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Abstract. While Margulis’ superrigidity theorem completely describes the finite dimensional

linear representations of lattices of higher rank simple real Lie groups, almost nothing is known

concerning the representation theory of complex hyperbolic lattices. The main result of this

paper (theorem 1.3) is a strong rigidity theorem for a certain class of cocompact arithmetic

complex hyperbolic lattices. It relies on two ingredients:

• the fact that the representations of the topological fundamental group of a smooth

projective complex variety X are controlled by the global symmetric differentials on X.

• an arithmetic vanishing theorem for global symmetric differentials on certain compact

ball quotients using automorphic forms, in particular deep results of Clozel on base

change.

1. Introduction and results

The main open question concerning lattices of Lie groups is certainly the study of complex

hyperbolic lattices and their finite dimensional representations. Let n > 1 be an integer. Let

h denote the Hermitian form h(z,w) = z0w0 + · · ·+ zn−1wn−1− znwn on Cn+1. Let us denote

by SU(n, 1) the real algebraic group SU(Cn+1, h) of complex linear transformations of Cn+1

preserving h. Let Γ
i
↪→ SU(n, 1)(R) = SU(n, 1) be a lattice (i.e. a discrete subgroup of finite

co-volume). What are the finite dimensional representations of Γ ? Recall that this problem

is completely solved if one replaces SU(n, 1) by a simple real linear algebraic group G of real

rank larger than 1 (not necessarily of Hermitian type): let Γ ⊂ G(R) be a lattice, Margulis’

superrigidity theorem [26] states that any homomorphism ρ : Γ −→ G′(F ), where G′ denotes

a simple algebraic group over a local field F , either has bounded image in G′(R) or F is

Archimedean and ρ extends to a real algebraic morphism ρ : G −→ G′.

In [22] I proved a local rigidity theorem for the standard representations of any cocompact

complex hyperbolic lattice. The proof was geometric (Hodge theoretic). The main result of

this paper, on the other hand, proves a global rigidity result for representations of certain

arithmetic cocompact lattices in SU(n, 1). The proof is arithmetic: it relies on an arithmetic

vanishing theorem 1.11 using automorphic forms, in particular deep results of Clozel on base

change.

1.1. Rigidity for Kottwitz lattices. Recall that arithmetic lattices in SU(n, 1) are obtained

as follows. Let F be a totally real number field, Fc a CM-extension of F , D a division algebra
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over Fc of degree d dividing n+ 1 = d · r, with an involution of second kind ε : D −→ D (thus

ε is an antiautomorphism of algebras and the set F ε=1
c of ε-fixed points on the center Fc of

D is exactly F ). Let h be a non-degenerate ε-Hermitian form on Dr and G = SU(h) be the

special unitary algebraic group over F associated to the data (F, Fc, D, ε, h). We assume that

for one real place v0 : F ↪→ R the group GFv0
is isomorphic to SU(n, 1) and that for any other

real place v 6= v0 the group GFv is isomorphic to the compact form SU(n+ 1).

Definition 1.1. An arithmetic lattice Γ in SU(n, 1) is a lattice commensurable with G(OF )

for G a unitary group defined as above and OF the ring of integers of F . In this case the

group G associated to Γ is uniquely defined.

The arithmetic lattice Γ is said moreover to be a congruence subgroup if

Γ = (ResF/QG)(Q) ∩Kf ,

where Kf ⊂ (ResF/QG)(Af ) denotes a compact open subgroup of the finite adèles (ResF/QG)(Af ).

Remark 1.2. Using Godement’s criterium one easily checks that an arithmetic lattice associated

to G is cocompact as soon as d > 1, or d = 1 and F 6= Q.

It has long been understood that the Abelian representations of such a lattice Γ strongly

depend on the arithmetic type of G. While Kazhdan [20] exhibits cocompact congruence

lattices Γ associated to matrix algebras (case d = 1) with infinite Abelian quotients, Rapoport-

Zink [31] for n = 2 (cf. also [7]) and Clozel [11] in general show that arithmetic congruence

lattices in SU(n, 1) associated to division algebras (case d = n + 1) satisfy H1(Γ,C) = 0.

Following the suggestion of Clozel in [11] such lattices will be called Kottwitz lattices.

In this paper we show that the situation is similar for the non-Abelian representation theory

of Γ: it becomes simpler as the divisor d of n+1 tends to n+1. Indeed while some of Kazhdan’s

lattices surject onto a free group hence have a wild non-Abelian representation theory, we

expect Kottwitz lattices to be much closer to higher rank lattices, in particular much more

rigid. The main result of this paper is the following generalization of Rapoport-Zink’s and

Clozel’s result in the case where n+ 1 is prime:

Theorem 1.3. Let Γ ⊂ SU(n, 1) be a Kottwitz lattice. Assume n+ 1 is prime. Then:

(i) any representation ρ : Γ −→ GL(n − 1,C) is rigid (i.e. the affine complex variety

Hom(Γ,GL(n−1,C))//GL(n−1,C) is zero dimensional). Moreover ρ is conjugate to

a representation ρ0 : Γ −→ GL(n−1,OK) for OK the ring of integers of some number

field K ⊂ C.

(ii) if F is a characteristic zero non-Archimedean local field, any representation ρ : Γ −→
GL(n − 1, F ) has bounded image (for the topology of GL(n − 1, F ) defined by the

topology of the local field F ).

Remarks 1.4. (a) As far as I know theorem 1.3 is the first statement concerning a global

rigidity result for a large class of lattices in SU(n, 1). It would be very interesting to

try to extend it to representations into GL(n) or GL(n+ 1). There the answer might
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depend not only on the fact that Γ is of Kottwitz type, but also on the level of Γ. We

hope to come back on this question in the future.

(b) Concerning the condition “n+ 1 prime”, see the remark 1.12(c).

1.2. Symmetric powers and rigidity of Kähler groups. The strategy for proving theo-

rem 1.3 comes from a more general question. Let X be a connected compact Kähler manifold.

Hodge theory provides a clear link between the topology of X and the cohomology of the

sheaves of holomorphic exterior differentials ΛiΩ1
X , i ∈ N (where Ω1

X denotes the holomorphic

cotangent sheaf of X):

Hp(X,C) =
⊕
p=i+j

Hj(X,ΛiΩ1
X) .

An interesting question is the following: what is the relation between the topology of X and

the sheaves of holomorphic symmetric differentials SiΩ1
X , in particular their global sections ?

Remark 1.5. The sheaves SiΩ1
X play a fundamental role in Bogomolov’s work on stability

[8]. They also appear in various vanishing theorems [25]. As far as I know they are not

systematically studied in the literature (see however [32]). In these references symmetric

differentials come through the following standard construction. Let π : P((Ω1
X)∗) −→ X be

the variety of hyperplanes of Ω1
X and O(1) be the tautological line bundle on P((Ω1

X)∗). Then

π∗O(i) = SiΩ1
X . In particular: Hj(X,SiΩ1

X) ' Hj(P((Ω1
X)∗),O(i)) .

It follows from Simpson’s non-Abelian Hodge theory [33], [34], [35] and its partial p-adic

version that global holomorphic symmetric differentials on X control the rigidity of finite

dimensional linear representations of the topological fundamental group of X, at least when

X is a connected smooth projective variety:

Theorem 1.6. (Arapura, Zuo) Let X be a connected smooth projective variety over C, Γ its

topological fundamental group and r a positive integer. Suppose that H0(X,SiΩ1
X) = 0 for

0 < i ≤ r. Then:

(i) any representation ρ : Γ −→ GL(r,C) is rigid.

(ii) Let F be a characteristic zero non-Archimedean local field. Then any representation

ρ : Γ −→ GL(r, F ) has bounded image. Here ρ is said to have bounded image if ρ(Γ)

is contained in a compact subgroup of GL(r, F ) for the topology of GL(r, F ) defined

by the topology of the local field F .

Remarks 1.7. (a) Theorem 1.6 should hold for compact Kähler manifolds but some tech-

nical ingredients are still missing in the literature.

(b) Theorem 1.6(i) is a nice corollary of Simpson’s non-Abelian Hodge theory, proven by

Arapura [1, prop.2.4]. Its non-archimedean version theorem 1.6(ii) is proven by Zuo

[41, section 4.1.4].

Theorem 1.6 has an interesting arithmetic corollary:



4 BRUNO KLINGLER

Corollary 1.8. Let X be a connected smooth projective variety over C, Γ its topological

fundamental group and r a positive integer. Suppose that H0(X,SiΩ1
X) = 0 for 0 < i ≤ r.

Then any representation ρ : Γ −→ GL(r,C) is conjugate to a representation ρ0 : Γ −→
GL(r,OK) for OK the ring of integers of some number field K ⊂ C.

Proof. Let X, Γ, r and ρ : Γ −→ GL(r,C) as in the statement of corollary 1.8. By theo-

rem 1.6(i) the representation ρ is locally rigid. As the affine variety Hom(Γ,GL(r,C))/GL(r,C)

is defined over Z and has finitely many irreducible components, the component defined by the

class {ρ} of ρ is defined over some number field K. This exactly means that up to conjugacy

we can assume that ρ takes values in GL(r,K). For each finite place v of K the representation

ρv : Γ −→ GL(r,Kv) obtained from ρ through the embedding K ↪→ Kv has bounded image

in GL(r,Kv) by theorem 1.6(ii). Hence ρ(Γ) lies in GL(r,OK). �

Remark 1.9. Simpson conjectured more than the integrality result above: any rigid ρ : Γ −→
GL(r,C) should be motivic, i.e. a direct factor of the monodromy of a local system Riπ∗Z for

some smooth proper connected morphism π : Y −→ X and some positive integer i.

Let X be a smooth projective variety with infinite topological fundamental group. Usually

the cotangent sheaf Ω1
X will have some “positivity”. On the other hand, such a positivity will

usually imply that H0(X,SiΩ1
X) does not vanish for i large. In the extreme case where Ω1

X is

ample the sheaf SiΩ1
X is generated by its sections for i sufficiently large. We are thus lead to

the following interesting delicate problem in order to apply theorem 1.6:

Question 1.10. Given X with Ω1
X positive in some sense, can we detect the smallest i ∈ N for

which SiΩ1
X has non-zero sections?”

1.3. Symmetric differentials and arithmetic: the case of ball quotients. Theorem 1.3

follows from theorem 1.6 and the following vanishing theorem, which partially answers ques-

tion 1.10 in the case of ball quotients. Let Γ ⊂ SU(n, 1) be a torsion-free arithmetic cocompact

lattice. Let X = Γ\Bn
C be the corresponding smooth compact ball quotient, where Bn

C is the

Hermitian symmetric domain associated to SU(n, 1), realized as the complex n-dimensional

unit ball with its Bergman metric. The compact Kähler manifold X is naturally a smooth

complex projective variety [4]. Kazhdan’s examples show that X can have non-zero symmetric

differentials of any degree. On the other hand in the Kottwitz’ case we prove:

Theorem 1.11. Let Γ ⊂ SU(n, 1) be a torsion-free Kottwitz lattice and X = Γ\Bn
C the

corresponding compact ball quotient.

Assume n+ 1 is prime. Then H0(X,SiΩ1
X) = 0 for 0 < i ≤ n− 1.

Remarks 1.12. (a) The ball quotients X = Γ\Bn
C with Γ a Kottwitz lattice are the “simple

Shimura varieties” in the étale cohomology of which Harris and Taylor [16] realize the

local Langlands correspondence.

(b) Theorem 1.11 is partially similar in the coherent world to the work of Clozel [11] in

the Betti one. Clozel obtained a complete description of the Betti cohomology of

Kottwitz’s lattices.
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(c) The condition“n+ 1 prime” already appeared in [11]. In this case Clozel proved that

the Betti cohomology of Γ is much simpler than for a composite n + 1. Similarly we

expect theorem 1.3 to hold for a smaller range of i’s in the case n + 1 is composite.

More importantly the assumption “n+ 1 prime” seems technically unavoidable for the

time being: it is the only case where the Langlands functoriality we need is proven

[12].

(d) for a general arithmetic lattice Γ of SU(n, 1) we expect the following : the bigger the

ratio d/(n+ 1), the bigger the maximal integer mΓ for which H0(X,SiΩ1
X) = 0 for all

i < mΓ should be.

The proof of theorem 1.11 follows two steps. First, it is well-known since a series of works by

Harris ([14], [15]) that computing the coherent cohomology of the automorphic bundles SiΩ1
X

on X is quite similar to the classical problem of computing the Betti cohomology H•(Γ, E) of

a lattice Γ ⊂ G = SU(n, 1) with value in a local system E : while the classical Matsushima’s

formula computes H i(Γ, E) in terms of irreducible unitary representations π∞ ∈ Ĝ appearing

in L2(Γ\G), a similar formula holds for coherent cohomology of automorphic vector bundles

(cf. 3.1). However its study is more involved: while representations π∞ ∈ Ĝ contributing to

the Betti cohomology of local systems are completely classified (cf. [39]) the description of

representations π∞ ∈ Ĝ with ∂-cohomology is still open (cf. [14]).

Our first step in the proof of theorem 1.11 consists in showing that tempered representations

π∞ ∈ Ĝ contribute to H0(X,SiΩ1
X) only for large i. This step is valid for any cocompact lattice

in SU(n, 1). Using results of Mirkovic [28] and Blasius-Harris-Ramakrishnan [6] we show (cf.

section 3 for detailed definitions and proposition 3.9 for a much more precise statement):

Theorem 1.13. Let n ≥ 2 be an integer. Let Γ ⊂ G = SU(n, 1) be a torsion-free cocompact

lattice in SU(n, 1) and X = Γ\Bn
C be the corresponding smooth compact ball quotient. The

only π∞ ∈ Ĝ contributing to H0(X,SiΩ1
X), 1 ≤ i ≤ n− 1, are non-tempered.

Remark 1.14. This result was well-known in the case i = 1, which is also the only case where

the cohomology H0(X,SiΩ1
X) appears as (part of) the cohomology of a local system (in this

case H1(X,C)).

From theorem 1.13 the proof of theorem 1.11 reduces to showing that certain automorphic

forms π with prescribed infinitesimal character and non-tempered component at infinity π∞ do

not appear in L2(G(F )\G(Af,F )), when G is associated to a division algebra (case d = n+1).

This is the hard part of the paper. Heuristically speaking we are in good shape: in fact

Langlands functoriality and the Ramanujan conjecture for GL(n) predict that non-tempered

automorphic representations π should not occur at all in L2(G(F )\G(Af,F )) for such a G.

Our problem is similar to the problem studied by Clozel in [11] for Betti cohomology but

more involved: the π’s we have to consider are not known to be attached to Galois representa-

tion, hence the Galois techniques developed by Clozel in [10] and [11] are not available to us.

Luckily enough the stable trace formula and the base change he proved in [12] are enough to



6 BRUNO KLINGLER

deal with the functoriality we require. As in [12] we moreover know enough on the represen-

tations we consider to avoid the Ramanujan conjecture. We prove the following result, which

implies theorem 1.11:

Theorem 1.15. Let Γ ⊂ SU(n, 1) be a Kottwitz lattice. Assume that n+ 1 is an odd prime.

Let π∞ ∈ ̂SU(n, 1) be a non-tempered representation contributing to H0(X,S•Ω1
X). Then π∞

does not appear in L2(Γ\SU(n, 1)).

1.4. Symmetric differentials and geometry: the case of Hermitian locally symmet-

ric spaces. Before dealing with ball quotients and arithmetic, we investigate in section 2 the

question 1.10 for an irreducible Hermitian locally symmetric space X = Γ\D of any rank, in

a purely geometric way. Here D is an irreducible symmetric bounded domain in CN and Γ

denotes a torsion-free cocompact lattice in the simple real Lie group G = Aut0(D) connected

component of the identity of the group of biholomorphisms of D. Let us recall the description

of the irreducible classical bounded symmetric domains D = G/K:

DI
p,q = {Z ∈M(p, q,C) ' Cpq / Iq − Z∗Z > 0} ' SU(p, q)/S(U(p)× U(q)) .

DII
n = {Z ∈ DI

n,n / Z
t = −Z} ' SO∗(2n)/U(n) .

DIII
n = {Z ∈ DI

n,n / Z
t = Z} ' Sp(n,R)/U(n) .

DIV
n = {Z ∈ SL(2n,C) / ZtZ = I2n and Z∗JnZ = Jn} ' SO0(n, 2)/SO(n)× SO(2) .

Here Z∗ denotes as usual the complex conjugate transpose of the matriz Z, In is the identity

matrix of size n × n, Jn =
(

0 In
−In 0

)
is the standard symplectic form in C2n, and SO0(n, 2)

denotes the connected component of the identity of the group SO(n, 2).

For example D = DI
1,n is the complex unit ball Bn

C with its Bergman metric ; D = DIII
n is

the Siegel upper half space of degree n.

In this general setting the quotient X is still a smooth projective variety [4]. Moreover it

is well-known that Ω1
X is semi-positive in the sense of Griffiths (equivalently the bisectional

holomorphic curvature of X is non-positive) and Ω1
X is ample if and only if D = Bn

C, n ≥ 1.

Despite the positivity of Ω1
X Matsushima [27] proved a long time ago that H0(X,Ω1

X) vanishes

unless maybe if D is the unit ball Bn
C. We generalize Matsushima’s result to the following:

Theorem 1.16. Let D be a classical irreducible bounded symmetric domain, Γ ⊂ G = Aut0(D)

a torsion-free cocompact lattice and X = Γ\D the corresponding quotient.

Then H0(X,SiΩ1
X) = 0 for i < mD, where:

• mD = inf(p, q) if D = DI
p,q = SU(p, q)/S(U(p)× U(q)).

• mD = [n/2] if D = DII
n = SO∗(2n)/U(n) or D = DIII

n = Sp(n,R)/U(n).

• mD = 2 if D = DIV
n = SO0(2, n)/SO(2)× SO(n).

Remark 1.17. These results are essentially sharp: given D one can in most cases find a lattice

Γ ∈ G such that H0(X,SmDΩ1
X) is non-zero.
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Remarks 1.18. (a) The proof of theorem 1.16 is geometric. It relies on a deep vanish-

ing theorem of Mok [30] for homogeneous semi-positive bundles which are not strictly

positive. One would like to extend the result of theorem 1.16 from the locally sym-

metric case to a general class of non-positively curved Kähler manifolds with vanishing

curvature in some directions.

(b) As we noticed already in section 1.3, the purely geometric theorem 1.16 can say nothing

in the rank 1 case (D = Bn
C): there exist ball quotients satisfying H0(X,Ω1

X) 6= 0.

(c) Theorem 1.16 and theorem 1.6 together prove a rigidity result for representations of Γ

in a low dimensional range. It recovers only a small (still, non-trivial) part of Margulis’s

purely group theoretic result in the higher rank case.

1.5. Acknowledgments. I would like to thank L.Clozel for some useful discussions and his

comments on a first version of this paper. The importance of his works [10], [11], [12] for the

proof of theorem 1.15 will be obvious to the reader.

After I wrote a first version of this paper, Brunebarbe, Totaro and I continued to work

on symmetric differentials (cf.[9]). During this process Totaro discovered that a proof of

theorem 1.6 already existed in works of Arapura and Zuo. I thank him heartily for providing

me with these references, for his useful comments and his interest in this work.

2. Symmetric differentials for locally Hermitian symmetric spaces

2.1. The ingredients for the proof of theorem 1.16. Theorem 1.16 is a combination of

a deep vanishing theorem of Mok [30] and classical plethysm. Let us first recall the results we

will need.

Let X be a complex manifold, V a holomorphic vector bundle on X, h an Hermitian metric

on V , D the Hermitian connection of (V, h). The curvature Θ =
√
−1D2 of (V, h) lies in

A1,1(End (V )). In local holomorphic coordinates zi, 1 ≤ i ≤ dimCX and eα, 1 ≤ α ≤ rk V ,

one can write

Θ :=
√
−1 Θα

β
ij e

α ⊗ eβ dzi ∧ dzj .

Identifying V ∨ to V we define a Hermitian form P on V ⊗ TX by extending the following:

P (v ⊗ η, v′ ⊗ η′) := Θvv′ηη′ .

Definition 2.1. The Hermitian holomorphic vector bundle (V, h) is said to be semi-negative

(resp. negative, resp. semi-positive, resp. positive) in the sense of Griffiths at a point x ∈ X
if:

∀ v ∈ Vx \ {0}, ∀ η ∈ TX \ {0}, P (v ⊗ η, v ⊗ η) ≤ 0 resp. < 0 ,≥ 0 , > 0 .

Remark 2.2. Notice that (V, h) is semi-negative if and only if (V ∨, h∨) is semi-positive. Notice

also that a Hermitian manifold (X, g) has non-positive holomorphic bisectional curvature if

and only if (TX, g) is semi-negative in the sense of Griffiths.
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Definition 2.3. The Hermitian holomorphic vector bundle (V, h) is said to be properly semi-

negative if (V, h) is semi-negative in the sense of Griffiths at every point x ∈ X and for every

x ∈ X, there exists v ∈ Vx \ {0} and ξ ∈ TxX \ {0} such that P (v ⊗ ξ, v ⊗ ξ) = 0.

Suppose now that D is an irreducible bounded symmetric domain. Let G = Aut0(D) be

connected component of the identity of the group of biholomorphisms of D, hence D = G/K

where K is a maximal compact subgroup of G. Let Γ ⊂ G a torsion-free lattice in G and

define X := Γ\D. The smooth variety X is quasi-projective of finite volume with respect to

its natural canonical metric.

Definition 2.4. An irreducible automorphic vector bundle Vκ on X is a Hermitian holomor-

phic bundle of the form V = Γ\G ×κ V0, where κ : K −→ GL(V0) is an irreducible complex

finite dimensional representation of K (equivalently an irreducible module for the complexified

group KC), and Vκ is endowed with the natural metric deduced from a K-invariant Hermitian

metric on V0.

It is easy to identify properly semi-negative irreducible automorphic vector bundles on X

in terms of highest weight theory:

Proposition 2.5. [30, prop.2 p.204] Fix h ⊂ k a Cartan subalgebra of the Lie algebra k of K

and C a positive Weyl chamber in h∗R. We denote by < ·, · > the natural scalar product on h∗R.

Let µ ∈ C be the highest root of gC and ω the lowest weight of κ : K −→ GL(V0).

Then (Vκ, h) is properly semi-negative if and only if < ω, µ >= 0.

The main vanishing result of Mok is then the following:

Theorem 2.6. [29] [30, p.205 and p.211] Let (V, h) be an irreducible automorphic vector

bundle on a locally Hermitian symmetric space X = Γ\D. If (V, h) is properly semi-negative

then any Hermitian metric of semi-negative curvature on V is proportional to h.

As a corollary if moreover (V, h) is non-trivial then H0(X,V ∨) = 0.

In [30, p.204], Mok proves that (TX, g) is properly semi-negative as soon as rk G ≥ 2. The

vanishing statement of theorem 1.16 is a corollary of theorem 2.6 and of the following:

Theorem 2.7. Let D be a classical irreducible bounded symmetric domain, Γ ⊂ G = Aut0(D)

a torsion-free lattice and X = Γ\D the corresponding quotient. Then for 0 < i ≤ mD the

automorphic bundle SiTX is a direct sum of properly seminegative irreducible non-trivial au-

tomorphic bundles.

2.2. Proof of theorem 2.7. Let

g = k⊕ p+ ⊕ p− ,

be the decomposition of the Lie algebra g into irreducible K-modules. The tangent space TX

is the irreducible automorphic bundle associated to the KC-module p+, hence SiTX is the

automorphic bundle associated to Sip+. To prove theorem 2.7 we have to compute the lowest

weight of all irreducible KC-submodules of Sip+ and apply proposition 2.5.
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Recall that the lowest weight of an irreducible KC-module κ is the opposite of the highest

weight of the contragredient κ∨. Thus it remains to show that the highest weight τ of any

irreducible KC-factor of Sip− is non-trivial and satisfies < τ, µ >= 0 for 0 < i ≤ mD. Comput-

ing the decomposition into irreducible factors of a symmetric power is in general intractable.

We are lucky enough that our computations cöıncide exactly with classically known explicit

plethysm formulas.

We recall standard notations concerning Schur functors (cf. [13], [40]). Let d be a positive

integer. To a partition λ = (λ1 ≥ · · · ≥ λk ≥ 1) of d one associates an idempotent cλ ∈ C[Sd]

in the algebra of the symmetric group as follows. One defines the Young diagram of λ as the

diagram with λi boxes in the i-th row, the rows of boxes lined up on the left and we number

consecutively the boxes from left to right and up to down. The idempotent cλ is

cλ := (
∑
g∈Pλ

eg) · (
∑
g∈Qλ

sign(g) · eg) ,

where Pλ denotes the subgroup of Sd preserving each row of the Young diagram of λ and Qλ the

one preserving each column. For example c(1,··· ,1) =
∑

g∈Sd sign(g) · eg while c(d) =
∑

g∈Sd eg.

Let V ' Cd be the standard GL(d)-module. We denote

SλV := Im(cλ|V ⊗d)

the GL(V )-module image of cλ for the natural action by permutation of Sd on V ⊗d. This is an

irreducible GL(V )-module and any irreducible GL(V )-module can be realized this way. The

functor Sλ : V 7→ SλV is called the Schur functor associated to λ. Notice that our convention

follows [13] while our functor Sλ corresponds to the functor Sλ∨ associated to the conjugate

partition λ∨ in [40].

2.2.1. Case DI
p,q. In this case K ' S(U(p)× U(q)), thus KC ' S(GL(p)×GL(q)) and p− '

(Cp)∨⊗Cq where Ck denotes the standard GL(k)-module. Recall the following Cauchy formula

(cf. [40, p.60]):

Smp− = Sm((Cp)∨ ⊗ Cq) =
⊕
|λ|=m

Sλ((Cp)∨)⊗ SλCq

giving the decomposition of Si((Cp)∨ ⊗ Cq) into irreducible GL(p)×GL(q)-modules.

Choose the Cartan subalgebra h of s(u(p) × u(q)) to consist of purely imaginary diagonal

matrices of trace 0. Let Eij denote the (p + q) × (p + q)-matrix with zero entries except the

unit at the (i, j)-th entry. Write Li the linear form on uC taking the value 1 at Eii and 0 at

Ejj , j 6= i, 1 ≤ j ≤ p + q. We choose the positive Weyl chamber C ⊂ h∗R as the set of the∑
i aiLi, a1 ≥ · · · ≥ ai. The scalar product on h∗R is given by <

∑
i aiLi,

∑
j ajLj >=

∑
i aibi.

The highest weight τSλ((Cp)∨)⊗SλCq is given by:

τSλ((Cp)∨)⊗SλCq = τSλ((Cp)∨) + τSλCq

s = −(λ1Lp + λ2Lp−1 + · · ·+ λmLp−m+1) + (λ1Lp+1 + · · ·+ λmLp+m)

=
m∑
i=1

λi(Lp+i − Lp−i+1) ,

(1)
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with the convention that λi = 0 for i > max(p, q).

On the other hand the highest root of gC is µ = L1 − Lp+q. Hence

(2) < τSλ((Cp)∨)⊗SλCq , µ >= λq − λp .

For |λ| = m all the < τSλ((Cp)∨)⊗SλCq , µ > vanish as soon as m < mDIp,q
= inf(p, q). Hence the

result in this case.

2.2.2. Case DII
n . This time K ' U(n), KC ' GL(n,C) and p+ ' Λ2Cn with the natural

action of GL(n,C) on skew-symmetric matrices: an element g ∈ GL(n,C) acts by mapping

a skew-symmetric matrix Z to the skew-symmetric matrix g · Z · gt. One has the following

decomposition into irreducible KC-modules [40, prop.2.3.8 p.63]:

Smp− = Sm(Λ2(Cn)∨) =
⊕
|λ|=2m

λ∨i even for all i

Sλ((Cn)∨) .

The highest weight of Sλ((Cn)∨) is

τSλ((Cn)∨) = −
2m∑
i=1

λiLi .

Hence < τSλ((Cn)∨), µ >= −λn equals zero if 2m < n i.e. if m < mDIIn
.

2.2.3. Case DIII
n . This case is similar to the previous one. One still has K ' U(n), KC '

GL(n,C) but this time p+ ' S2Cn with the natural action of GL(n,C) on symmetric matrices:

an element g ∈ GL(n,C) maps a symmetric matrix Z to the symmetric matrix g · Z · gt. One

has the following decomposition into irreducible KC-modules [40, prop.2.3.8 p.63]:

Smp− = Sm(S2((Cn)∨)) =
⊕
|λ|=2m

λi even for all i

Sλ((Cn)∨) .

One concludes as in case DII
n .

2.2.4. Case DIV
n . In this case K ' SO(n)× SO(2), KC ' SO(n,C)×C∗ and p+ ' Cn ⊗ χ−1

where Cn denotes the standard SO(n,C)-module and χ : C∗ −→ C∗ is the identity character.

Thus S2p− ' S2((Cn)∨) ⊗ χ2 contains the KC-stable line χ2 corresponding to the quadratic

form φ ∈ S2((Cn)∨) fixed by SO(n,C).

In terms of sheaves: the automorphic sheaf S2Ω1
X contains as a direct factor the automorphic

line bundle L2, where L denotes the automorphic line bundle associated to the character χ of

KC.

Notice that Λnp− = χn, hence Ln is nothing else than the canonical sheaf KX . By [4]

the canonical sheaf KX is ample, hence L (thus L2) is also ample. The bundle L2 will have

sections if we choose Γ sufficiently small.

This finishes the proof of theorem 2.7, hence of theorem 1.16. 2
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3. The case of ball quotients

3.1. Coherent Matsushima formula. Let D = G/K be an irreducible bounded symmet-

ric domain with G a connected Lie group locally isomorphic to Aut0(D), Γ a torsion-free

cocompact lattice in G and X = Γ\D the corresponding smooth projective variety. Let

κ : KC −→ GL(V0) be an irreducible K-module and Vκ the corresponding automorphic vector

bundle on X. The link between H•(X,Vκ) and (q,KC)-cohomology (like the one between

Betti cohomology and (g,K)-cohomology) is classical. We refer to [15] and [14, section 4] for

details on this section.

Recall that given a (q,KC)-module λ, the cohomology H•(q,KC;λ) is the cohomology of

the complex C• := HomKC(∧•p−, λ) with the differential

df(x0, · · · , xq) =
∑
i

(−1)ixi·f(x0, · · · , x̂i, · · · , xq)+
∑
i<j

(−1)i+jf([xi, xj ], x0, · · · , x̂i, · · · , x̂j , · · · , xq) .

We denote by Ĝ the unitary dual of G i.e. the set of isomorphism classes of irreducible

unitary representations of G. Given π an admissible G-module we will also denote by π its

associated (gK)-module. Then:

H•(X,Vκ) = H•(q,KC; C∞(Γ\G)⊗C κ)

=
⊕
π∈Ĝ

mπ(Γ) H•(q,KC;π ⊗C κ) ,(3)

where mπ(Γ) := dimC HomG(π, L2(Γ\G)).

Definition 3.1. We say that π ∈ Ĝ has ∂-cohomology in degree r with coefficients in κ (or

contributes to Hr(X,Vκ)) if Hr(q,KC;π ⊗C κ) 6= 0. We say that π has ∂-cohomology if π

has ∂-cohomology in degree r with coefficients in κ for some representation κ of K and some

natural integer r.

Let π ∈ Ĝ. By Schur’s lemma the center Z(UgC) of the envelopping algebra UgC acts on

π via a character χπ : Z(UgC) −→ C, called the infinitesimal character of π. Given h ⊂ k a

Cartan subalgebra, we denote θ : Z(UgC)
∼−→ S(hC)W the Harish-Chandra isomorphism, where

W = W (gC, hC) is the Weyl group. Any τ ∈ h∗C defines a homomorphism eτ : S(hC) −→ C
hence an algebra homomorphism χτ = eτ ◦ θ : Z(UgC) −→ C. For any π ∈ Ĝ it is known that

χπ = χτ for some τ ∈ h∗C uniquely determined modulo the action of W . Let Cg ∈ Z(UgC) be

the Casimir operator. Harmonic theory shows that necessarily

χπ = χ−τκ−δG and χπ(Cg) =< τκ, τκ + 2δG >

if H•(q,KC;π ⊗C κ) 6= 0, where τκ is the highest weight of κ with respect to h and 2δG is the

sum of the positive roots of g. Hence:
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Proposition 3.2.

H•(X,SiΩ1
X) =

⊕
π∈Ĝ

χπ=χ−τ
Sip−

−δG

χπ(Cg)=<τSip−
,τSip−

+2δG>

mπ(Γ) H•(q,KC;π ⊗C S
ip−) .

Remark 3.3. A classical result of Harish-Chandra ensures that the number of irreducible (g,K)-

modules with given infinitesimal character is finite, hence the sum in the right hand side of (3.2)

is a finite sum.

3.2. Langlands classification. In this section we describe the π’s in Ĝ contributing to

H•(X,SiΩ1
X) in the case G = SU(n, 1), K = U(n), D = Bn

C, X = Γ\Bn
C for Γ ⊂ SU(n, 1) a

torsion-free cocompact lattice.

We adopt the notations of section 2.2.1 for p = n, q = 1. In particular gC = kC ⊕ p+ ⊕ p−

and q := kC ⊕ p−. We moreover define:

(i) a := RH0 a Cartan subspace in p with corresponding Cartan subgroupA = (exp(tH0))t∈R,

where H0 =

0 0 1

0 0n−1 0

1 0 0

. Let α ∈ a∗ be defined by α(tH0) = t. Then R(g, a) =

{±α,±2α} is a restricted root system for (g, a). We identify a∗C ' C by sα 7→ s.

(ii) n = gα ⊕ g2α ⊂ g the subalgebra generated by the eigenspaces of the positive roots α

and 2α ; let N ⊂ G be the corresponding subgroup.

(iii) M the centralizer of A in K.

(iv) P = MAN the usual minimal parabolic subgroup of G.

(v) tC ⊂ mC the Cartan subalgebra of diagonal matrices. Hence aC ⊕ tC is a Cartan

subalgebra of gC.

Let us recall the Langlands classification of admissible representations of G = SU(n, 1).

We follow [5, chapitre 4] (although [5, chapitre 4] deals with U(n, 1) rather than SU(n, 1) its

notations, statements and proofs immediately adapt to SU(n, 1)).

Definition 3.4. Let P = MAN be the usual minimal parabolic subgroup of G. Given σ ∈ M̂
and s ∈ C ' a∗C we denote by Iσ,s = indGP (σ ⊗ es ⊗ 1) the admissible representation of G

obtained from the representation σ ⊗ es ⊗ 1 of P by unitary induction.

Theorem 3.5 (Langlands, Knapp and Zuckerman). Given σ ∈ M̂ and s ∈ C ' a∗ with

positive real part, the representation Iσ,s admits a unique irreducible quotient (its Langlands

quotient) denoted πσ,s.

Every irreducible admissible representation π of G is either:

(i) a discrete series,

(ii) a non-degenerate limit of discrete series,

(iii) Iσ,s for s ∈ iR, or

(iv) πσ,s for s ∈ C with positive real part.
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These representations are pairwise non-isomorphic.

Any π occurring in cases (i), (ii) and (iii) are obviously unitary, in fact tempered. On the

other hand the π’s occurring in case (iv) are never tempered. It is not so easy to describe

which among these πσ,s are unitary but we won’t need the general result here.

3.3. The tempered case: proof of theorem 1.13. The tempered representations with

∂-cohomology are described by the following result of Mirkovic [28] (generalized by Soergel

[36]):

Theorem 3.6 (Mirkovic). Suppose π ∈ Ĝ is a tempered representation with ∂-cohomology.

Then π is a discrete series or non-degenerate limit of discrete series.

Remarks 3.7. (i) This result of Mirkovic illustrates in the tempered world why coherent

cohomology is richer than Betti cohomology. Indeed it is well-known that among tem-

pered representations only discrete series do potentially contribute to the cohomology

of local systems on X when rk G = rk K.

(ii) In fact Mirkovic’s theorem is not needed if we are interested only in H0(X,SiΩ1
X):

proposition 3.12, to be proven in the next section, implies that if π = πσ,s is not

a discrete series or a limit of discrete series and contributes to H0(X,SiΩ1
X) then

s ∈ R∗, hence πσ,s is not tempered.

Theorem 1.13 then follows from the following result on discrete series and their non-

degenerate limits:

Proposition 3.8. Let i be a positive integer. Let π ∈ Ĝ contributing to H0(X,SiΩ1
X).

(a) If π is a discrete series then i ≥ n+ 1.

(b) If π is a non-degenerate limit of discrete series then i ∈ {n, n+ 1}.

It is worth to prove the following more precise result:

Proposition 3.9. Let i be a positive integer.

(a) If i = 1 or i ≥ n+1, there exists a unique tempered π ∈ Ĝ contributing to H•(X,SiΩ1
X) ;

it is a discrete series.

If i ≥ n+ 1 then H•(q,K;π ⊗ Sip−) = H0(q,K;π ⊗ Sip−) ' C.

If i = 1 then H•(q,K;π ⊗ p−) = Hn−1(q,K;π ⊗ p−) ' C.

(b) If 2 ≤ i ≤ n there are exactly two distinct tempered π, π′ ∈ Ĝ contributing to H•(X,SiΩ1
X) ;

both are non-degenerate limits of discrete series.

Moreover

H•(q,K;π ⊗ Sip−) = Hn−i(q,K, π ⊗ Sip−) ' C

while

H•(q,K;π′ ⊗ Sip−) = Hn+1−i(q,K, π′ ⊗ Sip−) ' C .
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3.3.1. Proof of proposition 3.9. Proposition 3.9 will follow from results of [6]. We use the

notations of section 2.2.1 defining h, C, Li (1 ≤ i ≤ n + 1), once more up to the obvious

modifications needed for passing from U(n, 1) to SU(n, 1). Let R+ be the set of positive roots

of (gC, hC) defined by C. Let R+
c (resp. R+

n ) be the subset of R+ of compact (resp. non-

compact) roots. Hence R+
n is the set of roots on p+. Let δG = 1

2

∑
α∈R+ α. Let H ⊂ K be

the maximal torus with lie algebra h. Let F ⊂ h∗C denote the set of differentials of algebraic

characters of the torus H and <,> be the bilinear form on hC induced by the Killing form.

Definition 3.10. Let Λ ∈ F and define λ = Λ + δG. A system Ψ of positive roots for (gC, hC)

is said to be adapted to Λ if:

(a) Ψ ⊃ R+
c ,

(b) λ is dominant with respect to Ψ,

(c) < λ,α >> 0 for all α ∈ R+
c such that α is simple with respect to Ψ.

If Ψ is adapted to Λ we define qλ,Ψ := #(Ψ ∩R+
n )

Given Λ ∈ F and Ψ a system adapted to Λ one may define the non-degenerate limit of

discrete series π(λ,Ψ) as in [23, XII, paragraph 7]. If λ is non-singular for R then there exists

a unique system Ψ adapted to Λ and π(λ,Ψ) is the discrete series πλ with Harish-Chandra

parameter λ.

Theorem 3.11 (Blasius-Harris-Ramakrishnan). [15, theor. 3.4] Let Λ ∈ F and Ψ a system

adapted to Λ. Let τ ∈ h∗C be an R+
c -dominant integral weight and σ ∈ K̂ the corresponding

finite dimensional irreducible representation of K with highest weight τ . Then:

(i) Hq(q,K; (π(λ,Ψ))∗ ⊗ σ) = 0 unless q = qλ,Ψ and τ = Λ.

(ii) If τ = Λ then dimHqλ,Ψ(q,K; (π(λ,Ψ))∗ ⊗ σ) = 1.

Let us apply this result in our case. Fix i a positive integer. We are looking for Λ ∈ F and

Ψ adapted to Λ such that H0(q,K; (π(λ,Ψ))∗ ⊗ Sip−) 6= 0. As

τSip− = −i(Ln − Ln+1)

and R+
c = {Lj − Lk, 1 ≤ j < k ≤ n}, τSjp− is R+

c -dominant integral. As

δG =
1

2

n+1∑
r=1

(n− 2(r − 1))Lr,

theorem 3.11 implies that necessarily

(4) λ = τSip− + δG =
1

2
[

n−1∑
r=1

(n− 2(r − 1))Lr − (n+ 2i− 2)Ln + (2i− n)Ln+1] .

Hence

(5) < λ,Lj − Lk >=


k − j if 1 ≤ j < k ≤ n ,

n+ 1− (i+ j) if 1 ≤ j ≤ n− 1 < k = n+ 1 ,

1− 2i if j = n and k = n+ 1 .
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Formula (5) implies that λ is R-regular if i ≥ n + 1 or i = 1. Hence the only tempered

π ∈ Ĝ contributing to H•(X,SiΩ1
X) are discrete series (πλ)∗. The same formula immediately

implies that qλ = 0 for i ≥ n+ 1 and qλ = n− 1 for i = 1.

For 2 ≤ i ≤ n then λ belongs to the singular hyperplane < x,Ln+1−i−Ln+1 >= 0 but to no

others. Hence there are exactly two non-degenerate limits of discretes series π := π(λ,Ψ) and

π′ := π(λ,Ψ′) contributing to H•(X,SiΩ1
X): they correspond to Ψ = R+

c ∪ {Li − Ln+1, 1 ≤
i ≤ n− i}.

3.4. The non-tempered case: proof of theorem 1.15.

3.4.1. Possible σ and s. From now on we restrict ourselves to cohomology in degree 0, in which

case proposition 3.2 becomes:

H0(X,SiΩ1
X) =

⊕
π∈Ĝ

χπ=χ−τ
Sip−

−δG

χπ(Cg)=<τSip−
,τSip−

+2δG>

mπ(Γ) HomKC(Sip+, π) .

Proposition 3.12. Let i be a positive integer and let π = πσ,s ∈ Ĝ be a non-tempered repre-

sentation contributing to H0(X,SiΩ1
X). Then:

(a) there exists an integer k, 0 ≤ k ≤ i, such that the M -module σ = σk has highest weight

τk = k(L2 −
L1 + Ln+1

2
) .

(b) For σ = σk one has s = sk > 0 with s2
k = n2 + k2 + 4(i− k)(i+ k − 1).

(c) the infinitesimal character of πσk,sk with respect to h is

χπσk ,sk = (sk −
k

2
, k +

n− 2

2
,
n− 4

2
, · · · ,−n− 4

2
,−n− 2

2
,−sk −

k

2
) .

Proof. The computations are similar to those in [5, chapitre 4]. To simplify the notations we

work with U(n, 1) rather than SU(n, 1). Hence K = U(n)× U(1) and

M = U(n− 1)× U(1) =


x 0 0

0 A 0

0 0 x

 , x ∈ S1, A ∈ U(n− 1)

 .

For (a): notice that Iσ,s = indKMσ as a K-module. By Frobenius reciprocity one has:

HomK(Sip+, Iσ,s) = HomM (Sip+, σ) .

We are thus reduced to compute the M -types of the K-module Sip+. Denote by χ : U(1) −→
S1 the identity character. We denote by StU(m) the standard action of the unitary group

U(m) on Cm. Hence p+ = StU(n) ⊗ χ−1 as a K-module. As an M -module one has StU(n) =

χ⊕StU(n−1). Finally p+ = (StU(n−1)⊗χ−1)⊕1 as an M -module. By taking symmetric powers

we obtain that the M -types of Sip+ are the SkStU(n−1) ⊗ χ−k for 0 ≤ k ≤ i. The highest

weight of the M -module SkStU(n−1) ⊗ χ−k is τk = k(L2 − L1+Ln+1

2 ): this proves (a).
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For (c): let 2δG (resp. 2δM ) be the sum of positive roots for (gC, hC) (resp. for (mC, tC)).

Hence

2δG =

n+1∑
j=1

(n+ 2− 2j)Lj and 2δM =

n∑
j=2

(n+ 2− 2j)Lj .

It follows from [23, prop.8.22] that χπσ,s = τσ + δM + s with respect to the Cartan subalgebra

aC ⊕ tC. Statement (c) then follows from (a).

For (b): we use the constraint

(6) χπσ,s(Cg) =< τSip− , τSip− + 2δG > .

On the one hand: from [23, lemma 12.28] one has:

πσ,s(Cg) = (< τσ + δM + s, τσ + δM + s > − < δG, δG >) · Id .

Here <,> is the scalar product deduced from the Killing form normalized by (X,Y ) 7→
Tr (XY )/2 on g (in particular < Li, Lj >= 2δi,j). Hence

(7) πσ,s(Cg) = s2 − n2+ < τσ, τσ + 2δM > .

An easy computation gives:

(8)

< τσk , τσk +2δM >=< k(L2−
L1 + Ln+1

2
), k(L2−

L1 + Ln+1

2
)+(n−2)L2 >= 3k2 +2k(n−2) .

On the other hand:

< τSip− , τSip− + 2δG > =< i(Ln+1 − Ln), i(Ln+1 − Ln) + {(2− n)Ln − nLn+1} >

= 4i2 − 2i(2− n)− 2in = 4i(i− 1) .
(9)

From equations (6), (7), (8) and (9) one deduces (c). �

3.4.2. The adelic language. From now on F is a totally real number field, Fc a CM-extension

of F , D a division algebra over Fc of degree n + 1 prime with an involution of second kind

ε : D −→ D, h a non-degenerate ε-Hermitian form on D and G = SU(h) the special unitary

algebraic group over F associated to the data (F, Fc, D, ε, h). We assume that for one real

place v0 : F ↪→ R one has G(Fv0) ' SU(n, 1) and that for any other real place v 6= v0 then

G(Fv) ' SU(n+ 1).

We denote by SU the restriction of scalars ResF/QG, hence SU(Q) = G(F ) and SU(R) '
SU(n + 1)[F :Q]−1 × SU(n, 1). Let Kf ⊂ SU(Af ) be a compact open subgroup and denote

by Γ = G(F ) ∩ Kf the corresponding Kottwitz lattice. The compact-open subgroup Kf is

supposed to be neat so that Γ is torsion-free. We denote by X = Γ\Bn
C the corresponding

compact ball quotient. By strong approximation

X = ShKf (SU,Bn
C) := SU(Q)\SU(A)/KfK∞ = G(F )\(Bn

C ×G(AF,f )/Kf ) ,

where K∞ ⊂ SU(R) denotes a maximal compact subgroup.
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The coherent Matsushima formula 3.2 then gives:

H•(X,SiΩ1
X) =

⊕
π irreducible summand of AG

χπ∞ (Cg)=<ΛSip−
,ΛSip−

+2δG>

m(π) · πKff ⊗H•(q,KC;π∞ ⊗C S
ip−) ,

where AG = L2(G(F )\G(AF,f )), m(π) = dimC Hom(π,AG) and irreducible summands of

AG are automorphic representations of G(AF ). We are reduced to showing that for 1 ≤ i ≤
n− 1 there is no automorphic representation π of G(AF ) such that π∞ is non-tempered and

χπ∞(Cg) =< ΛSip− ,ΛSip− + 2δG >.

3.4.3. Functoriality. Let us give the heuristic argument concluding the proof of theorem 1.15.

For simplicity we denote by G, for the time of this heuristic, the unitary group associated to

(D,h) rather than the special unitary one. We want to associate to an automorphic represen-

tation π of G(AF ) an automorphic representation τc of GL(n+ 1,AFc) through the following

diagram of functorialities:

GL1(D)/Fc GL(n+ 1)/Fc

πc τc

G/F

π

The vertical arrow represents base change ; the horizontal one is the Jacquet-Langlands corre-

spondance. The vertical arrow has no a priori reason to exist in terms of the general principles

of Langlands functoriality (cf. [24]). It does exist, however, as shown in [12], thanks to the

very strong stability properties of the trace formula (for G) and the twisted trace formula

(for GL1(D)) discovered by Kottwitz. As G is F -anisotropic the representation π is cuspidal.

Unless π is an Abelian character the proof of [12] (for n + 1 prime !) implies that τc is cusp-

idal too. The Ramanujan conjecture for GL(n + 1)/Fc then implies that τc, hence also π, is

tempered. Hence AG does not contain any non-tempered automorphic representation.

Let us formalize the argument. We essentially follow Clozel’s proof of property τ , cf. [12,

p.325-326].

The special unitary group G is the derived group of the reductive F -group G̃ of unitary

similitudes defined by setting for R any F -algebra:

G̃(R) = {d ∈ (D ⊗F R)∗, / ddε ∈ R∗} .

The center Z̃ of G̃ is ResF c/FGm. Let AG̃ ' R∗+ be the neutral component of the maximal Q-

split torus in ResF/QZ̃. The group AG̃ is a closed subgroup of G̃(AF,f ). We denote by AG̃ the
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space L2(AG̃G̃(F )\G̃(AF,f )), its irreducible components are the automorphic representations

of G̃(AF ).

Lemma 3.13. [12, lemma 3.4] Let π be an automorphic representation of G(AF ). There

exists an automorphic representation π̃ of G̃(AF ) (with central character trivial on AG̃) such

that π̃|G(AF ) is a discrete sum of automorphic representations of G(AF ) containing π.

We hope for the following diagram of functorialities:

G̃/Fc ' (GL1(D)×Gm)/Fc (GL(n+ 1)×Gm)/Fc

Π R

G̃/F

π̃

The main result of [12] is the following base-change result:

Theorem 3.14. [12, theor.2.13] Suppose n + 1 is an odd prime. Let π̃ be an automorphic

representation of G̃(AF ). There exist a unique automorphic representation Π of (GL1(D) ×
Gm)(AFc) such that:

(i) for any finite place v of F such that π̃v and G̃ are non-ramified at v, and for any

place w|v of Fc, the representation Πw is unramified and associated to πv by local

base-change.

(ii) for any Archimedean place v of F and any w|v the infinitesimal characters of πv and

Πw are associated:

χΠw = χπv ◦N ,

where N denotes the norm between the centers of the corresponding envelopping alge-

bras.

One has (Fc)v0 = Fc ⊗ Fv0 ' C and G̃((Fc)v0) ' GL(n + 1,C) × C∗. Let us write Π =

(Π+, χ) where Π+ is an automorphic representation of GL1(D)(AFc) and χ is a character of

A∗Fc/F
∗
c . Let N be the norm between the center of the envelopping algebras of SL(n + 1,C)

and G(Fv0) ' SU(n, 1). By theorem 3.14 one has

(10) χΠ+
v0,|SL(n+1,C)

= χπv0 ◦N ,

where Π+
v0,|SL(n+1,C) denotes the restriction of the representation Π+

v0
of GL(n+1,C) to SL(n+

1,C).

From now on suppose that πv0 is non-tempered and contributes to H0(X,SiΩ1
X). Hence by

proposition 3.12 there exists an integer k, 0 ≤ k ≤ i, such that πv0 = πσk,sk . The Lie algebra of
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a maximal R-split torus of the real algebraic group ResC/RSL(n+ 1) is canonically isomorphic

to h× h (still with the notations of section 2.2.1). An infinitesimal character for SL(n+ 1,C)

is parametrized by an element of h∗C× h∗C modulo the action of Sn+1×Sn+1. Condition (ii) in

theorem 3.14 and proposition 3.12(c) implies that

χΠ+
v0,|SL(n+1,C)

= (Y, Y ) mod Sn+1 × Sn+1,

with Y = (sk −
k

2
, k +

n− 2

2
,
n− 4

2
, · · · ,−n− 4

2
,−n− 2

2
,−sk −

k

2
) .

(11)

As n + 1 is prime, it follows from [37], [2], [3] that Π+ is associated to an automorphic

representation R+ of GL(n+ 1,AFc) ; moreover R+ is cuspidal or an Abelian character ; and

R+
v0
' Π+

v0
.

If R+ is an Abelian character then the infinitesimal character of R+
v0,|SL(n,C) is (X,X)

mod Sn+1×Sn+1 with X = (n2 ,
n−2

2 , · · · ,−n
2 ). Hence k = 0 and s0 = n

2 . But s2
0 = n2+4i(i−1)

by proposition 3.12(b), contradiction.

If R+ is cuspidal then it is well-known that R+
v0

is generic. By a theorem of Vogan [38] one

has

R+
v0

= indGB(ε1| · |t1 , · · · , εn+1| · |tn+1) ,

where the characters εi of C∗ are unitary and ti ∈]− 1
2 ,

1
2 [. The infinitesimal character of R+

v0

is (p, q) mod Sn+1 × Sn+1, where p = (p1, · · · , pn+1) and q = (q1, · · · , qn+1), pi − qi ∈ Z and
1
2<(pi + qi) ∈]− 1

2 ,
1
2 [. From equation (11) one can assume that:

(p1, · · · , pn+1) = (sk −
k

2
, k +

n− 2

2
,
n− 4

2
, · · · ,−n− 4

2
,−n− 2

2
,−sk −

k

2
) ,

(q1, · · · , qn+1) = (sk −
k

2
, k +

n− 2

2
,
n− 4

2
, · · · ,−n− 4

2
,−n− 2

2
,−sk −

k

2
) mod Sn+1 .

(12)

Let us determine the value of q2. By proposition 3.12(b) the number sk is real hence all the

qi’s are real. As p2 = k + n−2
2 and q2 has to satisfy the condition p2 + q2 ∈]− 1, 1[, there are

only three possibilities:

(i) either q2 ∈ {k + n−2
2 , n−4

2 , · · · ,−n−4
2 ,−n−2

2 }. In this case the sum p2 + q2 is integral

hence p2 + q2 = 0 as p2 + q2 ∈]− 1, 1[. As k ≥ 0 necessarily q2 = −n−2
2 and k = 0. It

then follows that

(p1, · · · , pn+1) = (qn+1, qn, · · · , q1) = (s0,
n− 2

2
,
n− 4

2
, · · · ,−n− 4

2
,−n− 2

2
,−s0) .

Hence πv0 = π1,s0 is unramified. But for πσ,s unitary and unramified one necessarily

has |s| ≤ n−1
2 . This contradicts the inequality s0 ≥ n forced by proposition 3.12(b).

(ii) or q2 = sk − k
2 . Hence p2 + q2 = sk + k

2 + n−2
2 has to belong to ] − 1, 1[. This is

impossible as sk ≥ n by proposition 3.12(b) and n ≥ 2.

(iii) or q2 = −sk − k
2 . The condition p2 + q2 ∈] − 1, 1[ reads this time sk ∈]k+n

2 − 2, k+n
2 [.

This implies s2
k < (k+n

2 )2 as k + n ≥ 2. On the other hand proposition 3.12(b) gives

s2
k = k2 + n2 + 4(i− k)(i+ k − 1) ≥ k2 + n2
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as 0 ≤ k ≤ i. Hence necessarily k2 +n2 < (k+n
2 )2 < 1

2(k+n)2 i.e. 1
2(k−n)2 < 0 which

is impossible.

This concludes the proof of theorem 1.15.
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