,exp.

9.6. Proof of Proposition 9.7: lifting process. In this subsection, we will give
the lifting process. This lifting will be used in the next subsection to prove the full
Proposition 9.7.

Recall the notation k0 ∈ {0, · · · ,m} be such that dim Z̃k0 > 0, smallest for this
property.

Let k ∈ {k0, . . . ,m}.
The semi-algebraic isomorphismDk+1,R ' D0×(W−1/W−2)(R)×· · ·×(W−k−1/W−k−2)(R)

given by (9.7) induces

(9.13) Dk+1,R ' Dk,R × (W−k−1/W−k−2)(R).

Thus we have a natural projection

(9.14) λk+1 : Dk+1,R → (W−k−1/W−k−2)(R).

Consider the isomorphism of Q-varieties induced by (B.6)

P/W−k−1 ' G× (W−1/W−2)× · · · × (W−k/W−k−1).

The above isomorphism induces

(9.15) P/W−k−2 ' P/W−k−1 ×W−k−1/−k−2.

The group (P/W−k−2)(R)+ acts on Dk+1,R = (D/W−k−2)R.
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Lemma 9.8. Consider the Euclidean norm | · | on (W−k−1/W−k−2)(R). Then for any
γ−k0/−k−2 ∈ Γ−k0/−k−2, the set λk+1(γ−k0/−k−2Fk+1,R) is contained in a | · |-ball of

radius � H(γ−k0/−k−1)k+1 in (W−k−1/W−k−2)(R). Here, γ−k0/−k−1 ∈ Γ−k0/−k−1 is the
projection of γ−k0/−k−2 under the natural projection P/W−k−2 → P/W−k−1.

Moreover, if we denote by (γ−k0/−k−1, γ−k−1/−k−2) the image of γ−k0/−k−2 under the
isomorphism (9.15), then the | · |-ball mentioned above can be taken to be centered at
γ−k−1/−k−2.

We will postpone the proof of Lemma 9.8 to Section 9.8.

Lemma 9.9. Let Ξk(T ) be as defined above Lemma 9.6. There exist constants αk > 0
and α′k > 0 satisfying the following property. Any γ−k0/−k−1 ∈ Ξk(T ) ∩ Γ−k0/−k−1

satisfies H(γ−k0/−k−1) ≤ αkTα
′
k .

Proof of Lemma 9.9. We prove this lemma by upward induction on k ∈ {k0, . . . ,m}.
The base step is k = k0, which is precisely part (i) of Proposition 9.4.

Assume Lemma 9.9 is proved for k ∈ {k0, . . . ,m− 1}, namely H(γ−k0/−k−1) ≤ αkTα
′
k

for each γ−k0/−k−1 ∈ Ξk(T ) ∩ Γ−k0/−k−1. We wish to prove the property for k + 1,
namely, there exist constants αk+1 > 0 and α′k+1 > 0 such that each γ−k0/−k−2 ∈
Ξk+1(T ) ∩ Γ−k0/−k−2 satisfies H(γ−k0/−k−2) ≤ αk+1T

α′k+1 .
Take γ−k0/−k−2 ∈ Ξk+1(T )∩Γ−k0/−k−2. In particular, γ−k0/−k−2Fk+1∩Bk+1(T ) 6= ∅.

Applying rk+1 : Dk+1 → Dk+1,R to both sides, we get γ−k0/−k−2Fk+1,R∩
∏k+1
i=0 Bi(T ) 6= ∅.

Denote by (γ−k0/−k−1, γ−k−1/−k−2) the image of γ−k0/−k−2 under the isomorphism
(9.15). In particular, γ−k0/−k−1 is the image of γ−k0/−k−2 under the projection pk+1,k : P/W−k−2 →
P/W−k−1.

We claim γ−k0/−k−1 ∈ Ξk(T ) ∩ Γ−k0/−k−1. Indeed, it is clear that γ−k0/−k−1 ∈
Γ−k0/−k−1. Moreover, the definition of Ξk+1(T ) implies that γ−k0/−k−2Fk+1∩Z̃k+1(T ) 6=
∅. Applying pk+1,k and recalling our construction pk+1,k(Z̃k+1(T )) ⊆ Z̃k(T ), we obtain

γ−k0/−k−1Fk ∩ Z̃k(T ) 6= ∅. Thus γ−k0/−k−1 ∈ Ξk(T ).

Therefore, by induction hypothesis, we have H(γ−k0/−k−1) ≤ αkTα
′
k .

Next, as γ−k0/−k−2Fk+1,R ∩
∏k+1
i=0 Bi(T ) 6= ∅, we then have

(9.16) λk+1(γ−k0/−k−2Fk+1,R) ∩Bk+1(T ) 6= ∅.

By Lemma 9.8, λk+1(γ−k0/−k−2Fk+1,R) is contained in a |·|-ball of radius� H(γ−k0/−k−1)k+1

centered at γ−k−1/−k−2. We have seen that H(γ−k0/−k−1) ≤ αkT
α′k in the last para-

graph. So
(9.17)

λk+1(γ−k0/−k−2Fk+1,R) is contained in a | · |-ball of radius � T (k+1)α′k centered at γ−k−1/−k−2.

Recall that Bk+1(T ) is defined to be the | · |-ball of radius T centered at 0 in the Eu-
clidean space (W−k−1/W−k−2)(R). So (9.16) and (9.17) together imply thatH(γ−k−1/−k−2)
is bounded above polynomially in T , namely there exist real numbers βk, β

′
k > 0 such

that

H(γ−k−1/−k−2) ≤ βkT β
′
k .

Thus the proposition holds true for k+1 with αk+1 = max(αk, βk) and α′k+1 = max(α′k, β
′
k).

This finishes the induction step. Hence we are done. �

Up to replacing each α′k by a larger number, we may and do assume that

α′0 ≤ α′1 ≤ · · · ≤ α′m.
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For each k ∈ {k0, . . . ,m}, fix a number δk such that

(9.18) (k + 1)α′k < δk < (k + 2)α′k

Now we are ready to state and prove the lemmas concerning the lifting process for
Proposition 9.7. Recall the projection λk+1 : Dk+1,R → (W−k−1/W−k−2)(R) defined in
(9.14).

Lemma 9.10. Assume there exists a sequence {Ti ∈ R}i∈N, with Ti →∞, such that

(9.19) |λk+1(Z̃k+1(Ti)R)| ≤ T δki .

Assume furthermore that Proposition 9.7 holds true for k and this sequence, namely
there exist constants c′k, ε

′
k > 0 (independent of Ti) such that

(9.20) #{γ−k0/−k−1 ∈ Ξk(Ti) ∩ Γ−k0/−k−1 : H(γ−k0/−k−1) ≤ Ti} ≥ c′kT
ε′k
i .

Then there exist constant c′k+1 > 0 and ε′k+1 > 0, both independent of Ti, such that

(9.21) #{γ−k0/−k−2 ∈ Ξk+1(Ti) ∩ Γ−k0/−k−2 : H(γ−k0/−k−2) ≤ Ti} ≥ c′k+1T
ε′k+1

i .

Lemma 9.11. Assume

(9.22) |λk+1(Z̃k+1(T )R)| > T δk for all T � 1.

Then there exist constant c′k+1 > 0 and ε′k+1 > 0, both independent of T , such that

(9.23) #{γ−k0/−k−2 ∈ Ξk+1(T ) ∩ Γ−k0/−k−2 : H(γ−k0/−k−2) ≤ T} ≥ c′k+1T
ε′k+1 .

Proof of Lemma 9.10. By the assumption (9.20) and the naive lifting given by Lemma 9.6,
it suffices to prove the following claim.

Claim 1. Each γ−k0/−k−2 ∈ Ξk+1(Ti) ∩ Γ−k0/−k−2 satisfies H(γ−k0/−k−2)� T δki .

Recall the natural projection pk+1,k : P/W−k−2 → P/W−k−1. Let γ−k0/−k−1 = pk+1,k(γ−k0/−k−2).

The definition of Ξk+1(Ti) yields a point z̃′k+1 ∈ γ−k0/−k−2Fk+1∩Z̃k+1(T ). Let z̃k+1 =
rk+1(z̃′k+1) ∈ Dk+1,R. Write z̃k+1 = (z̃k, z̃k+1,k) ∈ Dk,R × (W−k−1/W−k−2)(R) ' Dk+1,R.

Then z̃k+1,k = λk+1(z̃k+1). Moreover γ−k0/−k−1Fk,R∩ Z̃k(T )R is nonempty as it contains

z̃k. Thus γ−k0/−k−1 ∈ Ξk(Ti), so H(γ−k0/−k−1) ≤ αkT
α′k
i by Lemma 9.9.

Let (γ−k0/−k−1, γ−k−1/−k−2) the image of γ−k0/−k−2 under the isomorphism (9.15)
P/W−k−2 ' P/W−k−1 ×W−k−1/−k−2.

We claim that z̃k+1,k is contained in a | · |-ball of radius � T
(k+1)α′k
k centered at

γ−k−1/−k−2. Indeed, z̃k+1 ∈ γ−k0/−k−2Fk+1,R by choice. So z̃k+1,k ∈ λk+1(γ−k0/−k−2Fk+1,R).
By Lemma 9.8, the set λk+1(γ−k0/−k−2Fk+1,R) is contained in a | · |-ball of radius

� H(γ−k0/−k−1)k+1, and hence of radius � T
(k+1)α′k
i , centered at γ−k−1/−k−2.

On the other hand, our assumption (9.19) implies |z̃k+1,k| ≤ T δki . So by the conclusion

of the previous paragraph, we have H(γ−k−1/−k−2)� T
δk−(k+1)α′k
i since δk > (k+ 1)α′k.

So H(γ−k0/−k−2) = max{H(γ−k0/−k−1), H(γ−k−1/−k−2)} � T δki . We are done. �

Proof of Lemma 9.11. Recall that Fk+1,R = Fk,R × (−M,M)dim(W−k−1/W−k−2)(R), for
some fixed real number M > 0, by definition (7.8).

Let γ−k0/−k−2 ∈ Ξk+1(T )∩Γ−k0/−k−2. Denote by (γ−k0/−k−1, γ−k−1/−k−2) ∈ Γ−k0/−k−1×
Γ−k−1/−k−2 be the image of γ−k0/−k−2 under the isomorphism (9.15). Then γ−k0/−k−1 =
pk+1,k(γ−k0/−k−2) for the natural projection pk+1,k : P/W−k−2 → P/W−k−1.
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We claim that λk+1(γ−k0/−k−2Fk+1,R∩Z̃k+1(T )R), being a subset of (W−k−1/W−k−2)(R),

is contained in a |·|-ball of radius� T (k+1)α′k . Indeed, λk+1(γ−k0/−k−2Fk+1,R∩Z̃k+1(T )R) ⊆
λk+1(γ−k0/−k−2Fk+1,R), which furthermore is contained in a |·|-ball of radius� H(γ−k0/−k−1)k+1

by Lemma 9.8. But H(γ−k0/−k−1) ≤ αkTα
′
k by Lemma 9.9.[5] So the claim holds true.

On the other hand, consider the | · |-ball in (W−k−1/W−k−2)(R) centered at 0 of radius

T δk . Our hypothesis (9.22) says that λk+1(Z̃k+1(T )R) reaches the boundary of this ball.
Since (W−k−1/W−k−2)(R) is Euclidean, the previous two paragraphs together imply

#{γ−k−1/−k−2 ∈ Γ−k−1/−k−2 :H(γ−k−1/−k−2) ≤ T δk , (γ−k0/−k−1, γ−k−1/−k−2) ∈ Ξk+1(T )

for some γ−k0/−k−1 ∈ Ξk(T ) ∩ Γ−k0/−k−1} � T δk−(k+1)α′k

for all T � 1. As each γ−k0/−k−1 ∈ Ξk(T ) ∩ Γ−k0/−k−1 satisfies H(γ−k0/−k−1) ≤ αkTα
′
k

by Lemma 9.9, the counting above yields, for all T � 1,

#{(γ−k0/−k−1, γ−k−1/−k−2) ∈ Ξk+1(T ) ∩ Γ−k0/−k−2 :H(γ−k−1/−k−2) ≤ T δk ,

H(γ−k0/−k−2) ≤ αkT
α′k
i } � T δk−(k+1)α′k .

But the only assumption on δk is given by (9.18) (k+ 1)α′k < δk < (k+ 2)α′k. Hence we
have proved (9.23) by choosing appropriately c′k+1 and ε′k+1. We are done. �

9.7. Proof of Proposition 9.7. Now we are ready to finish the proof of Proposition 9.7.

Recall the notation k0 ∈ {0, · · · ,m} be such that dim Z̃k0 > 0, smallest for this property.
Recall the following numbers we have introduced in Section 9.6, for each k ∈ {k0, · · · ,m}.
• α′k > 0 from Lemma 9.9. Namely, each γ−k0/−k−1 ∈ Ξk(T ) ∩ Γ−k0/−k−1 satisfies

H(γ−k0/−k−1)� Tα
′
k .

• δk ∈ ((k + 1)α′k, (k + 2)α′k) from (9.18).

Let λk+1 : Dk+1,R → (W−k−1/W−k−2)(R) be from (9.14).
The proof can be divided into two cases.

Case 1 There exists an integer k′0 ∈ {k0, · · · ,m− 1} such that

|λk′0+1(Z̃k′0+1(T )R)| > T
δk′0 for all T � 1.

In this case, let furthermore k′0 be the largest such integer. We will show that this k′0
is what we desire in Proposition 9.7.

We finish the proof by induction on k. The base step is k = k′0 + 1. In this case,
Proposition 9.7 holds true by Lemma 9.11.

Assume that Proposition 9.7 holds true for some k > k′0, namely there exist constants
c′k, ε

′
k > 0 and a sequence {Ti ∈ R}i∈N, with Ti →∞, such that

#{γ−k0/−k−1 ∈ Ξk(Ti) ∩ Γ−k0/−k−1 : H(γ−k0/−k−1) ≤ Ti} ≥ c′kT
ε′k
i .

Notice that this is precisely (9.20).
We wish to prove it for k + 1.
By the maximality of k′0 and because k > k′0, the following assertion holds true. Up

to replacing {Ti} by a subsequence, we have |λk+1(Z̃k+1(Ti)R)| ≤ T δki . This is precisely
(9.19).

Thus we can invoke Lemma 9.10 to conclude Proposition 9.7 for k + 1. This finishes
the induction step, and we are done.

[5]Applying the natural projection pk+1,k : Dk+1,R → Dk,R to γ−k0/−k−2Fk+1,R ∩ Z̃k+1(T )R 6= ∅, we

obtain γ−k0/−k−1Fk,R ∩ Z̃k(T )R 6= ∅.
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Case 2 For each k ∈ {k0, · · · ,m−1}, there exists a sequence {Ti ∈ R}i∈N, with Ti →∞,
such that

(9.24) |λk+1(Z̃k+1(Ti)R)| ≤ T δki .

Up to replacing the sequence {Ti} by a subsequence, we may assume that we are taking
the same sequence {Ti} for all k.

If k0 ≥ 1, then Proposition 9.7 holds true for k0 by part (ii) of Proposition 9.4.
Hence by applying Lemma 9.10 successively to k = k0, . . . ,m − 1, we can prove that
Proposition 9.7 holds true for each k ∈ {k0, · · · ,m}. Hence we are done.

So it remains to handle the case where k0 = 0, namely dim Z̃0 > 0.

From now on, we assume dim Z̃0 > 0. We start from the following inclusion of sets,

where Z̃(T ) = Z̃m(T ) is a complex analytic irreducible component of Z̃ ∩Bm(T ),

Z̃(T ) =
⋃

γ∈ΓP , γF∩Z̃(T )

γF ∩ Z̃(T ) ⊆
⋃

γ∈ΓP , γF∩Z̃(T )

γF ∩ Z̃.

Applying p0 to both sides and noticing that p0(Z̃(T ))→ Z̃0(T ) when T →∞,[6] we have

Vol(Z̃0(T )) ≤ #{γ ∈ ΓP , γF ∩ Z̃(T )} ·Vol(p0(γF ∩ Z̃)).

By [BT19, Prop. 2.7], we have Vol(Z̃0(T )) ≥ β1T
β2 . By [BT19, Prop. 3.2] and because

Z is a component of ZZar ∩∆, we have Vol(p0(γF ∩ Z̃)) ≤ β3. So we get

(9.25) #{γ ∈ ΓP , γF ∩ Z̃(T )} ≥ (β1/β3)T β2 .

Thus Proposition 9.7 for k = m follows from the following lemma. Hence we are done
by letting k′0 = m− 1 for this case.

Lemma 9.12. Let γ ∈ ΓP , and let {Ti} be the sequence from (9.24). If γF∩ Z̃(Ti) 6= ∅,
then H(γ)� T

α′m
i .

Proof. Write γ = (γ0/−1, γ−1/−2, . . . , γ−m/−m−1) under the identification P ' G ×
(W−1/W−2)×· · ·×W−m given by (B.6). Then (γ0/−1, . . . , γ−k/−k−1) ∈ G×(W−1/W−2)×
· · · × (W−k/W−k−1) ' P/W−k−1, which we denote by γ0/−k−1 for simplicity. Then
γ0/−k−1 = pk(γ) for the morphism pk : P → P/W−k−1.

Recall our assumption α′0 ≤ · · · ≤ α′m. We will prove by induction on k that

H(γ0/−k−1)� T
α′k
i .

The base step is k = 0. By applying p0 to γF ∩ Z̃(Ti) 6= ∅, we get that γ0/−1F0 ∩
Z̃0(Ti) 6= ∅. Thus γ0/−1 ∈ Ξ0(Ti) ∩ Γ0/−1 by definition of Ξ0(Ti). Thus we have

H(γ0/−1) ≤ α0T
α′0
i by part (i) of Proposition 9.4. Thus we have proved the base step.

Assume that we have proved for k. Let us prove for k+1. By Lemma 9.8 and noticing

that H(γ0/−k−1) � T
α′k
i by induction hypothesis, λk+1(γ0/−k−2Fk+1,R) is contained in

a | · |-ball of radius � T
(k+1)α′k
i in (W−k−1/W−k−2)(R), which moreover is centered

at γ−k−1/−k−2. Thus by (9.24), we have H(γ−k−1/−k−2) � T
δk−(k+1)α′k
i because δk >

(k+ 1)α′k. As δk is chosen to satisfy δk < (k+ 2)α′k, we are done for the induction step.
Hence we are done. �

[6]Recall that Z̃(T ) is a complex analytic irreducible component of Z̃∩Bm(T ). Thus Z̃(T )→ Z̃ when

T →∞. But p0(Z̃(T )) ⊆ Z̃0(T ) by definition of Z̃0(T ). So we have p0(Z̃(T ))→ Z̃0(T ) when T →∞.
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9.8. Proof of Lemma 9.8. Let γ−k0/−k−2 ∈ Γ−k0/−k−2. Use the notation as in the
lemma, namely γ−k0/−k−2 7→ (γ−k0/−k−1, γ−k−1/−k−2) under the isomorphism of Q-
varieties P/W−k−2 ' P/W−k−1 × (W−k−1/W−k−2) (9.15).

Next, consider the isomorphism of Q-varieties induced by (B.6)

P/W−k−1 ' G× (W−1/W−2)× · · · × (W−k/W−k−1),

and suppose γ−k0/−k−1 7→ (γ0/−1, γ−1/−2, . . . , γ−k/−k−1) under this isomorphism. Then
H(γ−k0/−k−1) = max{H(γ0/−1), . . . ,H(γ−k/−k−1)}.

Thus we have

P/W−k−2 ' G× (W−1/W−2)× · · · × (W−k/W−k−1)× (W−k−1/W−k−2)
γ−k0/−k−2 7→ (γ0/−1, γ−1/−2, . . . , γ−k/−k−1, γ−k−1/−k−2).

where the isomorphism of Q-varieties is induced by (B.6).
On the other hand, for the real-algebraic morphism induced by (9.7)

Dk+1,R ' D0 × (W−1/W−2)(R)× · · · × (W−k/W−k−1)(R)× (W−k−1/W−k−2)(R),

we have defined, in (7.8), Fk+1,R to be the inverse image of F0×F′1×· · ·F′k×F′k+1, where
M is a fixed real number and

F′i = (−M,M)dim(W−i/W−i−1)(R) ⊆ (W−i/W−i−1)(R).

The formula for the action of the group (P/W−k−2)(R)+ on Dk+1,R is given by Propo-
sition 7.2, or more precisely (7.7). Thus

λk+1(γ−k0/−k−2Fk+1,R)

={γ−k−1/−k−2 + γ0/−1x̃+ calbk(γ−k0/−k−1, γ0x̃
′) : x̃ ∈MF′k+1, x̃

′ ∈ F0 × F′1 × · · · × F′k}(9.26)

=γ−k−1/−k−2 + γ0/−1 · F′k+1 + calbk(γ−k0/−k−1, γ0/−1F0 × γ0/−1F
′
1 × · · · × γ0/−1F

′
k),

where calbk is a polynomial of degree at most k− 1. Notice that M , F0 and the F′i’s are
fixed, and that H(γ0/−1) ≤ H(γ−k0/−k−1). So

|γ0/−1·F′k+1+calbk(γ−k0/−k−1, γ0/−1(F0×F′1×· · ·F′k))| � H(γ0/−1)+H(γ−k0/−k−1)k+1 � H(γ−k0/−k−1)k+1.

Therefore, by (9.26), λk+1(γ−k0/−k−2Fk+1,R) is contained in the | · |-ball of radius �
H(γ−k0/−k−1)k+1 centered at γ−k−1/−k−2. Hence we are done.

10. Normality of the Q-stabilizer: Part 1

10.1. Family associated with Z. Let H be the component of the Hilbert scheme of
S ×D∨ which contains [ZZar], the point representing ZZar. Then H is proper. Consider
the (modified) universal family

B = {(x, m̃, [B]) ∈ (S ×D)×H : (x, m̃) ∈ B}.

The projection

(10.1) ψ : B→ S ×D

is a proper map since H is proper.
Define

Z = {(δ̃, [B]) ∈ (∆×H) ∩B : dim
δ̃
(∆ ∩ B) ≥ dimZ}.

Then Z is a closed complex analytic subset of B. So ψ(Z) is closed complex analytic in
S ×D as ψ is proper. Note that ψ(Z) ⊆ ∆.
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Let us summarize the notations in the following diagram.

B

ψ

��

Z⊇

ψ|Z
��

S ×D ∆⊇ //

uS

��

D
u

��
S

[Φ] // ΓP \D

Recall that the arithmetic group ΓP acts on S×D by its action on the second factor.
We claim that ΓPψ(Z) = ψ(Z). Indeed, this action of ΓP on S × D induces an action
of ΓP on B by

(10.2) γ(x, m̃, [B]) = (x, γm̃, [γB]).

Thus ΓP∆ = ∆ implies ΓPZ = Z. But ψ is ΓP -invariant. So ΓPψ(Z) = ψ(Z).
As the map uS : ∆ → S is ΓP -invariant (for the trivial action of ΓP on S), we have

that T := uS(ψ(Z)) is closed complex analytic in S.

Proposition 10.1. T is an algebraic subvariety of S.

Proof. By definable Chow ([PS09, Thm. 4.5] or [MPT19, Thm. 2.2]), it suffices to prove
that T is definable in Ran,exp. In the rest of the proof, when we say “definable” we mean
definable in Ran,exp.

Let FR and F = r−1(FR) be as in Theorem 7.3.
Note that uS is the restriction of the natural projection pS : S×D → D to ∆. So T =

uS(ψ(Z)) = pS(ψ(Z)) = pS(ψ(Z)∩(S×F)). Thus it suffices to prove that ψ(Z)∩(S×F)
is definable.

But ψ(Z)∩ (S×F) = ψ(Z∩ (S×F×H)). So it suffices to prove that Z∩ (S×F×H)
is definable.

By property (ii) of Theorem 7.3, the period map [Φ] is definable if we endow ΓP \D
with the definable structure given by u|F. So

∆ ∩ (S × F) = {(x, m̃) ∈ S × F : u(m̃) = [Φ](x)}

is a definable subset of S ×D. So((
∆ ∩ (S × F)

)
×H

)
∩B

is a definable subset of S ×D ×H. So

Z∩ (S×F×H) = {(δ̃, [B]) ∈
((

∆∩ (S×F)
)
×H

)
∩B : dim

δ̃
(∆∩ (S×F)∩B) ≥ dimZ}

is definable. Hence we are done. �

10.2. Monodromy. Let N be the connected algebraic monodromy group of the admis-
sible VMHS (VZ,W•,F•) on S. Then N C P by Theorem 3.4.

Lemma 10.2. HZZar CN .

Proof. Recall that ΓPZ = Z. So ΓP \Z is a complex analytic space. The proper map ψ
(10.1) induces

ψ : ΓP \Z→ ΓP \ψ(Z) = uS(ψ(Z)) = T,

which is also proper.
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Let Z0 be an irreducible component of Z which contains Z × [ZZar]. Then Z =
ψ(Z× [ZZar]) ⊆ ψ(Z0). So

uS(Z) ⊆ uS(ψ(Z0)) = ψ(ΓP \Z0).

The right hand side is T because T is irreducible and Z0 is an irreducible component of
Z. Recall the assumption S = uS(Z)Zar. So taking the Zariski closures of both sides, we
get T = S by Proposition 10.1.

Thus ψ induces a map ψ∗ : π1(ΓP \Z0)→ π1(S), and so a subgroup Γ0 of N(Q). But
Im(ψ∗) has finite index in π1(S) (since ψ is proper), so ΓZar

0 = N .
Next denote by θ : B ⊆ (S × D) ×H → H the restriction of the natural projection.

Let F = θ−1(θ(Z0)) = {(x, m̃, [B]) : [B] ∈ θ(Z0), (x, m̃) ∈ B}. Then F ⊆ B is the family
of algebraic varieties parametrized by θ(Z0) ⊆ H, with the fiber over each [B] ∈ θ(Z0)
being B. Then we have

Γ0F ⊆ F

for the action of ΓP on B defined by (10.2). Thus every γ ∈ Γ0 sends a very general
fiber of F to a very general fiber of F.

Define
ΓF = {γ ∈ ΓP : γB ⊆ B, for all [B] ∈ θ(Z)}.

Then for a very general [B] ∈ θ(Z0), we have

(10.3) StabΓP (B) = ΓF.

By construction of F, without loss of generality we may assume that ZZar is a very general
fiber of F. The conclusion of the last paragraph implies that any γ ∈ Γ0 sends ZZar to a
very general fiber of F. By taking the stabilizers of the two fibers in consideration, we
get ΓF = γΓFγ

−1 for all γ ∈ Γ0. By taking the Zariski closures, we get

(ΓZar
F )◦ CN.

On the other hand (10.3) implies (ΓZar
F )◦ = HZZar . Hence we are done. �

11. Normality of the Q-stabilizer: Part 2

Proposition 11.1. HZZar C P .

Proof. For simplicity we write H for the subgroup HZZar of N . We have H CN CP and
we want to show H C P . Let h ⊂ n ⊂ p be the corresponding inclusions of Lie algebra.
As H and P are connected, we are reduced to showing that h is an ideal of p, equivalently
that h ⊂ p is a P -submodule for the adjoint representation AdP : P → GL(p) of P .

The normality N C P implies that n is a P -submodule of p. Let (Vn,W•,F•) be the
admissible QVMHS on S associated to the P -module n. The underlying local system
Vn is defined by the N -module structure on n given by the monodromy representation
AdN : N ↪→ P → GL(n).

The normality H C N implies that h is an N -submodule of n, hence defines a sub-
local system Vh ⊂ Vn. We are reduced to proving that this sub-local system carries the
structure of a sub-VMHS of (Vn,W•,F•): this exactly means that the N -submodule h
of n is in fact a P -submodule.

This follows immediately from Proposition 11.2 below, which generalizes a result of
Deligne in the pure case. �

Proposition 11.2. Let VH := (V,W•,F•) be an admissible QVMHS on a complex
smooth quasi-projective variety S. Let L ⊂ V be a sub-local system. Then the restriction
of W• to L and of F• to L := OS ⊗Q L ⊂ V makes LH := (L,W•,F•) an admissible
sub-QVMHS of VH .



30

Proof. Let us prove the result by induction on the length l := maxi,j∈I(j − i) of the

weight filtration W• on V, where I denotes the finite set of n ∈ Z so that GrWn V 6= 0.
When l = 0, then VH is pure and the result is [Del87, Prop.1.13] (Deligne deals with

the case of a complex variation of Hodge structure but his proof adapts easily to the
rational case).

Let l be a non-negative integer and let us suppose by induction that the result holds
true for all admissible QVMHS on S of length at most l. Let VH := (V,W•,F•) be an
admissible QVMHS of length l + 1 = j − i > 0 with GrWi V 6= 0 and GrWj V 6= 0.

One has an exact sequence in the abelian category VMHS(S)adm of admissible QVMHS
on S (cf. Lemma 11.3):

(11.1) 0→WiVH → VH π→ VH/WiVH → 0 .

Forgetting the Hodge structure we obtain an exact sequence in the abelian category
Loc(S) of Q-local systems on S:

(11.2) 0→WiV→ V→ V/WiV→ 0 .

The sub-local system L of V is thus an extension in Loc(S):

(11.3) 0→ L ∩WiV→ L→ L/(L ∩WiV)→ 0 .

As VH/WiVH ∈ VMHS(S)adm has length at most l, it follows from the induction
hypothesis that there exists EH ⊂ VH/WiVH ∈ VMHS(S)adm with underlying local
system E = L/(L ∩WiV). The pull-back of (11.1) under EH ↪→ VH/WiVH provides an
extension in VMHS(S)adm

(11.4) 0→WiVH → π−1(EH)→ EH → 0 ,

and L is a sub-local system of the local system π−1(E) underlying π−1(EH). Without
loss of generality (replacing VH by π−1(EH) if necessary), we can thus assume that the
local system L surjects on V/WiV.

Now L∩WiV is a sub-local system of the local system WiV associated to the admissible
VMHS WiVH of length 0. By induction hypothesis there exists AH ⊂ WiVH with
underlying local system L ∩WiVH . Moreover, as WiVH is pure, it splits into a direct
sum WiVH = AH ⊕ (AH)⊥.

The extension VH is given by a class

(11.5) βVH ∈ Ext1
VMHS(S)adm

(VH/WiVH ,WiVH)

= Ext1
VMHS(S)adm

(VH/WiVH ,AH)⊕ Ext1
VMHS(S)adm

(VH/WiVH , (AH)⊥)

hence decomposes uniquely as βVH = α ⊕ α⊥ for α ∈ Ext1
VMHS(S)adm

(VH/WiVH ,AH)

and α⊥ ∈ Ext1
VMHS(S)adm

(VH/WiVH , (AH)⊥).

The class α defines an extension in VMHS(S)adm

(11.6) 0→ AH → LH → VH/WiVH → 0

endowed with a natural embedding LH ↪→ VH , with underlying local system L ↪→ V.
�

As the reader will have noticed, Proposition 11.2 follows entirely from Deligne’s result
in the pure case and the classical following

Lemma 11.3. The category VMHS(S)adm is abelian.
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Proof. Surprisingly enough the result does not seem explicitly stated in the literature,
although it is certainly used.

It is a direct consequence of M.Saito’s theory of mixed Hodge modules. Indeed the
category MHM(S) of mixed Hodge modules is abelian. As admissible variations of
mixed Hodge structure on S coincide with mixed Hodge modules on S whose underlying
perverse sheaf is a (shifted) local system, the result follows immediately.

Alternatively, and as mentioned to us by C.Schnell, we can avoid the use of mixed
Hodge module and appeal to Kashiwara’s results in [Kas86]. Indeed, the category of
graded-polarizable VMHS on S is clearly polarizable. Hence one only need to check the
admissibility of the kernel (resp. the image) of a morphism with target (resp. source) an
admissible VMHS. One is reduced to this question near the origin on a disk. The exten-
sion of the Hodge filtration and the existence of the relative weight filtration can both be
checked on the associated infinitesimal mixed Hodge module (IMHM), see [Kas86, Sec-
tion 4.5]. Hence they hold true by [Kas86, Prop.5.2.6]. �

12. End of the proof

In this section, we prove Theorem 8.2, which finishes the proof of Theorem 1.1.

Let Z as in Theorem 8.2. If dimHZZar = 0 then we are done by Proposition 9.1. Thus
we may assume dimHZZar > 0. For simplicity we write H := HZZar .

Proposition 11.1 says that H C P . Thus we can take the quotient D/H and obtain

(12.1) D
pH //

u

��

D/H
u/H

��
S

[Φ] //

[Φ/H ]
55

ΓP \D
[pH ] // ΓP/H\(D/H)

.

We can apply Proposition 9.1 to the new period map [Φ/H ] : S → ΓP/H\(D/H) and

Z/H := (idS , pH)(Z) ⊆ S ×ΓP/H\(D/H) (D/H).

But H = HZZar is the Q-stabilizer of ZZar, so the Q-stabilizer of ZZar
/H must be 1. Thus

Proposition 9.1 implies

(12.2) dimZZar
/H − dimZ/H ≥ dim pD/H(Z/H)ws,

where pD/H : S ×D/H → D/H is the natural projection.

Let Ru(H) be the unipotent radical of H. As H(R)+Ru(H)(C)ZZar = ZZar, we have

(for any s̃ ∈ S̃)

(12.3) dimZZar = dimZZar
/H + dimH(R)+Ru(H)(C)s̃

and

(12.4) dim pD(Z)ws = dim pD/H(Z/H)ws + dimH(R)+Ru(H)(C)s̃.

By (12.2), (12.3) and (12.4), we then have

(12.5) dimZZar − dimZ/H ≥ dim pD(Z)ws.

So it remains to prove dimZ = dimZ/H . Hence it remains to prove that each fiber of

(idS , pH) : S ×ΓP \D D → S ×ΓP/H\(D/H) (D/H)

is at most a countable set. This is true: Suppose (s1, x̃1) and (s2, x̃2) are in the same
fiber, then s1 = s2. But any point (s, x̃) ∈ S ×ΓP \D D satisfies [Φ](s) = u(x̃). So we
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have u(x̃1) = u(x̃2), and hence x̃1 ∈ ΓP x̃2. So each fiber of the map (idS , pH) above is
contained in a ΓP -orbit, and thus is at most a countable set.

Appendix A. Basic knowledge on Mumford–Tate domains

A.1. Some fundamental properties of Mumford–Tate domains. The goal of this
subsection is to prove Proposition 2.6 and Corollary 2.8.

Let V be a finite-dimensional Q-vector space, and let M be the classifying space
of Q-mixed Hodge structures constructed in Section 2.2. We have seen that M is a
homogeneous space under PM(R)+WM−1(C) for the Q-algebraic group PM constructed

in (2.3) and WM−1 = Ru(PM).

Let h ∈ M. Recall that the adjoint Hodge structure on LiePM defined by h has
weight ≤ 0 by part (iii) of Proposition 2.3. The following lemma is a rephrase of [Pea00,
Thm. 3.13].

Lemma A.1. The tangent space ThM can be canonically identified with⊕
r<0, r+s≤0

(LiePMC )r,s =
⊕
r<0

(LiePMC )r,s.

With this lemma, we are ready to prove Proposition 2.6.

Proof of Proposition 2.6. Let D = P (R)+W−1(C)h be a Mumford–Tate domain con-
tained in M, where P = MT(h) and W−1 = Ru(P ).

Because D andM are homogeneous spaces, to prove that D is a complex submanifold
of M it suffices to prove that ThD is a complex subspace of ThM.

LieP is a sub-Hodge structure of LiePM for the adjoint Hodge structure on LiePM

induced by h. So F 0 LiePC = F 0 LiePMC ∩LiePC. By Lemma A.1, the complex structure
on ThM is given by

LiePMC /F 0 LiePMC =
⊕
r<0

(LiePMC )r,s.

Thus ThD = LiePC/
(
F 0 LiePMC ∩ LiePC

)
= LiePC/F

0 LiePC is a complex subspace of
ThM. Thus we can conclude that D is a complex submanifold ofM. Moreover we have
shown that

(A.1) ThD =
⊕
r<0

(LiePC)r,s.

The proof for weak Mumford–Tate domains is the similar. The only new input is
to prove that LieN is a sub-Hodge structure of LiePM for the normal subgroup N of
P := MT(h) from Definition 2.5.(2). This is true because the adjoint action of P on
LieP leaves LieN stable (since N C P ), and the adjoint action Ad: P → GL(LieP )
is precisely the restriction of AdM : PM → GL(LiePM) restricted to P (which leaves
LieP stable). �

Next we turn to the Mumford–Tate group MT(h). For m,n ∈ Z≥0, denote by
Tm,nV := V ⊗m ⊗ (V ∨)⊗n. Then h induces a Q-mixed Hodge structure on Tm,nV ,
whose weight filtration we denote by W• and Hodge filtration we denote by F •.

The elements of (Tm,nVC)0,0 ∩ Tm,nV = F 0(Tm,nVC) ∩W0(Tm,nV ), with m and n
running over all non-negative integers, are called the Hodge tensors for h. Denote by
Hdgh the set of all Hodge tensors for h.

The following result is proved by André [And92, Lem. 2.(a)], with pure case by Deligne.

Lemma A.2. We have
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(i) Any element in some Tm,nV fixed by MT(h)(Q) is a Hodge tensor for h;
(ii) MT(h) = ZGL(V )(Hdgh).

By dimension reasons, Lemma A.2.(ii) has the following consequence.

Corollary A.3. There exists a finite set I ⊆ Hdgh such that MT(h) = ZGL(V )(I).

Now we are ready to characterize Mumford–Tate domains contained in M as irre-
ducible components of Hodge loci.

Definition A.4. For each h ∈M, the Hodge locus at h is defined as

(A.2) HL(h) = {h′ ∈M : Hdgh ⊆ Hdgh′}.

Lemma A.5. We have

(i) HL(h) = {h′ ∈M : MT(h′) < MT(h)}.
(ii) HL(h) = {h′ ∈M : I ⊆ Hdgh′} where I is the finite set from Corollary A.3.

Proof. (i) The inclusion ⊆ is clear by Lemma A.2.(ii). Conversely suppose MT(h′) <
MT(h). Then any t ∈ Hdgh is fixed by MT(h) by Lemma A.2.(ii), and so is also
fixed by MT(h′), and thus is a Hodge tensor for h′ by Lemma A.2.(i). Therefore
Hdgh ⊆ Hdgh′ .

(ii) We first prove the inclusion ⊆. Let h′ ∈ HL(h). By Corollary A.3 and (i), each
t ∈ I is fixed by MT(h′)(Q), and hence is a Hodge tensor for h′ by Lemma A.2.(i).
So I ⊆ Hdgh′ . This proves the desired inclusion.

Conversely suppose that h′ ∈ M satisfies J ⊆ Hdgh′ . Then ZGL(V )(Hdgh′) ⊆
ZGL(V )(I). Thus MT(h′) < MT(h) by Lemma A.2.(ii) and Corollary A.3. So
h′ ∈ HL(h) by part (i) of the current lemma. This proves the inclusion ⊇. Now
we are done. �

By Lemma A.5.(ii), HL(h) is the complex analytic subvariety ofM which parametrizes
Q-mixed Hodge structures (satisfying the properties (1)-(3) in Section 2.2) together with
the Hodge tensors in the finite set I.

Proposition A.6. Let h ∈M, with P = MT(h) and W−1 = Ru(P ). Then P (R)+W−1(C)h
is the complex analytic irreducible component of HL(h) passing through h.

Proof. The proof is simply [CMSP17, Prop. 17.1.2] adapted to the mixed case. For
completeness we include it here.

Denote by D = P (R)+W−1(C)h. Each h′ ∈ D equals g ·h for some g ∈ P (R)+W−1(C),
and hence the homomorphism h′ : SC → GL(VC) factors through gPCg

−1 = PC. Thus
MT(h′) < P . So Lemma A.5.(i) implies h′ ∈ HL(h) for each h′ ∈ D. Therefore

(A.3) D ⊆ HL(h).

Next we study Th(HL(h)) ⊆ ThM =
⊕

r<0(LiePMC )r,s; see Lemma A.1 for the last
equality. By (A.3) and (A.1), to prove the proposition it suffices to prove

(A.4) Th(HL(h)) ⊆
⊕
r<0

(LiePC)r,s.

Indeed the action of PM on Tm,nV induces an action of ThM on Tm,nV in the following
way: ξ · t = d

du(euξ · t)|u=0, for ξ ∈ ThM =
⊕

r<0(LiePMC )r,s and t ∈ Tm,nV . Then for

any vector ξ ∈ ThM =
⊕

r<0(LiePMC )r,s, we have

(A.5) ξ ∈ Th(HL(h))⇔ ξ · t ∈ Hdgh for each t ∈ Hdgh.
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Now take ξ ∈ Th(HL(h)). Suppose t ∈ T := Tm,nV is a Hodge tensor, namely t ∈
F 0TC ∩W0T ⊆ T 0,0

C .[7] Then (A.5) implies ξ · t ∈ F 0TC ∩W0T ⊆ T 0,0
C . On the other

hand ξ ∈
⊕

r<0(LiePMC )r,s. Write ξ =
∑

r<0 ξ
r,s. Then ξ · t =

∑
r<0 ξ

r,s · t ∈
⊕

r<0 T
r,s
C .

Thus ξ · t ∈ T 0,0 ∩
⊕

r<0 T
r,s
C = 0. In summary

(A.6) ξ ∈ Th(HL(h))⇒ ξ · t = 0 for each t ∈ Hdgh.

But part (ii) of Lemma A.2 implies that {ξ ∈ LiePMC : ξ · t = 0 for each t ∈ Hdgh} ⊆
LiePC with P = MT(h). Thus Th(HL(h)) ⊆ LiePC. So

Th(HL(h)) ⊆ LiePC ∩ ⊕r>0(LiePMC )r,s = ⊕r>0(LiePC)r,s.

This is precisely (A.4). Hence we are done. �

Now by Proposition A.6 and Lemma A.5.(ii), the Mumford–Tate domains contained in
M are precisely the complex irreducible components of the moduli spaces parametrizing
Q-mixed Hodge structures (satisfying the properties (1)-(3) in Section 2.2) together with
a finite number of Hodge tensors.

Proof of Lemma 2.7. This is an immediate consequence of the moduli interpretation of
Mumford–Tate domains above. �

Another application is as follows.

Corollary A.7. There are at most countably many Mumford–Tate domains in M.

Proof. We have the moduli interpretation of Mumford–Tate domains above. On the
other hand, every complex analytic variety has at most countably many irreducible
components, and by definition there are countably many Hodge tensors. Hence there
are at most countably many Mumford–Tate domains contained in M. �

This allows to prove a stronger version of Corollary 2.8.

Lemma A.8. Let Z be a complex analytic irreducible subvariety ofM. Let P = MT(Z)
be the generic Mumford–Tate group of Z. Then Zsp, the smallest Mumford–Tate domain
which contains Z, is precisely P (R)+W−1(C)h for some h ∈ Z, where W−1 = Ru(P ).

Proof. Denote by Zo the set of Hodge generic points in Z. Then Zo is the complement
of the union of countably many proper complex analytic irreducible subvarieties of Z.
In particular, Zo is irreducible since Z is.

It is clearly true that Zo ⊆
⋃
h∈Zo P (R)+W−1(C)h. Each member in the union is by

definition a Mumford–Tate domain, and hence the union is at most a countable union
by Corollary A.7. Moreover two P (R)+W−1(C)-orbits either coincide or are disjoint. So
Zo is contained in a countable disjoint union of some P (R)+W−1(C)-orbits. But Zo is
irreducible, so it is contained some member in the union. Thus Zo ⊆ P (R)+W−1(C)h
for some h ∈ Zo. But then Z ⊆ P (R)+W−1(C)h. Hence we are done. �

Now we are ready to prove Lemma 2.10.

Proof of Lemma 2.10. By assumption D = P (R)+W−1(C)h. From now on we fix h′ ∈ D
Hodge generic, namely MT(h′) = MT(D).

By Lemma A.8 we have

(A.7) P (R)+W−1(C)h′ = D ⊆ MT(D)(R)+Ru(MT(D))(C)h′.

[7]Here the notation T 0,0
C means the (0, 0)-constituent for the bi-grading of T given by Proposition 2.2.
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Let us prove MT(D) < P . Indeed, each point h′ ∈ D is of the form g · h for some
g ∈ P (R)+W−1(C). The homomorphism h′ = g · h : SC → GL(VC) factors through
gh(SC)g−1 ⊆ gPCg

−1 = PC. Hence MT(h′) < P for all h′ ∈ D. So MT(D) < P .
Next we show that MT(D) is normal in P . Indeed for any g ∈ P (Q), we have

MT(D) ⊇ MT(g · h′) = gMT(h′)g−1 = gMT(D)g−1.

By comparing dimensions, we have MT(D) = gMT(D)g−1. By letting g run over ele-
ments in P (Q), we get MT(D)C P . In particular Ru(MT(D)) = W−1 ∩MT(D).

This implies

(A.8) MT(D)(R)+Ru(MT(D))(C)h′ ⊆ P (R)+W−1(C)h′.

Thus D = MT(h′)(R)+Ru(MT(h′))(C)h′ by (A.7) and (A.8). So D is a Mumford–Tate
domain. �

Appendix B. Underlying group

Let D be a Mumford–Tate domain in some classifying space M with P = MT(D).
Each h ∈ D defines an adjoint Hodge structure on LieP . Write W• for the weight
filtration. By property (iii) of Proposition 2.3 W• does not depend on the choice of
h ∈ D and satisfies W0(LieP ) = LieP and W−1 = Ru(P ).

The weight filtration 0 = W−m−1(LieP ) ⊆ W−m(LieP ) ⊆ · · · ⊆ W−1(LieP ) defines
a sequence of connected subgroups

(B.1) 0 = W−(m+1) ⊆W−m ⊆ · · · ⊆W−1

of P . Each W−k, k ∈ {1, . . . ,m}, is a normal unipotent subgroup of P .
Write as before G = P/W−1 the reductive part of P . We wish to reconstruct P from

G and the W−k’s.
Let us start with the unipotent radical W−1.

Lemma B.1. (a) For each k ∈ {1, . . . ,m}, W−k/W−(k+1) is a vector group.
(b) There is an isomorphism of Q-algebraic varieties

(B.2)
W−1 → (W−1/W−2)× · · · × (W−(m−1)/W−m)×W−m
w 7→ (w1, · · · , wm−1, wm) .

Proof. We first prove (a). For each k ∈ {1, . . . ,m}, the algebraic group W−k/W−(k+1)

is unipotent since W−k is unipotent. On the other hand [LieW−k,LieW−k] ⊆ W−2k

by reason of weight, and W−2k ⊆ W−(k+1) as k ≥ 1. Thus LieW−k/W−(k+1) is a
commutative Lie algebra, hence W−k/W−(k+1) is an abelian algebraic group. Finally
the algebraic group W−k/W−(k+1) is a vector group as it is abelian and unipotent.

We now turn to the description of the isomorphism (B.2). As W−1 is unipotent, the
exponential map exp: LieW−1 →W−1 is an isomorphism of Q-algebraic varieties.

Fix an isomorphism of Q-vector spaces LieW−1 '
⊕m

j=1 LieW−j/W−(j+1). As part (a)

provides a canonical identification of Q-algebraic varieties LieW−k/W−(k+1) = W−k/W−(k+1)

between a vector group and its Lie algebra, we get the desired the isomorphism (B.2) by

W−1
exp←−−
∼

LieW−1 =

m⊕
j=1

Lie(W−j/W−(j+1)) =

m∏
j=1

W−j/W−(j+1). �

Notice that this isomorphism (B.2) is not canonical. In this paper, we fix such an
isomorphism once and for all.

Next we give the formula for the group law on W−1 under this identification given by
(B.2).
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Definition B.2. For k ∈ {1, · · · ,m} we define the k-truncation wk ∈ W−1/W−k−1 '∏k
j=1W−j/W−(j+1) of an element w ∈ W−1 as follows. If w = (w1, · · · , wm−1, wm)

under the identification (B.2), then wk = (w1, · · · , wk).

Lemma B.3. For each k ≥ 2, there exists a polynomial map

calbk : W−1/W−k−1 ×W−1/W−k−1 →W−k/W−k−1

of degree at most k−1 and constant term 0 such that for any w,w′ ∈W−1, their product
is given under the identification (B.2) by

(B.3) w ·w′ = (w1 +w′1, w2 +w′2 +calb2(w1,w
′
1), . . . , wm+w′m+calbm(wm−1,w

′
m−1)).

Proof. Let w = (w1, . . . , wm) and w′ = (w′1, . . . , w
′
m) under (B.2). The Baker–Campbell–

Hausdorff formula gives:
(B.4)

w ·w′ = exp

(
(w1, . . . , wm) + (w′1, . . . , w

′
m) +

1

2
[(w1, . . . , wm), (w′1, . . . , w

′
m)] + . . .

)
,

where all operations in the exponential are taken in LieW−1, and the sum is finite as
LieW−1 is nilpotent. Noticing that

[W−k/W−(k+1),W−k′/W−(k′+1)] ⊆W−(k+k′)/W−(k+k′+1),

one can rewrite (B.4) as

w·w′ = exp
(
(w1 + w′1, w2 + w′2 + calb2(w1,w

′
1), . . . , wm + w′m + calbm(wm−1,w

′
m−1))

)
,

with polynomials calbk for each k ≥ 2 as required by the lemma. �

The next lemma explains how G = P/W−1 acts on W−1 = Ru(P ) under the identifi-
cation (B.2).

Lemma B.4. For each k ≥ 1, W−k/W−(k+1) is a G-module. Moreover this G-module
structure is induced by the action of G on W−1.

As a consequence, for each g0 ∈ G and w = (w1, . . . , wm) ∈ W−1 under (B.2), we
have

(B.5) g0 ·w = (g0w1, . . . , g0wm).

Proof. As GrW•0 (LieP ) = LieG and W−k(LieP ) = LieW−k for each k ≥ 1, we have
[LieG,LieW−k] ⊆ LieW−k. Hence the action of G on W−1 preserves W−k for each
k ≥ 1, and hence furthermore induces an action on W−k/W−(k+1) which is a Q-vector
space. This concludes the lemma. �

We are now ready to state the result to reconstruct P from G and the W−k’s. First
let us fix a Levi decomposition P = W−1 oG.

Proposition B.5. The fixed Levi decomposition P = W−1oG and the fixed isomorphism
(B.2) together induce an isomorphism as algebraic varieties defined over Q
(B.6) P ' G× (W−1/W−2)× · · · (W−(m−1)/W−m)×W−m.

The group law on the right hand side of (B.6) is given as follows. Let (g0, w1, . . . , wm)
and (g′0, w

′
1, . . . , w

′
m) be two elements in P under the identification (B.6). Denote by

w = (w1, . . . , wm) and w′ = (w′1, . . . , w
′
m). Then

(B.7) (g0,w)·(g′0,w′) = (g0g
′
0, w1+g0w

′
1, w2+g0w

′
2+calb2(w1, g0w

′
1), . . . , wm+g0w

′
m+calbm(wm−1, g0w

′
m−1))

where calb2, . . . , calbm are the Q-polynomials from Lemma B.3, wk (resp. w′k) is the
k-th truncation as in Lemma B.3, and g0w

′
k = (g0w

′
1, . . . , g0w

′
k) for each k ≥ 1.
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Proof. (B.6) follows directly from the fixed Levi decomposition and (B.2).
To prove (B.7), first note that (g0,w) = (1,w) · (g0, 0) for P = W−1 o G. Similarly

(g′0,w
′) = (1,w′) · (g′0, 0). So

(g0,w) · (g′0,w′) = (1,w) ·
(
(g0, 0) · (1,w′)

)
· (g′0, 0)

= (1,w) · (g0, g0 ·w′) · (g′0, 0)

= (1,w) ·
(
(1, g0 ·w′) · (g0, 0)

)
· (g′0, 0)

= (1, w1, . . . , wm) · (1, g0w
′
1, . . . , g0w

′
m) · (g0, 0) · (g′0, 0) by (B.5)

= (1, w1 + g0w
′
1, w2 + g0w

′
2 + calb2(w1, g0w

′
1), . . . ,

wm + g0w
′
m + calbm(wm1 , g0w

′
m−1)) · (g0g

′
0, 0) by (B.3)

= (g0g
′
0, w1 + g0w

′
1, w2 + g0w

′
2 + calb2(w1, g0w

′
1), . . . ,

wm + g0w
′
m + calbm(wm1 , g0w

′
m−1)). �
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[Tsi18] J. Tsimerman. A proof of the André-Oort conjecture for Ag. Annals Math., 187:379–390,

2018.
[UY14] E. Ullmo and A. Yafaev. The hyperbolic Ax-Lindemann in the compact case. Duke Journal

of Mathematics, 163(2):433–463, 2014.

CNRS, IMJ-PRG, 4 place Jussieu, 75005 Paris, France
Email address: ziyang.gao@imj-prg.fr

Dept. of Mathematics, Humboldt Universität, Berlin, Germany
Email address: bruno.klingler@math.hu-berlin.de


	1. Introduction
	2. Mixed Hodge structures, classifying space, and Mumford–Tate domains
	3. Variation of mixed Hodge structures
	4. Mixed Hodge data
	5. Quotients
	6. Period Map and Logarithmic Ax
	7. Fibered structure and real points
	8. Dévissage and Preparation
	9. Bigness of the Q-stabilizer
	10. Normality of the Q-stabilizer: Part 1
	11. Normality of the Q-stabilizer: Part 2
	12. End of the proof
	Appendix A. Basic knowledge on Mumford–Tate domains
	Appendix B. Underlying group
	References

