
p-ADIC LATTICES ARE NOT KÄHLER GROUPS

B. KLINGLER

Abstract. We show that any lattice in a simple p-adic Lie group is not the funda-
mental group of a compact Kähler manifold, as well as some variants of this result.

1. Results

1.1. A group is said to be a Kähler group if it is isomorphic to the fundamental
group of a connected compact Kähler manifold. In particular such a group is finitely
presented. The most elementary necessary condition for a finitely presented group to
be Kähler is that every of its finite index subgroups has even rank abelianization. A
classical question, due to Serre and still largely open, is to characterize Kähler groups
among finitely presented groups. A standard reference for Kähler groups is [ABCKT96].

1.2. In this note we consider the Kähler problem for lattices in simple groups over
local fields. Recall that if G is a locally compact topological group, a subgroup Γ ⊂ G is
called a lattice if it is a discrete subgroup of G with finite covolume (for any G-invariant
measure on the locally compact group G).

We work in the following setting. Let I be a finite set of indices. For each i ∈ I we
fix a local field ki and a simple algebraic group Gi defined and isotropic over ki. Let
G =

∏
i∈I Gi(ki). The topology of the local fields ki, i ∈ I, make G a locally compact

topological group. We define rkG :=
∑

i∈I rk kiGi.
We consider Γ ⊂ G an irreducible lattice: there does not exist a disjoint decomposition

I = I1
∐
I2 into two non-empty subsets such that, for j = 1, 2, the subgroup Γj := Γ∩GIj

of GIj :=
∏
i∈Ij Gi(ki) is a lattice in GIj .

The reference for a detailed study of such lattices is [Mar91]. In Section 2 we recall a
few results for the convenience of the reader.

1.3. Most of the lattices Γ as in Section 1.2 are finitely presented (see Section 2.3).
The question whether or not Γ is Kähler has been studied by Simpson using his non-
abelian Hodge theory when at least one of the ki’s is archimedean. He shows that if Γ
is Kähler then necessarily for any i ∈ I such that ki is archimedean the group Gi has to
be of Hodge type (i.e. admits a Cartan involution which is an inner automorphism), see
[Si92, Cor. 5.3 and 5.4]. For example SL(n,Z) is not a Kähler group as SL(n,R) is not
a group of Hodge type. In this note we prove:

Theorem 1.1. Let I be a finite set of indices and G be a group of the form
∏
j∈I Gj(kj),

where Gj is a simple algebraic group defined and isotropic over a local field kj. Let Γ ⊂ G
be an irreducible lattice.

Suppose there exists an i ∈ I such that ki is non-archimedean. If rkG > 1 and
char(ki) = 0, or if rkG = 1 then Γ is not a Kähler group.
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Notice that the case rkG = 1 is essentially folkloric (I include a proof for the conve-
nience of the reader as I did not find a reference in this generality). On the other hand,
to the best of our knowledge not a single case of Theorem 1.1 in the case where rkG > 1
and all the ki, i ∈ I, are non-archimedean fields of characteristic zero was previously
known. The proof in this case is a corollary of Margulis’ superrigidity theorem and the
recent integrality result of Esnault and Groechenig [EG17, Theor. 1.3].

1.4. Let us mention some examples of Theorem 1.1:
- Let p be a prime number, I = {1}, k1 = Qp , G = SL(n). A lattice in SL(n,Qp),

n ≥ 2, is not a Kähler group. This is new for n ≥ 3.
- I = {1; 2}, k1 = R and G1 = SU(r, s) for some r ≥ s > 0, k2 = Qp and G2 =

SL(r + s). Then any irreducible lattice in SU(r, s) × SL(r + s,Qp) is not Kähler. In
Section 2 we recall how to construct such lattices (they are S-arithmetic). The analogous
result that any irreducible lattice in SL(n,R) × SL(n,Qp) (for example SL(n,Z[1/p]))
is not a Kähler group already followed from Simpson’s theorem.

1.5. I don’t know anything about the case not covered by Theorem 1.1: can a (finitely
presented) irreducible lattice in G =

∏
i∈I Gi(ki) with rkG > 1 and all ki of (necessarily

the same, see Theorem 2.1) positive characteristic, be a Kähler group? This question
already appeared in [BKT13, Remark 0.2 (5)].

2. Reminder on lattices

2.1. Examples of pairs (G,Γ) as in Section 1.2 are provided by S-arithmetic groups:
let K be a global field (i.e a finite extension of Q or Fq(t)), S a non-empty set of
places of K, S∞ the set of archimedean places of K (or the empty set if K has positive
characteristic), OS∪S∞ the ring of elements of K which are integral at all places not
belonging to S ∪ S∞ and G an absolutely simple K-algebraic group, anisotropic at all
archimedean places not belonging to S. A subgroup Λ ⊂ G(K) is said S-arithmetic (or
S∪S∞-arithmetic) if it is commensurable with G(OS∪S∞) (this last notation depends on
the choice of an affine group scheme flat of finite type over OS∪S∞ , with generic fiber G;
but the commensurability class of the group G(OS∪S∞) is independent of that choice).

If S is finite and G(Kv) is compact for all v ∈ S∞−S, the image Γ in
∏
v∈S G(Kv) of

an S-arithmetic group Λ by the diagonal map is an irreducible lattice (see [B63] in the
number field case and [H69] in the function field case). In the situation of Section 1.2,
a (necessarily irreducible) lattice Γ ⊂ G is said S-arithmetic if there exist K, G, S as
above, a bijection i : S −→ I, isomorphisms Kv −→ ki(v) and, via these isomorphisms,
ki-isomorphisms ϕi : G −→ Gi such that Γ is commensurable with the image via

∏
i∈I ϕi

of an S-arithmetic subgroup of G(K).

2.2. Margulis’ and Venkataramana’s arithmeticity theorem states that as soon as rkG
is at least 2 then every irreducible lattice in G is of this type:

Theorem 2.1 (Margulis, Venkataramana). In the situation of Section 1.2, suppose that
Γ ⊂ G is an irreducible lattice and that rkG ≥ 2. Suppose moreover for simplicity that
Gi, i ∈ I, is absolutely simple. Then:

(a) char(ki) = char(kj) for all (i, j) ∈ I.
(b) Γ is S-arithmetic.



p-ADIC LATTICES ARE NOT KÄHLER GROUPS 3

Remark 2.2. Margulis [Mar84] proved Theorem 2.1 when char(ki) = 0 for all i ∈ I.
Venkatarama [V88] had to overcome many technical difficulties in positive characteristics
to extend Margulis’ strategy to the general case.

On the other hand, if rkG = 1 (hence I = {1}) and k := k1 is non-archimedean, there
exists non-arithmetic lattices in G, see [L91, Theor.A].

2.3. With the notations of Section 2.1, an S-arithmetic lattice Γ is always finitely
presented except if K is a function field and rkKG = rkG = |S| = 1 (in which case Γ
is not even finitely generated) or rkKG > 0 and rkG = 2 (in which case Γ is finitely
generated but not finitely presented). In the number field case see the result of Raghu-
nathan [R68] in the classical arithmetic case and of Borel-Serre [BS76] in the general
S-arithmetic case; in the function field case see the work of Behr, e.g. [Behr98]. For
example the lattice SL2(Fq[t]) of SL2(Fq((t))) is not finitely generated, while the lattice
SL3(Fq[t]) of SL3(Fq((t))) is finitely generated but not finitely presented.

3. Proof of Theorem 1.1

3.1. The rank 1 case. Let us deal first with the easy case where rkG = 1 (hence
I = {1} and we write k := k1).

If Γ is not cocompact in G (this is possible only if k has positive characteristic) then
Γ is not finitely generated by [L91, Cor. 7.3], hence not Kähler.

Hence we can assume that Γ is cocompact. In that case it follows from [L91, Theor.
6.1 and Theor. 7.1] that Γ admits a finite index subgroup Γ′ which is a (non-trivial) free
group.

But a non-trivial free group is never Kähler, as it always admits a finite index subgroup
with odd Betti number (see [ABCKT96, Example 1.19 p.7]). Hence Γ′ is not Kähler.

As any finite index subgroup of a Kähler group is Kähler (because the class of con-
nected compact Kähler manifolds is stable under taking a connected finite étale cover),
it follows that Γ is not a Kähler group.

3.2. The higher rank case. In this case the main tools for proving Theorem 1.1 are
the recent result [EG17, Theor. 1.3] of Esnault and Groechenig and Margulis’ super-
rigidity theorem.

3.2.1. Recall that a linear representation ρ : Γ −→ GL(n, k) of a group Γ over a field k
is cohomologically rigid if H1(Γ,Ad ρ) = 0. A representation ρ : Γ −→ GL(n,C) is said
to be integral if it factorizes through ρ : Γ −→ GL(n,K), K ↪→ C a number field, and
moreover stabilizes anOK-lattice in Cn (equivalently: for any embedding v : K ↪→ k of K
in a non-archimedean local field k the composite representation ρv : Γ −→ GL(n,K) ↪→
GL(n, k) has bounded image in GL(n, k) ). A group will be said complex projective if is
isomorphic to the fundamental group of a connected smooth complex projective variety.
This is a special case of a Kähler group (the question whether or not any Kähler group
is complex projective is open).

In [EG17, Theor. 1.3] Esnault and Groechenig prove that if Γ is a complex projective
group then any irreducible cohomologically rigid representation ρ : Γ −→ GL(n,C) is
integral. This was conjectured by Simpson.
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3.2.2. A corollary of [EG17, Theor. 1.3] is the following:

Corollary 3.1. Let Γ be a complex projective group. Let k be a non-archimedean local
field of characteristic zero and let ρ : π1(X) −→ GL(n, k) be an absolutely irreducible
cohomologically rigid representation. Then ρ has bounded image in GL(n, k).

Proof. Let k be an algebraic closure of k. As ρ is absolutely irreducible and coho-
mologically rigid there exists g ∈ GL(n, k) and a number field K ⊂ k such that the
representation ρg := g · ρ · g−1 : Γ −→ GL(n, k) takes value in GL(n,K).

Let k′ be the finite extension of k generated by k, K, and the matrix coefficients of
g and g−1. This is still a non-archimedean local field of characteristic zero, and both ρ
and ρg takes value in GL(n, k′). As ρ : Γ −→ GL(n, k) ⊂ GL(n, k′) has bounded image
in GL(n, k) if and only if ρg : Γ −→ GL(n, k′) has bounded image in GL(n, k′), we can
assume, replacing ρ by ρg and k by k′ if necessary, that ρ takes value in GL(n,K) with
K ⊂ k a number field.

Let σ : K ↪→ C be an infinite place of K and consider ρσ : Γ
ρ−→ GL(n,K)

σ
↪→

GL(n,C) the associated representation. As ρ is absolutely irreducible, the representation
ρσ is irreducible. As

H1(Γ,Ad ◦ ρσ) = H1(Γ,Ad ◦ ρ)⊗K,σ C = 0

the representation ρσ is cohomologically rigid.
It follows from [EG17, Theor. 1.3] that ρσ is integral. In particular, considering the

embedding K ⊂ k, it follows that the representation ρ : Γ −→ GL(n, k) has bounded
image in GL(n, k). �

3.2.3. Notice that we can upgrade Corollary 3.1 to the Kähler world if we restrict
ourselves to faithful representations:

Corollary 3.2. The conclusion of Corollary 3.1 also holds for Γ a Kähler group and
ρ : π1(X) −→ GL(n, k) a faithful representation.

Proof. As the representation ρ is faithful, the group Γ is a linear group in characteristic
zero. It then follows from [CCE14] and [C17] that the Kähler group Γ is a complex
projective group. The result now follows from Corollary 3.1. �

3.2.4. Let us now apply Corollary 3.1 to the case of Theorem 1.1 where rkG > 1.
Renaming the indices of I if necessary, we will assume that I = {1, · · · , r} and k1
is non-archimedean of characteristic zero. Let us choose an absolutely irreducible k1-
representation ρG1 : G1 −→ GL(V ). Let

ρ : Γ −→ G
p1−→ G1(k1) −→ GL(V )

be the representation of Γ deduced from ρG1 (where p1 : G −→ G1(k1) denotes the
projection of G onto its first factor). As p1(Γ) is Zariski-dense in G1 it follows that ρ is
absolutely irreducible.

As rkG > 1, Margulis’ superrigidity theorem applies to the lattice Γ of G: it implies
in particular that H1(Γ,Ad ◦ ρ) = 0 (see [Mar91, Theor. (3)(iii) p.3]). Hence the
representation ρ : Γ −→ GL(V ) is cohomologically rigid.

Suppose by contradiction that Γ is a Kähler group. By Theorem 2.1(a) and the
assumption that k1 has characteristic zero it follows that Γ is linear in characteristic
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zero. As in the proof of Corollary 3.2 we deduce that Γ is a complex projective group.
It then follows from Corollary 3.1 that ρ has bounded image in GL(V ), hence that
p1(Γ) is relatively compact in G(k1). This contradicts the fact that Γ is a lattice in
G = G(k1)×

∏
j∈I\{1}G(kj).

�
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