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Abstract. Using our recent results on the algebraicity of the Hodge locus for variations of
Hodge structures of level at least 3, we improve the results of Lawrence-Venkatesh in direction
of the refined Bombieri–Lang conjecture.

The aim of this short note is to explain how the Geometric Zilber–Pink conjecture, recently
established by the authors [2], can be used to improve the main result of Lawrence and Venkatesh
[7], giving a special case of the refined Bombieri–Lang conjecture. We prove that there is a closed
strict algebraic subvariety E defined over Z of Un,d, the parameter space of smooth hypersurfaces
of degree d in Pn+1, such that

(Un,d − E) (OK,S)

is finite, for every finitely generated Q-field K and every finite set of places S of K, as soon as n
and d are “big enough” (see the condition (2.0.1)).

We first recall in Section 1 (a special case of) the Geometric Zilber–Pink conjecture mentioned
above, which is a purely geometric result; and then in Section 2 the Lawrence-Venkatesh method,
which is of arithmetic nature. In Section 3 we explain what can be obtained by combining the
two results.

1. The geometry of the Hodge locus

Let f : X → S be a smooth projective morphism of smooth irreducible complex quasi-
projective varieties, of relative dimension n. The primitive Betti cohomology Hn(Xan

s ,Z)prim
of the fibres Xs, s ∈ S(C), form a polarized Z-variation of Hodge structures V on the complex
manifold San, described by a complex analytic period map Φ : San → Γ\D (we refer for instance
to [2] for more details on period maps). Motivated by the study of the Hodge conjecture for the
fibres of f , one defines the Hodge locus HL(S,V⊗) as the locus of points s ∈ San for which the
Hodge structure Hn(Xan

s ,Q)prim admits more Hodge tensors than the primitive cohomology of
the very general fibre. Here a Hodge class of a pure Z-Hodge structure V = (VZ, F

•) is a class
in VQ whose image in VC lies in the zeroth piece F 0VC of the Hodge filtration, or equivalently
a morphism of Hodge structures Q(0) → VQ; and a Hodge tensor for V is a Hodge class in
V ⊗ :=

⊕
a,b∈N V

⊗a⊗(V ∨)⊗b, where V ∨ denotes the Hodge structure dual to V . Cattani, Deligne

and Kaplan [3, Theorem 1.1] proved in particular that the Hodge locus HL(S,V⊗) is a countable
union of irreducible algebraic subvarieties of S, called the special subvarieties of S for V (or f).
We denote by HL(S,V⊗)pos the Hodge locus of positive period dimension, that is the union of
the special subvarieties whose image under Φ has positive dimension in Γ\D.

Let P
N(n,d)
Q := P(H0(Pn+1

Q ,OPn+1
Q

(d))) be the parameter space of hypersurfaces X of Pn+1
Q

of degree d (where N(n, d) =
(
n+d+1

d

)
− 1). Let Un,d ⊂ P

N(n,d)
Q be the Zariski-open subset

parametrising the smooth hypersurfaces X and consider

fn,d : Xn,d → Un,d,

the universal family of smooth degree d hypersurfaces in Pn+1
Q . We denote by V the polarized

Z-variation of Hodge structure (Rnfann,d,C∗Z)prim on Un,d,C. We write HL(Un,d,C,V⊗) for its

Hodge locus and HL(Un,d,C,V⊗)pos for its Hodge locus of positive period dimension.
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In our previous paper we have established the following as a particular case of our main result:

Theorem 1.1 ([2, Corollary 2.7]). If n ≥ 3, d ≥ 5 and (n, d) 6= (4, 5) then the Hodge locus
HL(Un,d,C,V)pos of positive period dimension is a closed (not necessarily irreducible) algebraic
subvariety of Un,d,C. That is, there are only finitely many (rather than countably many) maximal
strict special subvarieties of Un,d,C for V of positive period dimension.

Remark 1.2. The complement of Un,d in P
N(n,d)
Q is a hypersurface. Hence Un,d is an open affine

subvariety, stable under the natural SL(n+ 2)-action on P
N(n,d)
Q . For d ≥ 3 this action is regular

in the sense of GIT (the dimensions of the stabilizers are locally constant) hence closed (the
orbits are closed). Since OPn+1

Q
(1) admits an SL(n+ 2)-linearization, Un,d is contained in the

open set of stable points for this action and the geometric quotientMn,d := Un,d/SL(n+2) is the
moduli space of smooth hypersurfaces of degree d in Pn+1. The period map Φ : Uan

n,d,C → Γ\D
factorizes through Man

n,d,C.

Remark 1.3. For what follows, the easier [2, Theorem 5.1] would actually be enough (that is
the Geometric Part of Zilber-Pink, for weakly-special subvarieties).

2. Non-denseness of integral points and the Lawrence–Venkatesh method

Let Q ⊂ C be the algebraic closure of Q in C. In a recent breakthrough, Lawrence and
Venkatesh proved the following:

Theorem 2.1 ([7, Theorem 10.1, Proposition 10.2]). There exist n0 ∈ N≥3 and a function
d0 : N→ N such that,

(2.0.1) for every n ≥ n0 and d ≥ d0(n),

the set Un,d(OK,S) is not Zariski dense in Un,d,C, for every number field K and every finite set
of places S of K.

Remark 2.2. Being Man
n,d,C hyperbolic, a famous conjecture of Lang (see for instance [4,

Chapter F.5.2]) predicts that Mn,d(OK,S) is finite, hence Un,d(OK,S) should be a finite union of
PGLn+2(OK,S)-orbits, as soon as d ≥ 3 and all n. We remark here that the finiteness of the
integral points of Mn,d is independent on the choice of an integral model of Mn,d, hence we do
not have to consider finer questions about geometric invariant theory over the integers.

Remark 2.3. Thanks to the main theorem of [5], the same conclusion of Theorem 2.1 holds
true for over every finitely generated field K of characteristic zero (not necessarly a number
field). This is indeed the level of generality we employ from now on.

The following elucidation of the Lawrence-Venkatesh method for proving Theorem 2.1 will
be crucial for us. Lawrence and Venkatesh actually prove that (quoting the third paragraph
of [7, Section 1.1]) the monodromy for the universal family of hypersurfaces must drop over
each component of the Zariski closure of the integral points (see also the last three lines of
[7, Theorem 10.1]): for any K,S, there exists a closed subvariety VK,S of Un,d/OK,S whose
irreducible components are of positive period dimension and not monodromy generic, such that
(Un,d − VK,S)(OK,S) is finite. By the Deligne-André monodromy theorem (see for example [2,
Section 3 and 4]) and the fact that the ZVHS V is irreducible, it follows that each VK,S lies in
the Hodge locus of positive period dimension HL(Un,d,V⊗)pos.

1

Remark 2.4. The Lawrence-Venkatesh method requires the choice of an auxiliary prime number
p, and the choice of an identification between C and Qp. Indeed, to prove that the OK,S-points
of Un,d are not Zariski dense, Lawrence and Venkatesh prove that some p-adic period map

1In fact, and to justify Remark 1.3, their proof actually shows that each VK,S is contained in the atypical
Hodge locus of positive period dimension. Such subspace of the Hodge locus is proven to be non-Zariski dense
in Un,d in [2] as a first step towards Theorem 1.1, but it holds true for any variety supporting any variation of
Hodge structures.
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sending x ∈ Un,d(OK,S) to some p-adic representation of the absolute Galois group of Kv (where
v denotes some place above the rational prime p) has fibers that are not Zariski dense in Un,d.
This is done by working on a residue disk in Un,d(Kv) and the p-adic and complex period maps
are then related by a study of the Gauss-Manin connection [7, Lemma 3.2]. What their proof
actually shows, with respect to our fixed embedding Q ⊂ C is that for each K,S, there exists an
automorphism ιp of C such that VK,S is contained in HL(Un,d,V⊗)

ιp
⊗ ⊂ Un,d,C. What allows us

to say that VK,S lies in HL(Un,d,V⊗)pos is the fact that HL(Un,d,V⊗)pos is actually defined over
Q, as one sees by combining Theorem 1.1 and [6, Theorem 1.10].

Remark 2.5. Let us emphasize that both [7, Theorem 10.1] and Theorem 1.1 build on the Ax-
Schanuel theorem [1], a deep and general theorem establishing strong functional transcendence
properties of period maps. Actually, in Lawrence-Venkatesh, a p-adic version of such a result is
used, see indeed [7, Lemma 9.3].

3. Proof of the Main result

We are finally ready to state and prove the main result of the paper. The following is a
consequence of the refined form of the Bombieri–Lang conjecture for quasi-projective2 varieties
of general type [4, Chapter F.5.2].

Theorem 3.1. As long as (2.0.1) is satisfied, there exists a closed strict subvariety E ⊂ Un,d
such that, for all K and all S, we have

Un,d(OK,S)pos ⊂ E,

where Un,d(OK,S)pos denotes the positive dimensional components of the Zariski closure of

Un,d(OK,S) in Un,d. That is Un,d − E has only finitely many OK,S-points.

Even if K is fixed, the above is still a non-trivial improvement of Theorem 2.1. Indeed⋃
S

Un,d(OK,S)pos,

where the union ranges along the finite set of K-places, could be, a priori, Zariski dense in Un,d.

Remark 3.2. The same improvement applies also to [7, Theorem 10.1], since, as recalled in
Remark 1.3, Theorem 1.1 is just a special case of a much more general theorem in variational
Hodge theory.

3.1. Proof of Theorem 3.1. As explained above the proof is essentially a combination of
Theorem 2.1 and Theorem 1.1. We present here the details needed.

It follows from Theorem 1.1 that HL(Un,d,V⊗)pos is a (closed, strict) algebraic subvariety of
Un,d and, thanks to the elucidation of Theorem 2.1, we have⋃

K,S

Un,d(OK,S)pos =
⋃
K,S

VK,S ⊂ HL(Un,d,V⊗)pos,

where the union ranges over all Q-finitely generated fields K and all finite set of places S. It
follows from Theorem 1.1 that

E′ :=
⋃
K,S

VK,S
Zar

⊂ HL(Un,d,V⊗)pos.

We remark here that the above inclusion may happen to be strict. Therefore we obtained a
closed Q-subvariety E′ ⊂ HL(Un,d,V⊗)pos containing all VK,S (seen as Q-varieties). The Zariski

closure E in PN
Z of E′ enjoys the desired property: Un,d −E has only finitely many OK,S-points

(for all K,S as in the statement). The proof of the Theorem is eventually concluded.

2Bombieri–Lang and Lang conjectures are often stated with projective varieties and rational points. Here we
mean smooth quasi-projective varieties V of log-general type and hyperbolic in the sense of Brody (that is to say
that the only holomorphic maps from C to V are the constants).
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