Let k be an algebraically closed field.
Problem 1.1. Let $C \subset \mathbb{P}_{k}^{2}$ be an integral curve of degree d. Show that C has at most $r=\binom{d-1}{2}$ singular points:
(a) First reduce to the case $d \geq 3$.
(b) Then argue by contradiction: Pick $r+1$ singular points and $d-3$ other distinct points on the curve. Show by a dimension count that there exists a curve of degree $d-2$ passing through all the chosen points, and deduce a contradiction to Bézout's theorem.

Problem 1.2. Let $i_{p}(f, g):=\operatorname{dim}_{k} \mathscr{O}_{\mathbb{A}^{2}, p} /(f, g)$ be the intersection multiplicity of $f, g \in k[x, y]$ at $p \in \mathbb{A}^{2}(k)$ as in the lecture.
(a) Show that $i_{p}(f, g+f h)=i_{p}(f, g)$ and $i_{p}(f, g h)=i_{p}(f, g)+i_{p}(f, h)$ for all f, g, h.
(b) Find an algorithm that computes in finitely many steps the intersection multiplicity of arbitrary polynomials $f, g \in k[x, y] \backslash\{0\}$ at the origin $p=(0,0)$, assuming that the two curves $V(f), V(g)$ have no common components passing through the origin.

Problem 1.3. Let X be a variety with normalization $\pi: \tilde{X} \rightarrow X$, and $Z \subset X$ a codimension one subvariety.
(a) Show that

$$
\operatorname{ord}_{Z}(f)=\sum_{\tilde{Z} \subset \tilde{X}}[k(\tilde{Z}): k(Z)] \cdot \operatorname{ord}_{\tilde{Z}}(f \circ \pi) \quad \text { for all } \quad f \in k(X)^{\times}
$$

where the sum runs over all subvarieties $\tilde{Z} \subset \tilde{X}$ that dominate the subvariety $Z \subset X$.
(b) Illustrate the above formula by looking at a cuspidal and a nodal cubic in the plane.

Problem 1.4. Recall that the Borel-Moore homology $H_{*}^{\mathrm{BM}}(X)$ of a topological space X is by definition the homology of the complex consisting of all locally finite formal \mathbb{Z}-linear combinations of singular simplices in X. Here a linear combination is called locally finite if for any compact $K \subset X$ it involves only finitely many simplices whose image intersects K.
(a) Compute $H_{*}^{\mathrm{BM}}(X)$ for the real line $X=\mathbb{R}$ (with the usual topology).
(b) Show that Borel-Moore homology forms a covariant functor for proper maps, but that there is no way to make it a covariant functor for all continuous maps.

Problem 2.1. Let $X \subset \mathbb{P}^{2}$ be an irreducible nodal cubic.
(a) Show that $\mathscr{O}_{X}(p) \not 千 \mathscr{O}_{X}(q)$ for any two smooth points $p \neq q$ on C.
(b) Deduce that $c_{1}: \operatorname{Pic}(X) \longrightarrow A_{1}(X)$ is not injective. Can you describe its kernel?

Problem 2.2. Let $X \subset \mathbb{P}^{3}$ be a quadric cone with vertex p.
(a) Let $C \subset X$ be a curve of odd degree as a curve in \mathbb{P}^{3}. Show that if C meets a general line of the ruling of X at δ points away from p and has multiplicity m at p, then $\operatorname{deg}(C)=2 \delta+m$. Deduce that the cycle $[C]$ cannot be a Cartier divisor.
(b) Show that $A_{1}(X) \simeq \mathbb{Z}$, generated by the class of a line, and determine the image of the homomorphism

$$
c_{1}: \quad \operatorname{Pic}(X) \longrightarrow A_{1}(X)
$$

Problem 2.3. Consider a Cartesian square

where i is a closed immersion, p is proper and $p: X^{\prime} \backslash Y^{\prime} \longrightarrow X \backslash Y$ is an isomorphism. Show that for each $d \geq 0$ we have an exact sequence

$$
A_{d}\left(Y^{\prime}\right) \longrightarrow A_{d}(Y) \oplus A_{d}\left(X^{\prime}\right) \longrightarrow A_{d}(X) \longrightarrow 0
$$

Problem 2.4. Let $f: X^{\prime} \rightarrow X$ be a finite birational morphism of n-dimensional varieties. For each codimension one subvariety $V \subset X$, let d_{V} be the greatest common divisor of the degrees $\operatorname{deg}(W / V)$, where $W \subset X^{\prime}$ runs through all subvarieties with $f(W)=V$. Show that we have an exact sequence

$$
A_{n-1}\left(X^{\prime}\right) \longrightarrow A_{n-1}(X) \longrightarrow \bigoplus_{V} \mathbb{Z} / d_{V} \mathbb{Z} \longrightarrow 0
$$

Use this to determine the Chow groups of
(a) the Whitney umbrella $X=V\left(x^{2}-y z^{2}\right) \subset \mathbb{A}^{3}$ using a suitable $f: \mathbb{A}^{2} \rightarrow X$.
(b) the scheme $X=\operatorname{Spec} k\left[s^{n}, s t, s^{2} t, \ldots, s^{n-1} t, t\right]$ seen as a quotient of $\mathbb{A}^{2}=\operatorname{Spec} k[s, t]$.

Problem 3.1. Let Y be a quasi-projective variety with an action of a finite group G.
(a) Show that every $p \in Y$ has an affine open neighborhood $U=\operatorname{Spec}(A)$ which is stable under the group action. Use this fact to show that there is a quotient variety $X=Y / G$ with a morphism $\pi: Y \rightarrow X$ such that

$$
\operatorname{Hom}(X, W) \xrightarrow{\sim} \operatorname{Hom}(Y, W)^{G} \quad \text { for any scheme } W
$$

where we put $\operatorname{Hom}(Y, W)^{G}:=\{f \in \operatorname{Hom}(Y, W) \mid f \circ g=f$ for all $g \in G\}$.
(b) Show that for the Chow groups with rational coefficients, the morphism π induces an isomorphism

$$
\pi^{*}: \quad A_{*}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\sim}\left(A_{*}(Y) \otimes_{\mathbb{Z}} \mathbb{Q}\right)^{G}
$$

where the right hand side denotes the invariants with respect to the action of G.

Problem 3.2. A cycle on a scheme X is called effective if every subvariety $Z \subset X$ enters in it with a nonnegative coefficient. Show that for any $\alpha, \beta \in Z_{d}(X)$ the following are equivalent:
(a) The cycles α and β are rationally equivalent.
(b) There are effective cycles $\gamma \in Z_{d}(X), Z \in Z_{d+1}\left(X \times \mathbb{P}^{1}\right)$ such that all components of V dominate \mathbb{P}^{1} via the projection on the second factor and the fibers over $0, \infty \in \mathbb{P}^{1}$ are given by

$$
Z_{0}=\alpha+\gamma \quad \text { and } \quad Z_{\infty}=\beta+\gamma
$$

Problem 3.3. Let X be a projective scheme over an algebraically closed field.
(a) Show that two zero-cycles $\alpha, \beta \in Z_{0}(X)$ are rationally equivalent iff for some $n \in \mathbb{N}$ there is a morphism

$$
f: \quad \mathbb{P}^{1} \longrightarrow \operatorname{Sym}^{n}(X)=X^{n} / \mathfrak{S}_{n}
$$

such that $f(0)=\alpha+\gamma$ and $f(\infty)=\beta+\gamma$ for some effective zero-cycle $\gamma \in Z_{0}(X)$.
(b) Show that even if α, β are effective, the cycle γ cannot be omitted in the above: Let C be a smooth non-rational curve, fix a closed point $p \in C$, and choose α, β to be suitable points on the blowup

$$
X=\mathrm{Bl}_{(p, 0)}\left(C \times \mathbb{P}^{1}\right)
$$

Problem 4.1. Let X, Y be schemes.
(a) Show that we have a well-defined homomorphism

$$
\times: \quad A_{d}(X) \otimes A_{e}(Y) \longrightarrow A_{d+e}(X \times Y), \quad[Z] \times[W]:=[Z \times W]
$$

(b) Show that if X is a cellular variety, then the homomorphisms

$$
\times: \quad \bigoplus_{d+e=m} A_{d}(X) \otimes A_{e}(Y) \longrightarrow A_{m}(X \times Y)
$$

are surjective for all $m \in \mathbb{N}$. Is this still true without the cellular assumption?

Problem 4.2. Let $r, s \in \mathbb{N}$, and let $X \subset \mathbb{P}^{r} \times \mathbb{P}^{s}$ be a subvariety of codimension e.
(a) Let $\alpha, \beta \in A_{r+s-1}\left(\mathbb{P}^{r} \times \mathbb{P}^{s}\right)$ be the pullback of the hyperplane classes on $\mathbb{P}^{r}, \mathbb{P}^{s}$ under the two projections. Show that

$$
[X]=c_{e} \alpha^{e}+c_{e-1} \alpha^{e-1} \beta+\cdots+c_{0} \beta^{e} \in A_{r+s-e}\left(\mathbb{P}^{r} \times \mathbb{P}^{s}\right) \quad \text { for certain } \quad c_{i} \in \mathbb{N}_{0}
$$

(b) Show that if X is the graph of a morphism $f: \mathbb{P}^{r} \rightarrow \mathbb{P}^{s}$ given by $s+1$ homogenous polynomials of degree d in $r+1$ variables without common zeroes, then we have $s \geq r$ and

$$
c_{i}=d^{i} \quad \text { for } \quad i=0,1, \ldots, s
$$

(c) Now take $r=s$. How many fixed points does a general $f: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r}$ as above have?

Problem 4.3. Let $\sigma: \mathbb{P}^{r} \times \mathbb{P}^{s} \hookrightarrow \mathbb{P}^{n}$ be the Segre embedding, with $n=(r+1)(s+1)-1$.
(a) What is the degree of the image $\sigma(X) \subset \mathbb{P}^{n}$ of a subvariety $X \subset \mathbb{P}^{r} \times \mathbb{P}^{s}$ as in $4.2(\mathrm{a})$?
(b) Deduce that any linear subspace of the image $\Sigma=\sigma\left(\mathbb{P}^{r} \times \mathbb{P}^{s}\right) \subset \mathbb{P}^{n}$ is contained in a fiber of one of the projections

$$
\operatorname{pr}_{1}: \quad \Sigma \simeq \mathbb{P}^{r} \times \mathbb{P}^{s} \longrightarrow \mathbb{P}^{r} \quad \text { or } \quad \operatorname{pr}_{2}: \quad \Sigma \simeq \mathbb{P}^{r} \times \mathbb{P}^{s} \longrightarrow \mathbb{P}^{s}
$$

Problem 4.4. Let X be a scheme with a Cartier divisor $D \in \operatorname{Div}(X)$. If $\mathscr{O}_{X}(D)$ restricts to the trivial line bundle on $|D|$, we can define its intersection with any subvariety $Z \subset X$ of dimension d as a cycle by

$$
Z_{d-1}(|D| \cap Z) \ni D \cdot[Z]:= \begin{cases}{\left[i^{*}(D)\right]} & \text { if } Z \not \subset|D|, \\ 0 & \text { otherwise }\end{cases}
$$

where $i: Z \hookrightarrow X$ is the inclusion. Compute $D \cdot\left[D^{\prime}\right]$ and $D^{\prime} \cdot[D]$ on the blowup $X=\operatorname{Bl}_{0}\left(\mathbb{A}^{2}\right)$ for the effective Cartier divisors $D, D^{\prime} \subset X$ that are the preimages of the coordinate axes.

Problem 5.1. Let E be a vector bundle of rank 3 .
(a) Express the Chern classes of $\mathrm{Alt}^{2} E$ via those of E using the splitting principle.
(b) Check your answer by noting that we have a natural isomorphism $\mathrm{Alt}^{2} E \simeq E^{\vee} \otimes \operatorname{det}(E)$.

Problem 5.2. Consider a smooth complete intersection

$$
S=H_{1} \cap H_{2} \subset \mathbb{P}^{4}
$$

of hypersurfaces $H_{i} \subset \mathbb{P}^{4}$ of degrees $d_{i}=\operatorname{deg}\left(H_{i}\right)$. Show by looking at the exact sequence of normal bundles

$$
0 \rightarrow N_{S / H} \rightarrow N_{S / \mathbb{P}^{4}} \rightarrow N_{H / \mathbb{P}^{4}} \rightarrow 0
$$

that every smooth hypersurface $H \subset \mathbb{P}^{4}$ containing S must have degree $\operatorname{deg}(S) \in\left\{d_{1}, d_{2}\right\}$.

Problem 5.3. Let $X \subset \mathbb{P}^{m}$ be a smooth subvariety. Let $\check{\mathbb{P}}^{m}$ be the dual projective space, and put

$$
\Lambda_{X}=\left\{(x, H) \in X \times \check{\mathbb{P}}^{m} \mid T_{x} X \subset H\right\} \subset X \times \check{\mathbb{P}}^{m}
$$

Let $p: \Lambda_{X} \rightarrow X$ and $f: \Lambda_{X} \rightarrow \check{\mathbb{P}}^{m}$ be the projections. We call $f\left(\Lambda_{X}\right)$ the dual variety of X.
(a) Show that for the normal bundle $N=N_{X / \mathbb{P}^{m}}$ we have an isomorphism $\Lambda_{X} \simeq \mathbb{P}\left(N^{\vee}\right)$ and

$$
f^{*}\left(\mathscr{O}_{\mathbb{P}^{m}}(1)\right) \simeq \mathscr{O}_{\mathbb{P}\left(N^{\vee}\right)}(1) \otimes p^{*}(L) \quad \text { for the line bundle } \quad L:=\left.\mathscr{O}_{\mathbb{P}^{m}}(-1)\right|_{X}
$$

(b) Deduce that

$$
\operatorname{deg} f_{*}\left[\Lambda_{X}\right]=(-1)^{n} \cdot \int_{X} \frac{c\left(\mathscr{T}_{X}\right)}{(1+h)^{2}} \quad \text { for the class } \quad h=c_{1}\left(\mathscr{O}_{X}(1)\right)
$$

(c) Let $X \subset \mathbb{P}^{m}$ be a smooth hypersurface of degree d, and assume that $f: \Lambda_{X} \rightarrow f\left(\Lambda_{X}\right)$ is birational (one can show that this is always true in characteristic zero). Compute the degree of the dual variety

$$
f\left(\Lambda_{X}\right) \subset \check{\mathbb{P}}^{m}
$$

via the above formula. Can you find a more direct geometric argument in this case?

Problem 6.1. Let $m, n \in \mathbb{N}$.
(a) Compute the Chern classes $c_{i}\left(\mathbb{P}^{m} \times \mathbb{P}^{n}\right)$ for all $i \in \mathbb{N}$.
(b) Give a formula for the topological Euler characteristic $\chi_{\text {top }}(X(\mathbb{C}))$ when $X \subset \mathbb{P}^{m} \times \mathbb{P}^{n}$ is a smooth hypersurface of bidegree (d, e) over the complex numbers.

Problem 6.2. Let E and F be two vector bundles of rank r and s on a scheme X.
(a) Show that

$$
\begin{aligned}
& c_{1}(E \otimes F)=r c_{1}(F)+s c_{1}(E), \\
& c_{2}(E \otimes F)=r c_{2}(F)+s c_{2}(E)+\binom{r}{2} c_{1}(F)^{2}+\binom{s}{2} c_{1}(E)^{2}+(r s-1) c_{1}(E) c_{1}(F) .
\end{aligned}
$$

(b) Optional: Try to get formulas in higher degree using a computer algebra system.

Problem 6.3. Let $X=\operatorname{Gr}(2, V)$ be the Grassmann variety parametrizing planes in $V=\mathbb{A}^{4}$.
(a) Let $S \subset V \otimes \mathscr{O}_{X}$ be the universal subbundle of rank two, and let Q be the quotient in the exact sequence

$$
0 \longrightarrow S \longrightarrow V \otimes \mathscr{O}_{X} \longrightarrow Q \longrightarrow 0
$$

Express the Chern classes of Q and of the dual S^{\vee} in terms of fundamental classes of the loci

$$
\begin{aligned}
X_{3} & :=\left\{W \in X \mid\left\langle e_{3}, e_{4}\right\rangle \cap W \neq 0\right\} \\
X_{2}^{\prime} & :=\left\{W \in X \mid e_{4} \in W\right\} \\
X_{2}^{\prime \prime} & :=\left\{W \in X \mid W \subset\left\langle e_{2}, e_{3}, e_{4}\right\rangle\right\} \quad \text { for the standard basis vectors } e_{i} \in V
\end{aligned}
$$

You may use without proof the interpretation of Chern classes of globally generated vector bundles as linear dependence loci of generic sections (see the first lecture).
(b) Show that $\mathscr{T}_{X} \simeq S^{\vee} \otimes Q$ and use this to compute the Chern classes $c_{1}(X)$ and $c_{2}(X)$.
(c) Compare your result with the Chern classes of a smooth quadric hypersurface in \mathbb{P}^{5}.

Problem 7.1. Let E be a vector bundle and C a cone, both over a scheme X.
(a) Observe that the fiber product $C \times_{X} E \rightarrow X$ is again a cone.
(b) Let $p: \mathbb{P}=\mathbb{P}\left(C \times_{X} E\right) \rightarrow X$ be the associated projective cone. Show that there is a section

$$
\sigma \in H^{0}\left(\mathbb{P}, p^{*}(E) \otimes \mathscr{O}_{\mathbb{P}}(1)\right) \quad \text { with zero locus } \quad V(\sigma)=\mathbb{P}(C)
$$

and deduce that for any C we have

$$
s\left(C \times_{X} E\right)=c(E)^{-1} \cap s(C)
$$

Problem 7.2. Let E be a vector bundle and $C \subset E$ an equidimensional closed subcone.
(a) Let $r=\operatorname{rk}(E), e=\operatorname{dim}(C)$, and let $\sigma: X \hookrightarrow E$ be the zero section. Deduce from the Gysin formula that

$$
\sigma^{*}[C]=\{c(E) \cap s(C)\}_{e-r}
$$

(b) Now let X be smooth, and let $E=T_{X}^{\vee}$ be its cotangent bundle. Let $Y \subset X$ be a smooth subvariety. Show that

$$
\sigma^{*}\left[N_{Y / X}^{\vee}\right]=(-1)^{d} \cdot c_{d}(Y) \cap[Y] \quad \text { where } \quad d=\operatorname{dim}(Y)
$$

Over the complex numbers this gives another view on the Euler characteristic $\chi_{\text {top }}(Y)$.

Problem 7.3. Determine the following normal cones:
(a) The cones $C_{Y} X$ and $C_{Y} \mathbb{A}^{2}$ where $Y=V\left(x^{2}, x y\right) \subset X=V(x y) \subset \mathbb{A}^{2}=\operatorname{Spec} k[x, y]$. Can you explain your result geometrically?
(b) The cone $C_{Z} \mathbb{A}^{3}$ for $Z=V(x z, y z) \subset \mathbb{A}^{3}=\operatorname{Spec} k[x, y, z]$.

Here $Z=L \cup H$ for a line L and a plane H, but $C_{L} \mathbb{A}^{3} \rightarrow C_{Z} \mathbb{A}^{3}$ is not an embedding.

Problem 8.1. Let $Y=V(w, x), Z=V(y, z) \subset X=\operatorname{Spec} k[w, x, y, z] /(w z-x y)$.
(a) Compute the codimensions of Y, Z and $Y \cap Z$ in the scheme X.
(b) Deduce that the diagonal $\Delta \hookrightarrow X \times X$ is not a regular embedding.

Problem 8.2. Let $Y=V_{+}(x) \subset Z=V_{+}(x y) \subset X=\mathbb{P}^{2}$.
(a) Compute the normal cones $C_{Z \cap Y} Y$ and $C_{Y \cap Z} Z$.
(b) Determine the cycles $Z \cdot Y$ and $Y \cdot Z$ directly from the definitions.

Problem 8.3. Let C be a smooth projective curve of genus g. Let $C_{d}=(C \times \cdots \times C) / \mathfrak{S}_{d}$ be its d-th symmetric power, parametrizing degree d effective divisors on the curve. Fix $p_{0} \in C$ and consider the map

$$
u_{d}: \quad C_{d} \longrightarrow A=\operatorname{Pic}^{0}(C), \quad D \mapsto \mathscr{O}_{C}\left(D-d p_{0}\right) .
$$

You may assume without proof that

- the fibers of u_{d} are linear series $|D|=\{$ effective divisors linearly equivalent to $D\} \simeq \mathbb{P}^{r}$,
- for $d>2 g-2$ the morphism $C_{d} \rightarrow A$ is a projective bundle over A,
- for $1 \leq d \leq g$ the morphism $C_{d} \rightarrow A$ is birational onto its image $W_{d}=u_{d}\left(C_{d}\right) \subset A$.

Starting from the case $d \gg 0$, show that for $D \in C_{d}$ the Segre class of $|D| \subset C_{d}$ is given by the formula

$$
s\left(|D|, C_{d}\right)=(1+h)^{g-d+r} \cap[|D|]
$$

where h denotes the first Chern class of the canonical line bundle on $|D|$ and $r=\operatorname{dim}|D|$.
Deduce by functoriality of Segre classes that the multiplicity of the subscheme $W_{d} \subset A$ at a point $u_{d}(D)$ is given by

$$
e=\binom{g-d+r}{r} \quad \text { for } \quad r=\operatorname{dim}|D|
$$

Problem 9.1. Let $p: Y=\mathbb{P}(E) \rightarrow X$ be a projective bundle.
(a) Show that the decomposition $A^{*}(Y) \simeq \bigoplus_{i=0}^{r} A^{*}(X) \cdot \zeta^{i}$ depends on E.
(b) However, show that for the group homomorphisms

$$
\psi_{i}: \quad A^{*}(Y) \longrightarrow A^{*}(X)^{\oplus(i+1)} \quad \text { with } \quad \psi_{i}(y):=\left(\pi_{*}(y), \pi_{*}(\zeta y), \ldots, \pi_{*}\left(\zeta^{i} y\right)\right)
$$

the filtration $A^{*}(Y) \supset \operatorname{ker}\left(\psi_{0}\right) \supset \cdots \supset \operatorname{ker}\left(\psi_{r}\right)=0$ is independent of the chosen E.

Problem 9.2. Let $X=\operatorname{Gr}(2, V)$ be the Grassmannian of planes in $V=\mathbb{A}^{4}$.
(a) Determine the intersection product on the Chow ring $A^{*}(X)$.
(b) Consider the flag variety $F=\{(p, H) \in \mathbb{P}(V) \times \operatorname{Gr}(2, V) \mid p \in \mathbb{P}(H)\}$. Show that

- $\mathrm{pr}_{1}: F \rightarrow \mathbb{P}(V)$ is a \mathbb{P}^{2}-bundle,
- $\mathrm{pr}_{2}: F \rightarrow \operatorname{Gr}(2, V)$ is a \mathbb{P}^{1}-bundle,
and use this to compute the Chow ring $A^{*}(F)$ in two ways. Compare your two results.

Problem 9.3. Let $S_{1}, S_{2} \subset \mathbb{P}^{4}$ be two smooth surfaces of degree d_{1}, d_{2} whose intersection is a disjoint union

$$
S_{1} \cap S_{2}=C \sqcup \Gamma
$$

where $C \subset \mathbb{P}^{4}$ is a smooth curve of degree d and genus g, and Γ is a finite reduced subscheme.
(a) Deduce from the excess intersection formula that the number of points in Γ is

$$
\operatorname{deg}(\Gamma)=d_{1} d_{2}-2 g+2-5 d+\sum_{i=1}^{2} \operatorname{deg}[C]_{S_{i}}^{2}
$$

where $[C]_{S_{i}}^{2}$ denotes the self-intersection of the curve C inside the Chow ring $A^{*}\left(S_{i}\right)$.
(b) What does this formula say when C is a line? Check it explicitly in the following two cases:
(1) S_{1} is a smooth surface in a hyperplane $\mathbb{P}^{3} \subset \mathbb{P}^{4}$ containing a line ℓ, and S_{2} is a general plane containing that line.
(2) S_{1} and S_{2} are smooth quadrics.

