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Problem 1.1. Let d ∈ Z be a square-free integer. Show that Q(
√
d) ⊂ Q(ζn) for ζn = e2πi/n

where

n =

{
|d| if d ≡ 1 (mod 4),

4|d| if d ̸≡ 1 (mod 4).

Show moreover that this n is the smallest natural number for which such an inclusion holds.

Problem 1.2. Let K/k be an extension of number fields.

(a) Let p ∈ N be a prime number which is unramified in k, and let p, q ∈ Spm(Ok) be two
prime ideals above p. Show that if K ⊂ k(ζm) for some m, then we have:

p ramifies in K/k ⇐⇒ q ramifies in K/k

(b) Deduce that if k ̸= Q, then there exists an extension K/k of degree [K : k] = 2 such
that

K ̸⊂
⋃
m∈N

Q(ζm).

Problem 1.3. Let K = Q(
√
5,
√
−1).

(a) Show that in K/Q only the places 2, 5,∞ are ramified.

(b) Compute the group Gal(K/Q), and determine the Frobenii σp for all primes p ̸= 2, 5.

(c) Show that K ⊂ Q(ζ20). Deduce that the Artin map gives an isomorphism

Cl(m)/H
∼−→ Gal(K/Q)

for m = (20)∞ and some subgroup H ⊂ Cl(m), and determine this subgroup explicitly.
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For a number field K denote by ClK its ideal class group and by H(K) its Hilbert class field.

Problem 2.1. Let K,L ⊂ Q be two number fields.

(a) Show that if K ⊂ L, then H(K) ⊂ H(L) and |ClK | divides |ClL| · [L : K].

(b) Back to the general case, show that if ClK = ClL = 1, then also ClK∩L = 1.

Problem 2.2.

(a) Let E/K be an abelian extension of number fields and L ⊂ E the maximal subextension
which is unramified over K. Show that the Galois group Gal(L/K) is isomorphic to the
cokernel of the norm

NE/K : ClE −→ ClK .

(b) Show that for n ∈ N the class number of Q(ζn+ζ−1
n ) divides the class number of Q(ζn).

Problem 2.3. The Hilbert class field tower of a number field K is the sequence of number
fields

H0(K) ⊂ H1(K) ⊂ H2(K) ⊂ · · · defined by H0(K) := K and Hi+1(K) := H(Hi(K)).

Show that this tower is finite if and only if there exists a finite extension L/K with ClL = 1.

Problem 2.4. Let α ∈ Q be a zero of the polynomial X3 −X − 1 ∈ Z[X], and K = Q(
√
−23).

(a) Prove that

� L = K(α) is the Galois closure of Q(α) over Q,

� K ⊂ L is an abelian extension of degree three.

(b) Prove that only two primes of Q(α) ramify over Q, and that they lie over 23 and ∞.

(c) Prove that K ⊂ L is totally unramified.

(d) Prove that L is the Hilbert class field of K.
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Problem 3.1. Show that the category Mod(G) has enough injectives:

(a) To deal with the case where G = 1 is trivial, show first that an abelian group A is
injective iff it is divisible in the sense that the map [n] : A → A, a 7→ n · a is surjective
for all n ∈ N. Then show that every abelian group embeds in a divisible group.

(b) In general, for a givenM ∈ Mod(G), embed the underlying abelian group into a divisible
group N . Show that we then have an embedding M ↪→ HomZ(Z[G], N) of G-modules
where the target is an injective G-module as required.

Problem 3.2. Let G be a group and A ∈ Mod(G).

(a) Show that we have an isomorphism Z1(G,A)
∼−→ HomG(IG, A), f 7→ ((g − 1) 7→ f(g)).

(b) Consider the semidirect product E = A⋊G with the projection p : E → G. Show that
we have

Z1(G,A)
∼−→

{
s ∈ Hom(G,E)

∣∣ p ◦ s = id
}

Problem 3.3. Let G = Z/2Z act on A = Z either trivially or by multiplication by ±1. In both
of the two cases, compute the cohomology group H2(G,A) by hand in terms of cocycles and
coboundaries. Use your result to determine up to isomorphism all extensions

0 −→ Z −→ E −→ Z/2Z −→ 0.

Problem 3.4. Let G be a group and A ∈ Mod(G). In the lecture we have seen that H2(G,A)
can be identified with the set of isomorphism classes of extensions of G by A.

(a) Fill in the missing details in the proof.

(b) Describe the group structure on H2(G,A) in terms of extensions.

(c) Now fix an extension ϵ : [1 → A → E → G → 1]. Conjugation by a ∈ A gives rise to an
automorphism

φa ∈ Aut(ϵ), φa(e) = aea−1

where Aut(ϵ) denotes the group of automorphisms of the extension as defined in the
lecture, i.e. its elements are the group automorphisms φ : E → E such that φ|A = idA
and φ = idG for the induced morphism φ ∈ End(G). Put

Out(ϵ) = Aut(ϵ)/ ∼ for the equivalence relation f ∼ g ⇐⇒ ∃a ∈ A : f = ca ◦ g.

Show that we have an isomorphism

H1(G,A)
∼−→ Out(ϵ).
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Problem 4.1. Let K/k be a finite Galois extension of fields with Galois group G.

(a) Show that the elements of G are linear independent as elements of the K-vector space
of maps σ : K → K, where the vector space structure is given by pointwise addition
and scalar multiplication (you may have seen this in Galois theory). Deduce from this
that

H1(G,K×) = 0.

(b) Use this to find an explicit parametrization for the set S = {(x, y) ∈ Q2 | x2 + y2 = 1}.

Problem 4.2. Let G = Gal(L/K) for the field extension L = Qp(
√
p)/K = Qp. Compute the

Herbrand quotient

h(A) =
|H0

T (G,A)|
|H1

T (G,A)|

for A = L× ∈ Mod(G) by looking at the short exact sequence 0 → O×
L → L× → Z → 0.

Problem 4.3. Let G be a group, X a free Z[G]-module of finite rank, and A ∈ Mod(G). Show
that we have a natural isomorphism of abelian groups

HomZ(X,Z)⊗Z[G] A
∼−→ HomG(X,A).

What does this say about the Tate cohomology of M = HomZ(X,Z)⊗Z A ∈ Mod(G)?

Problem 4.4. Let G be a finite group. We say that an embedding i : A ↪→ B of G-modules
is admissible if on the level of the underlying abelian groups it splits as the inclusion of a
direct summand. A module I ∈ Mod(G) is called relatively injective if the map

i∗ : HomG(B, I) → HomG(A, I)

is surjective for any admissible embedding i : A ↪→ B of G-modules.

(a) Show that any free Z[G]-module of finite rank is relatively injective.

(b) Deduce that for any two complete resolutions X•, Y• of the trivial G-module Z with
free Z[G]-modules Xi, Yi of finite rank for i ∈ Z, there exists a morphism f : X• → Y•
of complete resolutions and that this morphism is unique up to chain homotopy.
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Problem 5.1. Let G be a finite group and H ⊂ G a subgroup.

(a) Let s : H \ G → G be a map giving a coset decomposition G =
⊔

x∈H\G Hs(x). Show
that the Verlagerung

Ver: Gab −→ Hab is given by g 7→
∑

x∈H\G

s(x) · g · s(gx)−1

(b) Show that if H = {±1} ⊂ G = F×
p for a prime p > 2, then the Verlagerung is given by

the Legendre symbol (you may use Gauss’ lemma about quadratic residues).

Problem 5.2. Consider the symmetric group G = Sym3.

(a) Use the Hochschild-Serre spectral sequence to compute Hi
T (G,Z) for all i ∈ Z.

(b) Now let G act on M = Z3 by permutation of the coordinates, and let A = M/MG be
the quotient modulo the invariants. Compute Hi

T (G,A) for i = 1, 2.

Problem 5.3. Let G be a finite group and A ∈ Mod(G). We say A is cohomologically trivial
if Hi

T (H,A) = 0 for all subgroups H ⊂ G and all degrees i ∈ Z. Find an example of G and A
such that

� Hi
T (G,A) = Hi+1

T (G,A) = 0 for some i ∈ Z, but

� nevertheless A ∈ Mod(G) is not cohomologically trivial.

For instance, you may consider the group G = Z/6Z with a suitable action on A = Z/3Z.

Problem 5.4. Suppose we are given the following diagram whose terms are complexes in an
abelian category and whose rows and columns are exact in each degree:

0 0 0

0 X ′ X X ′′ 0

0 Y ′ Y Y ′′ 0

0 Z ′ Z Z ′′ 0

0 0 0

Verify the claim from the lecture that the boundary operators anticommute, i.e. they fit into
the commutative diagram:

Hi−1(Z ′′) Hi(Z ′)

Hi(X ′′) Hi+1(X ′)

δ

δ −δ

δ
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Problem 6.1. Let G be a profinite group. We say that a closed subgroup H ≤ G is p-Sylow
if for every open normal subgroup N ⊴ G the quotient HN/N is a p-Sylow subgroup of the
finite group G/N . Show:

(a) For every prime number p, there exists a p-Sylow subgroup of G.

(b) Every pro-p-subgroup of G is contained in a p-Sylow subgroup. Here by a pro-p-group
we mean a profinite group that is an inverse limit of finite p-groups.

(c) Any two p-Sylow subgroups of G are conjugate.

Problem 6.2. Find all p-Sylow subgroups of Ẑ and of Z×
p . How about those of GL2(Zp)?

Problem 6.3. Consider the group GL2(Qp) with its natural topology

(a) Show that GL2(Qp) is a totally disconnected, locally compact Hausdorff group.

(b) Show that the subgroup GL2(Zp) ⊂ GL2(Qp) is open and compact.

(c) More generally, show that any compact subgroup of GL2(Qp) lies in a maximal compact
subgroup and that the maximal compact subgroups are precisely the subgroups of the
form

Stab(L) =
{
g ∈ GL2(Qp) | gL = L

}
where L ⊂ Q2

p is a lattice, i.e. a free Zp-submodule of rank two.

Problem 6.4. For a topological group G and a continuous G-module A, define the continuous
cohomology by

Hi(G,A) := Zi
cont(G,A)/Bi

cont(G,A)

whereBi
cont(G,A) ⊂ Zi

cont(G,A) denotes the group of continuous coboundaries resp. cochains.

(a) Show that for G profinite we have a natural isomorphism

Hi(G,A)
∼−→ lim

−→
Hi(G/N,AN )

where the limit is taken over the collection of all open normal subgroups N ⊴G.

(b) The abstract group cohomology is recovered as the continuous cohomology Hi(Gd , A)
where Gd denotes the abstract group G endowed with the discrete topology. Show that
in general

Hi(Gd, A) ̸≃ Hi(G,A),

for example by taking G = Ẑ with the trivial action on the discrete G-module A = Ẑ.
Can you also find an example where the module A ∈ Mod(G) is finite?
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Problem 7.1. Let K be a field of characteristic char(K) ̸= 2. For a, b ∈ K× let H(a, b) denote
theK-algebra with aK-basis 1, i, j, k and multiplication given by i2 = a, j2 = b, ij = −ji = k.

(a) Show that H(a, b) is a four-dimensional central simple algebra over K, and that every
four-dimensional central simple algebra over K arises like this for some a, b.

(b) Show that H(a, b) is either a division algebra or isomorphic to Mat2×2(K), and show
that

H(a, b) ≃ Mat2×2(K) ⇐⇒ ∃(x, y, w) ∈ K3 \ {0} : ax2 + by2 = w2

⇐⇒ a ∈ NK(
√
b)/K(K(

√
b)×)

(c) Observe that

� H(1, b) ≃ H(a,−a) ≃ Mat2×2(K)

� H(a, b) ≃ H(ax2, by2) for all x, y ∈ K×

� H(a, 1− a) ≃ Mat2×2(K) if a, 1− a ∈ K×

(d) Show that H(a, b)op ≃ H(a, b), hence we have 2 · [H(a, b)] = 0 in Br(k).

Problem 7.2. Let L/K be a cyclic Galois extension of degree n, and σ ∈ G = Gal(L/K) a
generator of its Galois group. Show that we have an isomorphism

K×/NL/K(L×)
∼−→ Br(L/K), b 7→ [A(σ, b) ]

where A(σ, b) denotes the K-algebra whose underlying vector space is A(σ, b) :=
⊕n−1

i=0 L · βi

for formal basis vectors βi with multiplication defined by

βn := b and β · z := σ(z) · β for z ∈ K.

Problem 7.3. Let K be a field containing a primitive root of unity ζ ∈ K, and let L = K( n
√
a)

for some a ∈ K. Show that if [L : K] = n, then for the automorphism σ ∈ Gal(L/K) defined
by

σ( n
√
a) = ζ · n

√
a

the algebra A(σ, 1− a) splits, i.e. its class in the Brauer group Br(L/K) is trivial.

Problem 7.4. Let K be a field that contains a primitive root of unity ζ ∈ K. Show that for
all a, b ∈ K× we have:

a ∈ NK(
n√
b)/K(K(

n
√
b)×) ⇐⇒ b ∈ NK( n

√
a)/K(K( n

√
a)×)
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Problem 8.1. Let L/K be an extension of local fields. In local class field theory we have used
that if the extension is unramified, then Hi(Gal(L/K),O∗

L) = 0 for all i > 0. Give an example
of a cyclic ramified extension of local fields with

Hi(Gal(L/K),O∗
L) ̸= 0 for some i > 0.

Problem 8.2. Let K/Qp be a finite extension.

(a) A Galois extension L/K is called a Zp-extension if Gal(L/K) ≃ Zp. Show that for the
field

M := ( composite of all Zp-extensions L/K ) ⊂ K

the group Gal(M/K) is a free Zp-module, and determine the rank of this free module.

(b) Show that there is a unique unramified Zp-extension L/K, and describe this extension
explicitly by adjoining certain roots of unity to the base field K.

Problem 8.3. Let K/Qp be a finite extension and Γ = Gal(Kur/K). Show that

(a) H1(Γ,Z/nZ) ≃ Z/nZ,

(b) H1(Γ, µn(K)) ≃ (O∗
K ·K∗n)/K∗n if p ∤ n.

Problem 8.4. Let K/Qp be a finite extension, and let GK = Gal(K/K) act on µn = µn(K).

(a) Show that the local norm residue symbol (−,K) : K∗ → Gab
K induces a nondegenerate

pairing

βK : H1(GK ,Z/nZ)×H1(GK , µn) −→ Z/nZ, (χ, a) 7→ χ((a,K)).

(b) Show that for p ∤ n, the orthocomplement of H1(Gal(Kur/K),Z/nZ) ⊂ H1(GK ,Z/nZ)
with respect to this pairing is

H1(Gal(Kur/K), µn) ⊂ H1(GK , µn).

(c) Show that for any finite extension L/K and for all χ ∈ H1(GK ,Z/nZ), a ∈ H1(GL, µn)
we have

βL(res(χ), a) = βK(χ,NL/K(a))

for the maps

res : H1(GK ,Z/nZ) → H1(GL,Z/nZ) and NL/K : H1(GL, µn) → H1(GK , µn).

(d) Show that analogous statements hold if Z/nZ is replaced by any finite GK-module A
and µn is replaced by

A′ = Hom(A,K
∗
).
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Problem 9.1. Let F be a formal group law over a commutative ring R.

(a) Show that F (X, 0) = X and F (0, Y ) = Y .

(b) Show that there is a unique power series i ∈ TR[[T ]] with F (X, i(X)) = 0.

(c) Check that the set End(F ) is a ring for the addition and multiplication

(ϕ+F ψ)(T ) := F (ϕ(T ), ψ(T )) and (ϕ ·F ψ)(T ) := ϕ(ψ(T )).

Problem 9.2. Let R be a commutative Q-algebra.

(a) Show that for any formal group law F over R, there is a unique isomorphism of formal
group laws

logF : F
∼−→ Ĝa such that logF (T ) ≡ T (mod T 2).

(b) Write down this isomorphism explicitly for the formal group law F = Ĝm over R.

Problem 9.3. Let K/Qp be finite. Fix a uniformizer π ∈ OK and put q = |OK/πOK |. Show
that the series f(t) =

∑
n≥0 π

−n·tqn ∈ K[[t]] has an inverse f−1(t) with respect to composition
and that

F (x, y) = f−1(f(x) + f(y)),

[a]F (t) = f−1(af(t)) for a ∈ OK

defines a Lubin-Tate module whose logarithm in the sense of the problem 9.2(a) is logF = f .

Problem 9.4. Let K/Qp be finite. Show that if F1, F2 are two Lubin-Tate modules over OK

for different uniformizers π1 ̸= π2 ∈ OK , then they are not isomorphic.

Problem 9.5. For a finite extension K/Qp, denote by K̂ the completion of Kur/K.

(a) Show that the Frobenius extends to a continuous automorphism φ : K̂ → K̂ and that
we have exact sequences

0 −→ OK −→ OK̂

f−→ OK̂ −→ 0 where f(x) = φ(x)− x,

1 −→ O∗
K −→ O∗

K̂

g−→ O∗
K̂

−→ 1 where g(x) = φ(x)/x.

(b) Use this to fill in the details in the proof of the following claim from the lecture: Given
two uniformizers π, π̃ ∈ OK and Lubin-Tate polynomials e ∈ Eπ, ẽ ∈ Eπ̃, there exists a
power series

θ(T ) = ϵT + · · · ∈ OK̂ [[T ]]

with ϵ ∈ O∗
K̂

such that θφ(e(T )) = ẽ(θ(T )) and θφ(T ) = θ([u]e(T )) for u = π̃/π.
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Problem 10.1. Fill in the online evaluation1 for the lecture before January 21.

Problem 10.2. Let L/K be a Galois extension of number fields with group G = Gal(L/K).

(a) Find an example where the natural map ClK −→ (ClL)
G is not injective.

(b) Find an example where the natural map ClK −→ (ClL)
G is not surjective.

Problem 10.3. Let K be a number field. As an additive version of the idèles one defines the
ring of adèles by

AK :=
{
(ap)p ∈

∏
p

Kp | ap ∈ OKp
for all but finitely many p ∤ ∞

}
⊂

∏
p

Kp.

Show:

(a) AK is a topological ring for the topology where a basis of open subsets is defined by the
subsets ∏

p∈S

Wp ×
∏
p/∈S

OKp
⊂ AK for S ⊃ S∞ finite and Wp ⊂ Kp open.

(b) We have a natural embedding IK ↪→ AK but the topology on the idèles is not induced
by the one on adèles via this embedding. However, it is induced by the topology on A2

K

via the embedding
IK ↪→ A2

K , x 7→ (x, x−1).

In other words: The idèle topology comes from the identification IK = GL1(AK) ⊂ A2
K .

1Hint: Click on the link Diesen Kurs jetzt evaluieren or Evaluate this course now at the right upper corner
of the moodle page. This is very important even if you feel that you don’t have to say much: If < 5 students
participate, I won’t receive any of their evaluations. The evaluation form seems to be in German only, but
you are allowed to use www.deepl.com or any other device of your choice. Thanks for your feedback!

www.deepl.com
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Problem 11.1. Let L/K be an extension of number fields.

(a) Show that for any place p of K we have L⊗K Kp
∼−→

∏
P|p LP.

(b) Deduce that for the ring of adèles we have a natural isomorphism AK ⊗K L
∼−→ AL.

Problem 11.2. Let K be a number field. Show:

(a) OK ⊂ AK maps to a lattice in the R-vector space AK,∞ =
∏

p|∞ Kp.

(b) K ⊂ AK is a discrete subgroup.

(c) AK,∞ ×
∏

p∤∞ OKp
⊂ AK surjects onto the quotient AK/K.

Deduce from this that the quotient AK/K is a compact Hausdorff group.

Problem 11.3. Let S := (R× Ẑ)/Z for the embedding Z ↪→ R× Ẑ, n 7→ (n, n). Show:

(a) S is a connected compact Hausdorff group.

(b) We have an isomorphism S ≃ AQ/Q of topological groups.

(c) There is a non-split short exact sequence 0 → Ẑ → S → R/Z → 0.

Problem 11.4. Show that as a topological group the idèle class group of the field Q is given
by

CQ ≃ Ẑ× × R.

Determine the connected component of the identity in this group, and the subgroup C0
Q ⊂ CQ

of idèles of absolute norm one. Can you give a similar description for the idèle class groups
of the number fields

K = Q(i) and L = Q(
√
2)?
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Problem 12.1. Solve problems 11.3 and 11.4 that we haven’t discussed last time.

Problem 12.2. Let L/K be a Galois extension of number fields. We say that a prime ideal
of OK does not split in the extension if there is a unique prime ideal of OL above it. Show
that the following statements hold:

(a) If L/K is not cyclic, there are only finitely primes that do not split in L/K.

(b) If L/K is cyclic of degree a prime power, there are infinitely many such primes.

Problem 12.3. Let L/K be a Galois extension of number fields. Show that its Galois group is
generated by the Frobenii of unramified primes, i.e.

Gal(L/K) =
〈
FrobP | P⊴ OL prime ideal which is unramified in L/K

〉
.

Problem 12.4. Let K be a number field. Let L1, . . . , Ln be cyclic extensions of K which all
have the same prime degree [Li : K] = p and which are pairwise linearly disjoint in the sense
that Li ∩ Lj = K for all i ̸= j. Show that there exist infinitely many prime ideals p ⊴ OK

such that

� p does not split in L1, but

� p splits completely in Li for all i > 1.


