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Hélène Esnault asked whether a smooth complex projective variety X with infi-
nite fundamental group must have a nonzero symmetric differential, meaning that
H0(X,SiΩ1

X) 6= 0 for some i > 0. This was prompted by the second author’s work
[20]. We know from Hodge theory that the cotangent bundle Ω1

X has a nonzero
section if and only if the abelianization of π1X is infinite. The geometric meaning
of other symmetric differentials is more mysterious, and it is intriguing that they
may have such a direct relation to the fundamental group.

In this paper we prove the following result on Esnault’s question, in the slightly
broader setting of compact Kähler manifolds.

Theorem 0.1. Let X be a compact Kähler manifold. Suppose that there is a finite-
dimensional representation of π1X over some field with infinite image. Then X has
a nonzero symmetric differential.

All known varieties with infinite fundamental group have a finite-dimensional
complex representation with infinite image, and so the theorem applies to them.
Depending on what we know about the representation, the proof gives more precise
lower bounds on the ring of symmetric differentials.

Remark 0.2. (1) One reason to be interested in symmetric differentials is that they
have implications toward Kobayashi hyperbolicity. At one extreme, if Ω1

X is ample,
then X is Kobayashi hyperbolic [22, Theorem 3.6.21]. (Equivalently, every holomor-
phic map C→ X is constant.) If X is a surface of general type with c21 > c2, then
Bogomolov showed that Ω1

X is big and deduced that X contains only finitely many
rational or elliptic curves, something which remains open for arbitrary surfaces of
general type [3, 10]. For any α ∈ H0(X,SiΩ1

X) with i > 0, the restriction of α
to any rational curve in X must be zero (because Ω1

P1 is a line bundle of negative
degree), and so any symmetric differential gives a first-order algebraic differential
equation satisfied by all rational curves in X.

A lot is already known about Kobayashi hyperbolicity in the situation of The-
orem 0.1. In particular, Yamanoi showed that for any smooth complex projective
variety X such that π1X has a finite-dimensional complex representation whose
image is not virtually abelian, the Zariski closure of any holomorphic map C→ X
is a proper subset of X [37].

(2) Arapura used Simpson’s theory of representations of the fundamental group
to show that if π1X has a non-rigid complex representation, then X has a nonzero
symmetric differential [1, Proposition 2.4], which we state as Theorem 4.1.

Thus the difficulty for Theorem 0.1 is how to use a rigid representation of the
fundamental group. The heart of the proof is a strengthening of Griffiths and
Zuo’s results on variations of Hodge structure [14, 40], from weak positivity of the
cotangent bundle (analogous to “pseudoeffectivity” in the case of line bundles) to
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bigness. As a result, we get many symmetric differentials on the base of a variation
of Hodge structure.

(3) The abundance conjecture in minimal model theory would imply that a
smooth complex projective varietyX is rationally connected if and only ifH0(X, (Ω1

X)⊗i) =
0 for all i > 0 [12, Corollary 1.7]. Without abundance, Campana used Gromov’s L2

arguments [16] on the universal cover to show that if X is not simply connected,
then H0(X, (Ω1

X)⊗i) 6= 0 for some i > 0 [5, Corollary 5.1]. But this conclusion is
weaker than that of Theorem 0.1. In particular, finding a section of a general tensor
bundle (Ω1

X)⊗i has no direct implication towards Kobayashi hyperbolicity. (There
are more subtle implications, however. Demailly has shown that every smooth pro-
jective variety X of general type has some algebraic differential equations, typically
not first-order, which are satisfied by all holomorphic maps C → X [9, Theorem
0.5].)

There are many varieties X of general type (which have many sections of the line
bundles K⊗jX , hence of the bundles (Ω1

X)⊗i) which have no symmetric differentials.
For example, Schneider showed that a smooth subvariety X ⊂ PN with dim(X) >
N/2 has no symmetric differentials [30]. Most such varieties are of general type.

(4) The possible implication from infinite fundamental group to existence of
symmetric differentials cannot be reversed. In fact, Bogomolov constructed smooth
complex projective varieties which are simply connected but have ample cotangent
bundle [7, Proposition 26]. Brotbek recently gave a simpler example of a simply
connected variety with ample cotangent bundle: a general complete intersection
surface of high multidegree in PN for N ≥ 4 has ample cotangent bundle [4, Corol-
lary 4.8]. The ring of symmetric differentials on such a variety is as big as possible,
roughly speaking.

(5) Theorem 0.1 makes it natural to ask whether the fundamental group of a
smooth complex projective variety X, if infinite, must have a finite-dimensional
complex representation with infinite image. This is not known. We know by Toledo
that the fundamental group of a smooth projective variety need not be residually
finite [36], in particular need not be linear.

Even if the fundamental group of a smooth projective variety X is infinite and
residually finite, it is not known whether π1X always has a finite-dimensional com-
plex representation with infinite image. Indeed, there are infinite, residually finite,
finitely presented groups Γ such that every finite-dimensional complex representa-
tion of Γ has finite image. Such a group can be constructed as follows; can it be the
fundamental group of a smooth complex projective variety? Let K be a global field
of prime characteristic p (for example K = Fp(T )). Let S be a finite set of primes of
K and OS the subring of S-integers of K. Then Γ := SL(n,OS) is finitely presented
if n ≥ 3 and |S| > 1 [35], and any finite-dimensional complex representation of Γ
has finite image if n ≥ 3 and |S| > 0 [25, Theorem 3.8(c)]. Also, Γ is residually
finite.

(6) One cannot strengthen Theorem 0.1 to say that every non-simply-connected
variety has a nonzero symmetric differential. For example, Kobayashi showed that
every smooth complex projective variety X with torsion first Chern class and finite
fundamental group has H0(X,SiΩ1

X) = 0 for all i > 0 [21]. This applies to Enriques
surfaces, which have fundamental group Z/2.

Acknowledgements: It is a pleasure to thank H. Esnault, who suggested the ques-
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tion leading to Theorem 0.1 after a lecture by the second author on [20]; F. Campana
for explaining [5]; and C. Haesemeyer and K. Zuo for useful questions.

Convention: Throughout the paper, varieties and manifolds are understood to
be connected.

1 Negatively curved varieties

Theorem 1.1. Let X be a compact Kähler manifold with nonpositive holomorphic
bisectional curvature. Suppose that the holomorphic sectional curvature is negative
at one point of X. Then the cotangent bundle of X is nef and big.

For a vector bundle E on a compact complex manifold, write P (E) for the
projective bundle of hyperplanes in E. We define a vector bundle E to be ample,
nef, or big if the line bundle O(1) on P (E) has the corresponding property [23,
Definition 6.1.1, Example 6.1.23]; see Demailly [8, Definition 6.3] for the definition
of a nef line bundle on a compact complex manifold. It follows that E is big if and
only if there are c > 0 and j0 ≥ 0 such that

h0(X,SjE) ≥ cjdim(X)+rank(E)−1

for all j ≥ j0. Note that Viehweg and Zuo use “big” for a stronger property of
vector bundles, as discussed below in Remark (2).

We give the definition of holomorphic bisectional curvature in the proof of
Lemma 1.4. On a Kähler manifold, the holomorphic bisectional curvature B(x, y)
for tangent vectors x and y is a positive linear combination of the (Riemannian)
sectional curvatures of the real 2-planes R{x, y} and R{x, iy} [11, section 1]. Holo-
morphic sectional curvature is a special case of holomorphic bisectional curvature; it
is also equal to the sectional curvature of a complex line in the tangent space, viewed
as a real 2-plane. It follows that a Kähler manifold with negative or nonpositive sec-
tional curvature satisfies the corresponding inequality for holomorphic bisectional
curvature, and that in turn implies the corresponding inequality for holomorphic
sectional curvature.

For example, Theorem 1.1 applies to the quotient of any bounded symmetric
domain by a torsion-free cocompact lattice, or to any smooth subvariety of such
a quotient. (This uses that holomorphic bisectional curvature and holomorphic
sectional curvature decrease on complex submanifolds [11, section 4].) Thus we
have a large class of smooth projective varieties with a lot of symmetric differentials.
Theorem 1.1 seems to be new even for these heavily studied varieties. For a quotient
X of a symmetric domain of “tube type”, it was known that SnΩ1

X contains the
ample line bundle KX = Ωn

X , and so X has some symmetric differentials [6, section
4.2]. But that argument does not show that Ω1

X is big.

Remark 1.2. (1) If the holomorphic bisectional curvature of a compact Kähler man-
ifold is negative, then the cotangent bundle is ample. But the cotangent bundle of
X need not be ample under the assumptions of Theorem 1.1, even if the holomor-
phic sectional curvature is everywhere negative. A simple example is the product
C1 ×C2 of two curves of genus at least 2, for which the natural product metric has
negative holomorphic sectional curvature and nonpositive holomorphic bisectional
curvature. The cotangent bundle is π∗1Ω1

C1
⊗ π∗2Ω1

C2
, which is not ample because its
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restriction to a curve C1×p has a trivial summand. A more striking example is the
quotient X of the product of two copies of the unit disc by an irreducible torsion-free
cocompact lattice. (Some surfaces of this type are known as quaternionic Shimura
surfaces.) The curvature conditions of Theorem 1.1 are again satisfied at every
point. In this case, Shepherd-Barron showed that the algebra of symmetric dif-
ferentials ⊕i≥0H0(X,SiΩ1

X) is not finitely generated [31]. A fortiori, Ω1
X is not

ample.
(2) The cotangent bundle need not be big in Viehweg’s stronger sense under the

assumptions of Theorem 1.1. To give the definition, let X be a projective variety
over a field with an ample line bundle L. A vector bundle E is weakly positive if
there is a nonempty open subset U such that for every a > 0 there is a b > 0 such
that the sections of Sab(E) ⊗ L⊗b over X span that bundle over U . A bundle E
is Viehweg big if there is a c > 0 such that Sc(E) ⊗ L−1 is weakly positive. The
assumptions of Theorem 1.1 do not imply that Ω1

X is Viehweg big, as shown again
by X the product of two curves of genus at least 2 [19, Example 1.8].

(3) Following Sakai, we define the cotangent dimension λ(X) of a compact com-
plex n-fold X to be the smallest number λ such that there is a positive constant
C with

∑j
i=0 h

0(X,SiΩ1
X) ≤ Cjλ+n for all j ≥ 0 [29]. Then λ(X) is an integer

between −n and n, and Ω1
X is big if and only if λ(X) has the maximum value, n.

Proof. (Theorem 1.1) Let P(Ω1
X)→ X be the bundle of hyperplanes in the cotan-

gent bundle Ω1
X . Since X has nonpositive bisectional curvature, the associated

metric on the line bundle O(1) on P(Ω1
X) has nonnegative curvature [13, 2.36]. It

follows that Ω1
X is nef.

The hard part is to show that Ω1
X is big. Equivalently, we have to show that

the line bundle O(1) on P(Ω1
X) is big. By Siu, this holds if the differential form

(c1O(1))2n−1, which we know is nonnegative, is positive at some point of the com-
pact complex manifold P(Ω1

X) [34]. The pushforward of the cohomology class
(c1O(1))2n−1 to X is the Segré class sn(TX). In fact, this is true at the level
of differential forms, by Guler [18]. (The total Segré class of a vector bundle E
is defined as the inverse of the total Chern class, s(E) = c(E)−1. For example,
s1(E) = −c1(E) and s2(E) = (c21 − c2)(E).) So we want to show that the Segré
number

∫
X sn(TX) is positive (rather than zero).

Lemma 1.3. Let E be a holomorphic hermitian vector bundle of rank n on a
complex manifold X of dimension at least n. Let p be a point in X. Suppose that
the curvature ΘE in A1,1(End(E)) is nonnegative at p, and that there is a nonzero
vector e in Ep such that the (1, 1)-form ΘE(e, e) at p is positive. Then the Segré
form sn(E∗) is positive at p.

Proof. Since E has nonnegative curvature, the associated metric on the line bundle
O(1) on P(Ω1

X) has nonnegative curvature form c1O(1). The Segré form sn(E∗) is
the integral along the fibers of the differential form (c1O(1))2n−1. So the Segré form
is positive at the point p if the (1, 1)-form c1O(1) is positive at least at one point e
of the fiber over p. Griffiths’s formula for the curvature of O(1) [13, 2.36] is:

c1O(1)(y, y) =
ΘE(e, e, yh, yh)

|e|2
+ ω(yv, yv),
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where y is a tangent vector in P(E) with horizontal and vertical parts yh and yv,
and ω is a positive (1, 1) form on the projective space P(Ep). So the form c1O(1) is
positive at a point in P(E) if the corresponding vector e in E∗p (defined up to C∗)
satisfies ΘE(e, e, v, v) > 0 for all v 6= 0 in TpX. This is exactly our assumption.

The theorem is now a consequence of the following geometric lemma.

Lemma 1.4. Let X be a Kähler manifold. Suppose that at a point p, the holomor-
phic sectional curvature of X is at most a negative constant −A. Then there is a
nonzero vector x in TpX such that the holomorphic bisectional curvature B(x, y) is
at most −A/2 for all nonzero vectors y in TpX.

It seems surprising that the lemma holds without assuming that X has nonpos-
itive holomorphic bisectional curvature. (That is true in our application, however.)
The bound −A/2 is optimal, as shown by the invariant metric on the complex unit
n-ball for n ≥ 2: if we scale the metric to have holomorphic sectional curvature
equal to −A, then the holomorphic bisectional curvature B(x, y) varies between
−A (when x and y span the same complex line) and −A/2 (when the hermitian
inner product 〈x, y〉 is zero).

In the special case where X is a bounded symmetric domain, Mok studied in
detail the geometry of the tangent vectors x such that the holomorphic bisectional
curvature B(x, y) is zero for some y [26, p. 100 and p. 252]. He called such vectors
“higher characteristic vectors”.

Proof. The curvature of a holomorphic vector bundle E with hermitian metric over
a complex manifold X can be viewed as a form

ΘE : Ep × Ep × TpX × TpX → C

which is linear in the first and third variables and conjugate linear in the second
and fourth variables [38, section 7.5]. It satisfies

ΘE(y, x, w, z) = ΘE(x, y, z, w).

We define the curvature Θ = ΘTX of a hermitian metric on X to be the curvature
of the tangent bundle as a holomorphic vector bundle with hermitian metric. When
the metric is Kähler, we also have

Θ(x, y, z, w) = Θ(z, y, x, w).

The holomorphic bisectional curvature is defined by

B(x, y) =
Θ(x, x, y, y)

|x|2|y|2

for nonzero vectors x, y ∈ TpX. By the identities above, the holomorphic bisec-
tional curvature is real and depends only on the complex lines Cx and Cy. The
holomorphic sectional curvature is

H(x) = B(x, x) =
Θ(x, x, x, x)

|x|4
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for a nonzero vector x in TpX. This depends only on the complex line Cx.
Let x be a nonzero vector in TpX which maximizes the holomorphic sectional

curvature. This is possible, because the holomorphic sectional curvature is C∞ on
the complex projective space of lines in TpX. Write H(x) = −A < 0. With this
simple choice, we will show that B(x, y) ≤ −A/2 for all nonzero vectors y in TpX.

We can scale x and y to have length 1. To first order, for c ∈ C near 0, we have

H(x+ cy) =
1

|x+ cy|4
Θ(x+ cy, x+ cy, x+ cy, x+ cy)

= (1− 4 Re (c〈x, y〉))[H(x) + 4 Re (cΘ(x, x, x, y))] +O(|c|2)
= H(x) + 4 Re [c(−H(x)〈x, y〉+ Θ(x, x, x, y))] +O(|c|2),

using that |x+cy|2 = 1+2 Re (c〈x, y〉)+ |c|2. (We take the hermitian metric 〈x, y〉
on TpX to be linear in x and conjugate linear in y.) Since the holomorphic sectional
curvature is maximized at the vector x, the first-order term in c must be zero for
all c ∈ C, and so Θ(x, x, x, y) = H(x)〈x, y〉.

Next, we compute to second order, for c ∈ C near 0. The identities on curvature
imply that B(x, y) = Θ(x, x, y, y) = Θ(y, x, x, y) = Θ(y, y, x, x) = Θ(x, y, y, x), and
we know that Θ(x, x, x, y) = H(x)〈x, y〉. Therefore:

H(x+ cy) =
1

|x+ cy|4
Θ(x+ cy, x+ cy, x+ cy, x+ cy)

= [1− 4 Re (c〈x, y〉)− 2|c|2 + 12 Re (c〈x, y〉)2]
· [H(x) + 4H(x) Re (c〈x, y〉) + 4B(x, y)|c|2 + 2 Re (c2Θ(x, y, x, y))] +O(|c|3)
= H(x)− 2H(x)|c|2 − 4H(x)( Re c〈x, y〉)2 + 4B(x, y)|c|2 + 2 Re (c2Θ(x, y, x, y)) +O(|c|3).

Since the holomorphic sectional curvature is maximized at x, the quadratic term
in c must be ≤ 0 for all c ∈ C. The term −4H(x)( Re c〈x, y〉)2 is nonnegative,
which works to our advantage. Let c belong to one of the real lines in C such that
Re (c2Θ(x, y, x, y)) = 0; then we must have

−2H(x)|c|2 + 4B(x, y)|c|2 ≤ 0.

Therefore, B(x, y) ≤ H(x)/2 = −A/2, as we want.

2 More varieties with big cotangent bundle

Corollary 2.1. Let X be a compact Kähler manifold with nonpositive holomorphic
bisectional curvature. Let Y be a compact Kähler manifold with a generically finite
meromorphic map Y 99K X. Suppose that the holomorphic sectional curvature of
X is negative at some point in the closure of the image of Y . Then the cotangent
bundle of Y is big.

Proof. By resolution of singularities, there is a compact Kähler manifold Y2 with a
bimeromorphic morphism Y2 → Y such that the given map f : Y 99K X extends
to a morphism f : Y2 → X. Since the ring of symmetric differentials on a compact
complex manifold is a bimeromorphic invariant, it suffices to show that Ω1

Y2
is big.

Let W → X be the Grassmannian bundle of subspaces of TX of dimension
equal to n = dim(Y ). Since f is generically finite, the derivative of f is injective
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on an open dense subset U of Y2. So the derivative of f gives a meromorphic map
g : Y2 99K W lifting f , a morphism over U . Again, there is a compact Kähler
manifold Y3 with a bimeromorphic morphism Y3 → Y2, an isomorphism over U ,
such that g extends to a morphism g : Y3 →W . It suffices to show that Ω1

Y3
is big.

There is a natural vector bundle E of rank n on the Grassmannian bundle W ,
a quotient of the pullback of Ω1

X to W . The bundle E inherits a hermitian metric
from Ω1

X . Therefore the bundle g∗E on Y3 has a hermitian metric. Moreover, the
restriction of g∗E to U ⊂ Y3 can be identified with Ω1

U , with the metric pulled back
from the metric on Ω1

X via the immersion f : U → X. Since X has nonpositive
bisectional curvature, and bisectional curvature decreases on complex submanifolds
[38, section 7.5], the curvature of g∗E is nonnegative over U , hence over all of X3.
Also, by Lemmas 1.3 and 1.4, the Segré form sn((g∗E)∗) is positive at some point
of U , because X has negative holomorphic sectional curvature at some point in the
image of U , and holomorphic sectional curvature decreases on complex submanifolds
[38, section 7.5]. The Segré form may not be positive on all of Y3, but positivity on
U implies that the number

∫
X sn((g∗E)∗) is positive. Equivalently, the line bundle

O(1) on P(g∗E) → Y3 has nonnegative curvature and the number (c1O(1))2n−1 is
positive. So O(1) is nef and big on P(g∗E). Equivalently, g∗E is nef and big on Y3.

Because we can pull back 1-forms, we have a natural map α : f∗Ω1
X → Ω1

Y3
of

vector bundles on Y3, which is surjective over U . Also, we have a natural surjection
β : f∗Ω1

X → g∗E over Y3 by definition of E. The map α factors through the
surjection β over U , hence over all of Y3. That is, we have a map g∗E → Ω1

Y3
of

vector bundles over Y3, and it is an isomorphism over U .
The resulting map H0(Y3, S

j(g∗E)) → H0(Y3, S
jΩ1

Y3
) is injective for all j > 0.

Since g∗E is big on Y3, Ω1
Y3

is big.

3 Variations of Hodge structure

Let X be a compact Kähler manifold. Consider a complex variation of Hodge
structure V over X, and let

ϕ : X̃ → D

be the corresponding period map, where X̃ is the universal cover of X.

Theorem 3.1. Suppose that the derivative of ϕ is injective at some point of X.
Then Ω1

X is big.

The theorem was inspired by Zuo’s result that Ω1
X is weakly positive under

these assumptions [40, Theorem 0.1]. Note that weak positivity (defined in section
1) generalizes the notion of “pseudo-effective” for line bundles. So Zuo’s result is
similar, but it does not show that H0(X,SiΩ1

X) is nonzero for some i. We repeat
that our notion of a big vector bundle is not the stronger notion “Viehweg big”
(section 1).

We recall that a complex variation of Hodge structure on a complex manifold X
is a complex local system V with an indefinite hermitian form and an orthogonal
C∞ decomposition V = ⊕p∈ZV p such that the form is (−1)p-definite on V p, and
such that Griffiths transversality holds: the connection sends V p into

A1,0
X (V p−1)⊕A1

X(V p)⊕A0,1
X (V p+1)
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[32, section 4]. Let rp = dim(V p); then the corresponding period domain is the com-
plex manifold D = G/V where G = U(

∑
p odd rp,

∑
p even rp) and V =

∏
p U(rp). A

complex variation of Hodge structure with ranks rp is equivalent to a representation

of π1X into G and a π1X-equivariant holomorphic map X̃ → D which is horizontal
with respect to a natural distribution in the tangent bundle of D.

Proof. Griffiths and Schmid defined a G-invariant hermitian metric on a period
domainD = G/V . The period map ϕ : X̃ → D is always tangent to the “horizontal”
subbundle of TD. The holomorphic sectional curvatures of D corresponding to
horizontal directions are at most a negative constant [15, Theorem 9.1]. Pulling
back the metric on D gives a canonical hermitian metric g on the Zariski open
subset U ⊂ X where ϕ is an immersion. Since holomorphic sectional curvature
decreases on submanifolds, g has negative holomorphic sectional curvature on U .
Peters showed that g has nonpositive holomorphic bisectional curvature on U [27,
Corollary 1.8, Lemma 3.1]. Finally, g is a Kähler metric on U (even though the
metric on D is only a hermitian metric) [24, Theorem 1.2].

The metric g may degenerate on X, but we can argue as follows. Let Y → D be
the Grassmannian bundle of subspaces of TD of dimension equal to n = dim(X).
Then the derivative of ϕ gives a lift of the morphism X̃ → D to a π1X-equivariant
meromorphic map f : X̃ 99K Y (a morphism over Ũ). Let X̃2 be the closure of the
graph of f in X̃ × Y . We have a π1X-equivariant proper bimeromorphic morphism
X̃2 → X̃, and f extends to a morphism f : X̃2 → Y . Let X2 = X̃2/π1X, which is a
compact analytic space with a proper bimeromorphic morphism X2 → X. Finally,
let X3 → X2 be a resolution of singularities; we can assume that X3 is a compact
Kähler manifold since X is a compact Kähler manifold. Then X3 is a compact
Kähler manifold with a bimeromorphic morphism X3 → X, and f : X̃ 99K Y
extends to a π1X-equivariant morphism f : X̃3 → Y .

There is a natural G-equivariant vector bundle E of rank dim(X) on the Grass-
mannian bundle Y , a quotient of the pullback of Ω1

D to Y . The bundle E inherits a

hermitian metric from Ω1
D. Therefore the bundle f∗E on X̃3 has a hermitian met-

ric. This bundle is π1X3-equivariant, and we also write f∗E for the corresponding
bundle on X3. The restriction of f∗E to U ⊂ X3 can be identified with Ω1

U with the
metric induced from the metric on the dual bundle TU . Because curvature increases
for quotient bundles [38, section 7.5], the curvature of f∗E is nonnegative over U ,
hence over all of X3. Also, by Lemmas 1.3 and 1.4, the Segré form sn((f∗E)∗) is
positive at each point of U . It may not be positive on all of X3, but positivity on
U implies that the number

∫
X sn((f∗E)∗) is positive. Equivalently, the line bundle

O(1) on P(f∗E)→ X3 has nonnegative curvature and the number (c1O(1))2n−1 is
positive. So O(1) is nef and big on P(f∗E). Equivalently, f∗E is nef and big on
X3.

Because we can pull back 1-forms, we have a natural map α : ϕ∗Ω1
D → Ω1

X3
of

vector bundles on X̃3, which is surjective over Ũ . Also, we have a natural surjection
β : ϕ∗Ω1

D → f∗E over X̃3 by definition of E. The map α factors through the

surjection β over Ũ , hence over all of X̃3. That is, we have a map g∗E → Ω1
Y3

of vector bundles over X̃3, and it is an isomorphism over U . This map is π1X3-
equivariant, and so we have a corresponding map of vector bundles over X3.

The resulting map H0(X3, S
j(f∗E))→ H0(X3, S

jΩ1
X3

) is injective for all j ≥ 0.
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Since f∗E is big on X3, Ω1
X3

is big. Since the ring of symmetric differentials on a
compact complex manifold is a bimeromorphic invariant, Ω1

X is big.

Corollary 3.2. Let X be a compact Kähler manifold. Consider a complex variation
of Hodge structure V over X with discrete monodromy group Γ, and let

ϕ : X → D/Γ

be the corresponding period map. After replacing X by a finite étale covering Z,
we can assume that Γ is torsion-free. Let Y be a resolution of singularities of the
image of ϕ : Z → D/Γ. Then Ω1

Y is big.

For a dominant meromorphic map of compact complex manifolds Z 99K Y , there
is a natural pullback map on the ring of symmetric differentials,

⊕i≥0H0(Y, SiΩ1
Y )→ ⊕i≥0H0(Z, SiΩ1

Z),

and this is injective. Therefore, Corollary 3.2 implies that the cotangent dimension
λ(X) is at least 2 dim(Y ) − dim(X), using that λ(X) = λ(Z) for a finite étale
covering Z → X [29, Theorem 1]. In particular, if X is the base of a variation of
Hodge structure with discrete and infinite monodromy, then the image Y of the
period map has positive dimension, and so our lower bound for λ(X) gives that X
has a nonzero symmetric differential.

4 Non-rigid representations

We use the following result which Arapura proved for smooth complex projective
varieties [1, Proposition 2.4]. It was extended to compact Kähler manifolds by the
second author [20, Theorem 1.6(i)].

Theorem 4.1. Let X be a compact Kähler manifold. Suppose that π1X has a
complex representation of dimension n which is not rigid. Then H0(X,SiΩ1

X) 6= 0
for some 1 ≤ i ≤ n.

Here we say that a representation of π1X is rigid if the corresponding point in
the moduli space MB(X,GL(n)) (the “Betti moduli space” or “character variety”)
is isolated. The points of MB(X,GL(n)) are in one-to-one correspondence with the
isomorphism classes of n-dimensional semisimple representations (meaning direct
sums of irreducibles) of π1X, with a representation being sent to its semisimplifica-
tion [33, section 7].

We also need the following p-adic analogue, essentially proved by Zuo using
Gromov-Schoen’s construction of pluriharmonic maps into the Bruhat-Tits building
[39, section 4.1.4], [17]. An explicit formulation and proof of Theorem 4.2 can be
found in the second author’s [20, Theorem 1.6(ii)].

Theorem 4.2. Let X be a compact Kähler manifold, and let K be a nonarchimedean
local field. Suppose that there is a semisimple representation from π1X to GL(n,K)
which is unbounded (equivalently, which is not conjugate to a representation over
the ring of integers of K). Then H0(X,SiΩ1

X) 6= 0 for some 1 ≤ i ≤ n.
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5 Representations in positive characteristic

We now prove Theorem 0.1 for representations in positive characteristic, which turns
out to be easier. That is, we will show that if X is a compact Kähler manifold such
that π1X has a finite-dimensional infinite-image representation over some field k of
characteristic p > 0, then X has a nonzero symmetric differential.

We can assume that the field k is algebraically closed. By Procesi, for each
natural number n, there is an affine scheme M = MB(X,GL(n))Fp

of finite type

over Fp whose k-points are in one-to-one correspondence with the set of isomorphism
classes of semisimple n-dimensional representations of π1X over k [28, Theorem
4.1]. (To construct this scheme, choose a finite presentation for π1X. The space
of homomorphisms π1X → GL(n) is a closed subscheme of GL(n)r over Fp in a
natural way, where r is the number of generators for π1X. We then take the affine
GIT quotient by the conjugation action of GL(n).)

We want to show that ifX has no symmetric differentials, then every n-dimensional
representation of π1X over k has finite image. Suppose that the Betti moduli space
M has positive dimension over Fp. Since M is affine, it follows that there is a point
of M(Fp((t))) which is not in M(Fp[[t]]). It follows that for some power q of p,
there is a semisimple representation of π1(X) over Fq((t)) which is not defined over
Fq[[t]]. This contradicts Zuo’s Theorem 4.2, since X has no symmetric differentials.
So in fact M has dimension zero over Fp.

It follows that every finite-dimensional semisimple representation of π1X over k
is in fact defined over Fp. But every finite-dimensional representation of a finitely
generated group over Fp has finite image, since the generators all map to matrices
over some finite field. So every finite-dimensional semisimple representation of π1X
over k has finite image.

Finally, we show that any finite-dimensional representation ρ of π1X over k has
finite image. We know that the semisimplification of ρ has finite image. Therefore, a
finite-image subgroup H of π1X maps into the subgroup of strictly upper-triangular
matrices in GL(n)(k). The latter group is a finite extension of copies of the additive
group over k, and so the image of H is a finite extension of abelian groups killed by
p. Since H is finitely generated, it follows that the image of H is finite. Therefore
the image of π1X in GL(n)(k) is finite, as we want.

6 Representations in characteristic zero

Theorem 6.1. Let X be a compact Kähler manifold. Suppose that there is a finite-
dimensional complex representation of π1X with infinite image. Then X has a
nonzero symmetric differential.

If a finitely generated group has an infinite-image representation over any field of
characteristic zero, then it has an infinite-image representation over C. So Theorem
6.1 will complete the proof of Theorem 0.1.

Proof. By Theorem 4.1, we can assume that the given representation ρ of π1X is
rigid. Therefore, the point associated to ρ in MB(X,GL(n)) is fixed by Simpson’s
C∗ action, which means that the semisimplification σ of ρ can be made into a
complex variation of Hodge structure over X [32, Corollary 4.2].
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Suppose that the representation σ has finite image. Then ρ sends a finite-
index subgroup H of π1X into the group U of strictly upper-triangular matrices in
GL(n,C). Since U is nilpotent and ρ has infinite image, the abelianization of H
must be infinite. By Hodge theory, the finite étale covering Y → X corresponding
to H has a nonzero 1-form α ∈ H0(Y,Ω1

Y ). If H has index r in π1X, the norm of
Y is a nonzero element of H0(X,SrΩ1

X), as we want.
It remains to consider the case where σ is a complex variation of Hodge structure

with infinite image. We cannot immediately apply Corollary 3.2 because the image
of σ in GL(n,C) need not be discrete. At least σ is conjugate to a representation
into GL(n, F ) for some number field, because σ is rigid. More precisely, σ is a
complex direct factor of a Q-variation of Hodge structure τ : π1X → GL(m,Q) [32,
Theorem 5]. Let m be the dimension of τ .

For each prime number p, consider the representation τ : π1X → GL(m,Qp).
By Zuo’s Theorem 4.2, if this representation is not bounded, then H0(X,SiΩ1

X) is
nonzero for some 1 ≤ i ≤ m.

Therefore, we can assume that τ is p-adically bounded for each prime number
p. Then τ is conjugate to a representation into GL(m,Z) [2]. Thus τ is a complex
variation of Hodge structure with discrete monodromy group. By Corollary 3.2, X
has nonzero symmetric differentials. More precisely, there is a finite étale covering Z
of X and a blow-up Z2 of Z such that the given representation of π1Z2 = π1Z ⊂ π1X
factors through a surjection Z2 → Y with Ω1

Y big and Y of positive dimension. As
a result, the cotangent dimension λ(X) is at least 2 dim(Y )− dim(X).
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[18] D. Guler. On Segré forms of positive vector bundles. Canad. Math. Bull. 55
(2012), 108–113.

[19] K. Jabbusch. Positivity of cotangent bundles. Michigan Math. J. 58 (2009),
723–744.

[20] B. Klingler. Symmetric differentials, Kähler groups and ball quotients. http:
//www.math.jussieu.fr/papiers/symm.pdf

[21] S. Kobayashi. The first Chern class and holomorphic symmetric tensor fields.
J. Math. Soc. Japan 32 (1980), 325–329.

[22] S. Kobayashi. Hyperbolic complex spaces. Springer (1998).

[23] R. Lazarsfeld. Positivity in algebraic geometry, v. 2. Springer (2004).

[24] Z. Lu. On the geometry of classifying spaces and horizontal slices. Amer. J.
Math. 121 (1999), 177–198.

[25] G. A. Margulis. Discrete subgroups of semi-simple Lie groups. Springer (1991).

[26] N. Mok. Metric rigidity theorems on Hermitian locally symmetric manifolds.
World Scientific (1989).

12

http://www.math.jussieu.fr/papiers/symm.pdf
http://www.math.jussieu.fr/papiers/symm.pdf


[27] C. Peters. Rigidity for variations of Hodge structure and Arakelov-type finite-
ness theorems. Compos. Math. 75 (1990), 113–126.

[28] C. Procesi. Finite dimensional representations of algebras. Israel J. Math. 19
(1984), 169–182.

[29] F. Sakai. Symmetric powers of the cotangent bundle and classification of al-
gebraic varieties. Algebraic geometry (Copenhagen, 1978), 545–563. Lecture
Notes in Mathematics 732, Springer (1979).

[30] M. Schneider. Symmetric differential forms as embedding obstructions and van-
ishing theorems. J. Alg. Geom. 1 (1992), 175–181.

[31] N. Shepherd-Barron. Infinite generation for rings of symmetric tensors. Math.
Res. Lett. 2 (1995), 125–128.

[32] C. Simpson. Higgs bundles and local systems. Publ. Math. IHES 75 (1992),
5–95.

[33] C. Simpson. Moduli of representations of the fundamental group of a smooth
projective variety II. Publ. Math. IHES 80 (1994), 5–79.

[34] Y.-T. Siu. Some recent results in complex manifold theory related to vanishing
theorems for the semi-positive case. Proceedings of the Bonn Arbeitstagung
1984, 169–192. Lecture Notes in Mathematics 1111, Springer (1985).

[35] S. Splitthoff. Finite presentability of Steinberg groups and related Chevalley
groups. Applications of algebraic K-theory to algebraic geometry and number
theory (Boulder, Colo., 1983), 635–687. Amer. Math. Soc. (1986).

[36] D. Toledo. Projective varieties with non-residually finite fundamental group.
Publ. Math. IHES 77 (1993), 103–119.

[37] K. Yamanoi. On fundamental groups of algebraic varieties and value distribu-
tion theory. Ann. Inst. Fourier (Grenoble) 60 (2010), 551–563.

[38] F. Zheng. Complex differential geometry. Amer. Math. Soc. (2000).

[39] K. Zuo. Representations of fundamental groups of algebraic varieties. Lecture
Notes in Mathematics 1708, Springer (1999).

[40] K. Zuo. On the negativity of kernels of Kodaira-Spencer maps on Hodge bundles
and applications. Asian J. Math. 4 (2000), 279–302.
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