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Historical notes

1 Arakelov geometry was introduced by Arakelov in 1974 in the
case of arithmetic surfaces.

2 Faltings in 1984 proved the Riemann-Roch theorem and the
Hodge index theorem for arithmetic surfaces.

3 Deligne in 1985 shows how to avoid the condition of
harmonicity.

4 In 1990 Gillet and Soulé generalize Arakelov geometry to
higher dimensions.

5 Many variants and generalizations by Zhang, Maillot, Bost,
Moriwaki, Kühn ...

6 The abstract version presented in this course is joint work
with Kühn and Kramer.
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Hirzebruch-Zagier formula
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The Hilbert modular surface

Let p ≡ 1 mod 4 be a prime and let OK be the ring of integers of
K = Q(

√
p).

Let H be the upper half plane. Then X = H2/SL2(OK ) is a
non-compact complex surface with finitely many singularities.
This surface can be compactified adding h cusps, where h is the
class number of K .
According to Baily-Borel this compactified variety is a normal
projective variety over C.
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Hirzebruch-Zagier cycles

For any m > 0 let T̃ (m) be the set of all points of H2 that satisfy
any of the equations

a
√

pz1z2 + λz2 + λ′z1 + b
√

p = 0,

with a, b ∈ Z, λ ∈ OK , λλ′ + abp = m.
The set T̃ (m) is invariant under SL2(OK ) and its image in X ,
denoted T (m), has finitely many components. This cycle is called
a Hirzebruch-Zagier cycle.
If m is the norm of an ideal in OK , then T (m) is a non-compact
divisor on X , birational to a linear combination of modular curves.
In this case we say that T (m) is isotropic. If m is not the norm of
an ideal in OK , then T (m) is a compact divisor on X , birational to
a linear combination of Shimura curves. In that case we say that
T (m) is anisotropic.
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Compactified Hirzebruch-Zagier divisors

Let X̃ be the surface obtained adding the cusps to X and resolving
the singularities of the cusps.
Let T c(m) denote the class in CH1(X̃ ) of the preimage of the
adherence of T (m) on X .
Let Mk denote the line bundle of modular forms of weight k. We
denote by T c(0) the homology class defined by Poincaré duality by
− 1

2k c1(Mk) for k sufficiently large.
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Hirzebruch-Zagier Formula

Theorem (Hirzebruch-Zagier, Borcherds)

For any class K in CH1(X̃ ) the function

ΦK (z) =
∞∑

m=0

(T c(m) · K )qm

is a modular form of weight 2, level p and character χp.
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Generalization

Let V be a Q vector space provided with an inner product of
signature (n, 2). G = GSpin(V ).
Let B = {w ∈ V (C) | (w ,w) = 0, (w , w̄) < 0}/C∗ ⊂ P(V (C)).
Then B is a Hermitian symmetric domain of dimension n.
To these data one can associate Shimura varieties MK .
Depending on the dimension one recover modular and Shimura
curves, products of these curves, Hilbert modular surfaces, Siegel
modular 3-folds ...
The Shimura varieties as above have many special subvarieties that
are the analogue of Hirzebruch-Zagier divisors.
By means of cohomology classes of special cycles of codimension r ,
Kudla and Millson have constructed Siegel modular forms of genus
r and weight n

2 + 1.
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Arakelov analogues

1 Gross-Zagier formula.

2 Computations of Kudla-Rapoport-Yang on special cycles of
arithmetic varieties associated to O(n, 2).

3 Computations of Bost and Kühn on modular curves.

4 Conjectures of Kramer, Köhler and Maillot-Roessler on the
arithmetic Hodge numbers of a semi-abelian fibration.

There are many technical problems.

1) Problems related with integral models.

2) In general Shimura varieties are non compact.
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Singular metrics on Shimura varieties
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Logarithmic line bundles

Observation

The natural metrics that appear in the line bundles on a compact-
ification of the moduli space of abelian varieties have logarithmic
singularities.

Lemma (Faltings)

Let X ⊂ Pn
Z be a Zariski closed subset, let Y ⊂ X be closed.

Let ‖ ‖ be a Hermitian metric on O(1)|X (C)\Y (C), with logarithmic
singularities along Y .
Let K be a number field. Let h be the height associated to ‖ ‖.
c > 0.
Then

{x ∈ X (K ) \ Y (K ) | h(x) ≤ c}

is finite.
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Poincaré metric

Let X be a complex manifold of dimension n, and let X = X \ D,
with D a normal crossing divisor.
Let U be an open coordinate set, with U \ D ∼= (∆∗

ε )
k ×∆n−k

ε ,
and ε small.

The Poincaré metric on ∆∗
ε is ds2 = |dz|2

|z|2(log |z|)2

The standard metric in ∆ε is ds2 = |dz |2.

Let ωU be the product metric in U \ D.
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Poincaré growth and Good forms

Definition

A complex valued p-form, η, has Poincaré growth if, for any open
coordinate set U as above, one has the estimate

|η(t1, . . . , tp)|2 ≤ CωU(t1, t1) . . . ωU(tp, tp).

for all tangent vectors t1, . . . , tp in U \ D.
A p-form η is good if η and dη have Poincaré growth.

Theorem (Mumford)

1 A good form is locally L1.

2 Let [η] be the associated current. Then d [η] = [dη].
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Good metrics

Definition

Let E be a vector bundle on X and let h be a Hermitian metric in
E |X . We say h is good if, for all open coordinate sets as above and
local frames of E
i) |hij |, (det h)−1 ≤ C (

∑k
i=1 log |zi |)N , C > 0.

ii) The 1-form (∂h.h−1)ij are good.

Theorem (Mumford)

If h is a good metric of E , then for all k, the k-th Chern form
ck(E , h) is a good form and the current [ck(E , h)] represents the
k-th Chern class of E .
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Conclusion

The logarithmic line bundles and the good Hermitian vector
bundles behave in many situations like smooth Hermitian

vector bundles.
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Fully decomposed automorphic bundles

Let B = K\G be a Hermitian symmetric domain.
Inside the complexification GC of G , there is a parabolic subgroup
of the form P+ · KC and an equivariant immersion

B ⊂ B̌ = GC/P+ · KC,

that induces a complex structure on B.
Let σ : K −→ GL(n,C) be a representation of K . Then σ defines a
G -equivariant vector bundle E0 on B.
We complexify σ and we extend it trivially to P+ · KC by letting it
kill P+. Then σ defines a holomorphic GC-equivariant vector
bundle Ě0 on B̌ with E0 = ι∗(Ě0). This induces a holomorphic
structure on E0.
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Fully decomposed automorphic bundles

Let Γ be a neat arithmetic group acting on B. Then X = Γ\B is a
smooth quasi-projective complex variety, and E0 defines a
holomorphic vector bundle E on X . The vector bundles obtained
in this way (with σ extended trivially) will be called fully
decomposed automorphic vector bundles.
Let h0 be a G -equivariant Hermitian metric on E0. Such metrics
exist by the compacity of K . Then h0 determines a Hermitian
metric h on E0. Let X be a smooth toroidal compactification of X
with D = X \ X a normal crossing divisor.
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Fully decomposed automorphic bundles

Theorem (Mumford)

There exists a unique extension of E0 to a vector bundle E on X
such that the Hermitian metric h is good along D.

Warning

The result is not true for non fully decomposed automorphic vector
bundles. i.e. where the extension of the representation σ to P+ ·KC
is not trivial on P+. Similarly, the Hodge metric associated to a
variation of polarized Hodge structures is not in general good.
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Objective

Objective:
To extend the formalism of Arakelov geometry to cover fully

decomposed automorphic vector bundles.
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Log and log-log forms
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Examples of singular forms

Let L be a Hermitian line bundle, log singular along z = 0, and let
s be a non-vanishing regular section. Assume that in a
neighborhood of z = 0,

h(s) = C (z)(log(1/|z |))N ,

with C smooth and non zero. Then the associated Green function
will satisfy

log h(s) = N log log(1/|z |) + φ(z).

If we take the derivative we obtain Poincaré like singularities:

∂ log h(s) = N
− d z

z log 1/|z |
+ ∂φ(z).
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Local coordinates

Recall that, to represent classes in cohomology with support we
used a complex of differential forms with logarithmic singularities.
When mixing log-singularities with log-log singularities it is
convenient to use growth conditions.
Let X be a smooth complex variety of dimension n and D ⊂ X a
normal crossing divisor. Write V = X \ D and let j : V −→ X be
the inclusion.
Let ∆ be an open coordinate subset with coordinates (z1, . . . , zn),
and let z1 . . . zk = 0 be a local equation for D. Put ri = ‖zi‖.
We will always assume that the ri are small enough.
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Log growth functions

Definition

A function f has log growth along D if, for any coordinate subset
as above, and all multi-indices α, β, the following estimate holds

∣∣∣∣∣∂|α|∂zα

∂|β|

∂z̄β
f (z1, . . . , zd)

∣∣∣∣∣ ≤ Cα,β

∣∣∣∏k
i=1 log(1/ri )

∣∣∣Nα,β

|zα≤k z̄β≤k |
,

where

zα≤k
=

k∏
i=1

zαi
i .
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Log growth forms

Definition

The sheaf of differential forms on X with log growth along D,
denoted E ∗

X 〈D〉, is the subalgebra of j∗E ∗
V generated locally by the

log growth functions and the forms

d zi

zi
,

d z i

z i
, for i = 1, . . . , k,

d zi , d z i , for i = k + 1, . . . , n.

For shorthand a log growth form will be called a log form.
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Properties of the sheaf of log forms

Properties of log forms

1 The sheaf E ∗
X 〈D〉 is closed under ∂, ∂̄, ∧ and complex

conjugation. Therefore it has a structure of Dolbeault algebra.

2 It is stable under inverse images.

3 If Ω∗(log D) denotes the sheaf of holomorphic forms with
logarithmic poles along D, then the natural inclusion

Ω∗(log D) −→ E ∗
X 〈D〉

is a filtered quasi-isomorphism with respect to the Hodge
filtration.
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Log-log growth functions

Definition

A function f has log-log growth along D if, for any coordinate
subset as above, and all multi-indices α, β, the following estimate
holds near D∣∣∣∣∣∂|α|∂zα

∂|β|

∂z̄β
f (z1, . . . , zd)

∣∣∣∣∣ ≤ Cα,β

∣∣∣∏k
i=1 log(log(1/ri ))

∣∣∣Nα,β

|zα≤k z̄β≤k |
.
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Log-log growth forms

Definition

The sheaf of differential forms on X with log-log growth along D,
is the subalgebra of j∗E ∗

V generated locally by the log-log functions
and the forms

dzi

zi log(1/ri )
,

dz i

z i log(1/ri )
, for i = 1, . . . , k,

dzi , dz i , for i = k + 1, . . . , n.
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Log-log forms

Warning: The sheaf of log-log growth forms is not closed under ∂
and ∂̄.

Definition

We say that a complex differential form ω is log-log along D if the
differential forms ω, ∂ω, ∂̄ω and ∂∂̄ω have log-log growth along
D. The sheaf of differential forms log-log along D will be denoted
by E ∗

X 〈〈D〉〉.
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Properties of log-log forms

Properties of log-log forms

1 The sheaf E ∗
X 〈〈D〉〉 is closed under ∂, ∂̄, ∧ and complex

conjugation. Therefore it has a structure of Dolbeault algebra.

2 The sections of E ∗
X 〈〈D〉〉 are locally integrable with zero

residue.

3 It is stable under inverse images.

4 If Ω∗ denotes the sheaf of holomorphic forms on X , then the
natural inclusion

Ω∗ −→ E ∗
X 〈〈D〉〉

is a filtered quasi-isomorphism with respect to the Hodge
filtration.

Log-log singularities are so mild that they do not change the
cohomology
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Mixed growth

We can mix together log and log-log forms.
Let D1 and D2 be two normal crossing divisors on X such that
D1 ∪ D2 is also a normal crossing divisor.
We can define the sheaf E ∗

X 〈D1 〈D2〉〉 of differential forms that are
log along D1 and log-log along D2.

Theorem

The natural inclusion

Ω∗
X (log D1) −→ E ∗

X 〈D1 〈D2〉〉

is a filtered quasi-isomorphism with respect to the Hodge filtration.
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Real Deligne-Beilinson cohomology

Let U be a non proper smooth complex algebraic variety, D ⊂ U a
normal crossing divisor.
Write

E ∗
log 〈〈D〉〉 (U) = lim−→

(U,D′)

E ∗
X

〈
D ′ 〈D〉〉

,

where the limit is taken over all compactifications (U,D ′) of U,
such that D ′ ∪ D is a normal crossings divisor.
The space of global sections E ∗

log 〈〈D〉〉 (U) is a Dolbeault algebra.

Corollary

The complex D∗(Elog 〈〈D〉〉 (U), p) computes the Deligne-Beilinson
cohomology of U.
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Real varieties

Let UR be a real variety and assume that DR is defined over R.
Then there is an involution F∞ of D∗(Elog 〈〈DC〉〉 (UC), p) that
acts as complex conjugation on the space and the coefficients.
Then we write

D∗(Elog 〈〈DR〉〉 (UR), p) = D∗(Elog 〈〈DC〉〉 (UC), p)F∞

Corollary

The complex D∗(Elog 〈〈DR〉〉 (UR), p) computes the real Deligne-
Beilinson cohomology of the real variety UR.

Jose Ignacio Burgos Gil

Arithmetic characteristic classes of log-singular Hermitian vector bundles



Outline Historical notes HZ Singular metrics on Shimura varieties L LL ll Chow Products log singular Examples

Log-log arithmetic Chow groups
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Log-log Arithmetic Chow groups

Let X be an arithmetic variety over OK , of relative dimension d .
Let D be a fixed normal crossing divisor of XR.
Usually, X will be an integral model over OK (or a localization of
it) of a toroidal compactification of a Shimura variety and D will
be the boundary divisor.
The assignment

UR 7−→ Dn(Elog 〈〈D〉〉 (UR), p) =: Dn
〈〈D〉〉(U, p)

is an arithmetic Dlog-complex.
Therefore applying the abstract machinery of the previous talk, we
define the arithmetic Chow groups with values in the complex of
log-log forms, that we will denote

ĈH
∗
(X , 〈〈D〉〉).

Jose Ignacio Burgos Gil
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Properties

Theorem

1 ĈH
∗
(X , 〈〈D〉〉)⊗Q is a commutative and associative ring.

2 If D and E are normal crossing divisors on XR, YR resp. and
f : X −→ Y is a morphism such that f −1(E ) ⊂ D, then there
is a morphism

f ∗ : ĈH
∗
(Y , 〈〈E 〉〉) −→ ĈH

∗
(X , 〈〈D〉〉).

3 If X is proper over Spec(OK ), of relative dimension n, there is
a well defined map

d̂eg : ĈH
n+1

(X , 〈〈D〉〉) π∗−→ ĈH
1
(OK )

d̂eg−→ R.

Jose Ignacio Burgos Gil
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Exact sequences

Theorem

The following sequences are exact

CHp−1,p(X )
ρ→ D̃2p−1

〈〈D〉〉(X , p)
a→ ĈH

p
(X , 〈〈D〉〉) ζ→ CHp(X ) → 0,

CHp−1,p(X )
ρ→ H2p−1

D (X , p)
a→ ĈH

p
(X , 〈〈D〉〉) (ζ,−ω)→

CHp(X )⊕ ZD2p
〈〈D〉〉(X , p)

cl +h→ H2p
D (X , p) → 0,

CHp−1,p(X )
ρ→ H2p−1

D (X , p)
a→ ĈH

p
(X , 〈〈D〉〉)0

ζ→ CHp(X )0 → 0.
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Green forms

Let X be a complex projective manifold, y a codimension p cycle,
with support Y and U = X \ Y .
Thanks to the fact that we have precise control on the cohomology
of the complex of log-log forms, we can give a precise criterion for
Green forms.

Theorem

Let (ω, g) be a cycle in

s2p(D〈〈D〉〉(X , p) −→ D〈〈D〉〉(U, p)).

Then, the form g is locally integrable and the class of the cycle
(ω, g) in H2p

D,Y (X ,R(p)) is equal to the class of y , if and only if

−2∂∂̄[g ]
X

= [ω]− δy .
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Products
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The product in Deligne cohomology

Recall that if X is a complex projective variety. Deligne
cohomology of X can be computed as the cohomology of the
simple complex

ER(X , p)D := s((2πi)pER∗(X )⊕ F pE ∗
C(X )

u−→ E ∗
C(X )).

This complex has a family of products. For every α ∈ [0, 1], let

(rp, fp, ωp) ∪α (rq, fq, ωq) =

(rp ∧ rq, fp ∧ fq, α(ωp ∧ rq + (−1)nfp ∧ ωq)

+(1− α)(ωp ∧ fq + (−1)nrp ∧ ωq)) .

All these products are homotopically equivalent. For α = 0, 1 the
product is associative and for α = 1/2 the product is graded
commutative. Therefore it gives a well defined associative and
commutative product in Deligne cohomology.

Jose Ignacio Burgos Gil
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The product in the Deligne complex

There are explicit homotopy equivalences

ϕ : D(ER(X ), p) −→ ER(X , p)D, ψ : ER(X , p)D −→ D(ER(X ), p),

and we define, for x , y ∈ D(ER(X ), p)

x • y = ψ(ϕ(x) ∪α ϕ(y)).

This product does not depend on α and it is graded-commutative
and associative up to homotopy.

Example

If x ∈ D2p(ER(X ), p), then x • y = x ∧ y .
If x ∈ D2p−1(ER(X ), p) and y ∈ D2q−1(ER(X ), q), then

x • y = −∂x ∧ y + ∂̄x ∧ y + x ∧ ∂y − x ∧ ∂̄y .

Jose Ignacio Burgos Gil
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The product of Green objects

Let D denote one of the sheaves Dlog or D〈〈D〉〉.
Let y and z be two cycles that intersect properly and let Y and Z
be their support. Let p, q be their respective codimensions and let
r = p + q. Write U = X \ Y , V = X \ Z .
Let gy = (ωy , g̃y ) and gz = (ωz , g̃z) be Green forms for the cycles
y and z respectively.
Guided by the product in cohomology with support we put

gy ∗ gz =
(
ωy • ωz , ((gy • ωz , ωy • gz),−gy • gz)

˜)
,

which is an element of
Ĥ2r (D(X , r), s(D(U, r)⊕D(V , r) → D(U ∩ V , r)).

Jose Ignacio Burgos Gil
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The product of Green objects

By the Mayer Vietoris property, we know that

Ĥ2r (D(X , r), s(D(U, r)⊕D(V , r) → D(U ∩ V , r))) ∼=
Ĥ2r (D(X , r),D(U ∪ V , r)).

How can we make explicit this isomorphism?
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The product of Green objects

Let X̂ be a resolution of singularities of Y ∩ Z such that the strict
transforms of y and z do not meet.
Let σy ,z be a smooth function on X̂ that has the value 1 in a
neighborhood of the strict transform of y and 0 in a neighborhood
of the strict transform of z . Put

σz,y = 1− σy ,z and

gy ∗ gz = σz,ygy ∧ (−2∂∂̄gz) + (−2∂∂̄σy ,zgy ) ∧ gz .

Proposition

Then the pair (ωy ∧ ωz , (gy ∗ gz)˜) represents the product gy ∗ gz .
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The product of Green objects

Assume that we are in the case D = Dlog, and that p + q = d + 1.
Then using Stokes∫

X
gy ∗ gz =∫
X

gy ∧ ωz + (4πi) d (dc(σ
YZ

gy ) ∧ gz − σ
YZ

gy ∧ dc gz) =∫
X
(gy ∧ ωz + δy ∧ gz).

This is the classical Gillet-Soulé star product.
Note that the last step is not justified when we are in the case
D〈〈D〉〉 and Y ⊂ D.
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The star product on modular curves

Let X be a complex projective curve. S ⊂ X a finite set of points.
L a good hermitian vector bundle on X such that, near a point
si ∈ S , a non vanishing regular section of L satisfies

‖l‖ = (log(|t|))αiϕ(t),

where t is a local coordinate and ϕ is a positive continuous
function such that

∂ϕ(t)

∂t
≤ β

|t|1−ρ
,
∂ϕ(t)

∂ t̄
≤ β

|t|1−ρ
,
∂2ϕ(t)

∂t∂ t̄
≤ β

|t|2−ρ
.

To every section l of L we can associate the Green form

gl = (−2∂∂̄(−1

2
log ‖l‖2),−1

2
log ‖l‖2) = (ωl , gl).
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The star product on modular curves

If l and m are sections of L whose divisor intersects S , then the
formula ∫

X
gl ∗ gm =

∫
X
(gl ∧ ωm + δl ∧ gm)

does not make sense because both terms diverge.
Nevertheless, using Stokes theorem and the general formula for the
product, one can derive Kühn’s formula for the star product∫

X
gl ∗ gm =∫

X
(gl ∧ ωm + ωl ∧ gm + (4πi) d gl ∧ dc gm)+

(2πi)
∑
si∈S

(ordsi (l) + ordsi (m))αi
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Log singular Hermitian metrics
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Log-singular Hermitian metrics

Let X be a complex manifold, D a normal crossing divisor and
U = X \ D. Let E be a rank n vector bundle on X and let E0 be
the restriction of E to U.

Definition

A smooth metric on E0 is said to be log-singular along D if for
every x ∈ D, there exist a trivializing open coordinate
neighborhood V adapted to D with holomorphic frame
ξ = {e1, . . . , en}, such that, writing h(ξ)ij = h(ei , ej), then

1 The functions h(ξ)ij , det(h(ξ))−1 belong to Γ(V ,E 0
X 〈D〉),

2 The 1-forms (∂h(ξ).h(ξ)−1)ij belong to Γ(V ,E 1,0
X 〈〈D〉〉).

A vector bundle provided with a log-singular Hermitian metric will
be called a log-singular Hermitian vector bundle.
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Properties

Let E , F be Hermitian vector bundles on X , log-singular along D.
f : Y −→ X a holomorphic map and D ′ a normal crossing divisor
on Y such that f −1(D) ⊂ D ′. Then

1 f ∗E is log-singular along D ′.

2 The tensor product E ⊗ F , the exterior and symmetric powers
ΛnE , SnE , the dual bundle E

∨
and the bundle of

homomorphisms Hom(E ,F ), with their induced metrics, are
log-singular along D.

3 E
⊥
⊕ F is log-singular along D if and only if E and F are

log-singular along D.

Warning. The concept of log-singular Hermitian metric is not closed
under general sub-objects, quotients and extensions.
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Bott-Chern forms of log-singular metrics

We want to define arithmetic characteristic classes from
log-singular Hermitian vector bundles to the arithmetic Chow
groups with values in D〈〈D〉〉.
The strategy is simple. One changes the log-singular metric by a
smooth metric. Then we consider the Gillet-Soulé arithmetic
characteristic class that lives in the theory with values in Dlog.
Finally we correct the effect of the change of metric by using a
Bott-Chern form. Therefore we are led to prove.

Proposition

Let E be a vector bundle on X , let h be a log-singular Hermitian
metric on E and let h′ be a smooth hermitian metric. Then the
Bott-Chern forms for the change of metrics h, h′ belongs to the
space E ∗

X 〈〈D〉〉.
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Iterated Bott-Chern forms

There is still the problem of the dependency on the chosen smooth
Hermitian metric. To solve this problem we need to prove

Proposition

Let E be a vector bundle on X , let h be a log-singular Hermitian
metric on E and let h′ and h′′ be two smooth Hermitian metrics.
Then the iterated Bott-Chern form for the three metrics h, h′, h′′

belongs to the space E ∗
X 〈〈D〉〉.

As a consequence, the arithmetic characteristic classes obtained
using the metric h′ or the metric h′′ differ by a boundary and
therefore they are zero in the arithmetic Chow ring.
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Bott-Chern forms for short exact sequences

Let ξ be a short exact sequence of log-singular Hermitian line
bundles:

0 → S → E → Q → 0

By technical reasons it does not seem possible to define directly
the Bott-Chern form for this exact sequence in the complex D〈〈D〉〉.
Nevertheless, using the two propositions above, one can determine
a Bott-Chern class, defined up to boundary in the Deligne
complex, by changing the singular metrics for smooth metrics.
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Arithmetic characteristic classes

Let φ ∈ B[[T1, . . . ,Tn]] be a symmetric power series with
coefficients in a subring B of R. Then we can attach, to every
log-singular Hermitian vector bundle E = (E , h) of rank n over a
pair (X ,D), a characteristic class

φ̂(E ) ∈ ĈH
∗
B(X , 〈〈D〉〉).

Properties

1 Functoriality.

2 Compatibility with Chern forms.

3 Compatibility with change of metric.

4 Compatibility with the definition of Gillet and Soulé.
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Faltings height

Let X be a projective arithmetic variety over Z, let D be a normal
crossing divisor on XQ. Let L be an ample line bundle provided
with a log-singular Hermitian metric. We denote by Zp

U(XQ) the
group of codimension p cycles that have no component contained
in D. We can define the Faltings height associated to L, denoted
hL as follows.
For each y ∈ Zp

U(XQ) let y be its Zariski closure and let
gy = (ωy , gy ) be any Green form for y . Then

hL = d̂eg(ĉ1(L)d−p+1 · (y , gy ))−
∫

XC

c1(L)d−p+1 ∧ gy
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A finiteness theorem

Theorem (G. Freixas)

Let X be a projective arithmetic variety over Z, let D be a normal
crossing divisor on XQ. Let L be an ample line bundle provided
with a log-singular Hermitian metric. Then for every constant
C ≥ 0, there exist only finitely many effective cycles z ∈ Zp

U(XQ)
such that degL(z) ≤ C and hL(z) ≤ C.
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Examples
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Modular curves

Let H denote the upper half plane with complex coordinate
z = x + iy , and

X (1) = SL2(Z)\H ∪ {S∞}

the modular curve with the cusp S∞.
Let X (1) = P1

Z be the regular model for the modular curve X (1).
With s∞ denoting the Zariski closure of (the normal crossing
divisor) S∞ ⊂ X (1) and k a positive integer satisfying 12|k, we
define the line bundle of modular forms of weight k by
Mk = O(s∞)⊗k/12. The line bundle Mk is equipped with the
Petersson metric ‖ · ‖, which is a log-singular Hermitian metric
along S∞ (and the elliptic fixed points).
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Modular curves

Theorem (J. B. Bost, U. Kühn)

The normalized arithmetic self intersection number is

d̂eg(ĉ1(Mk)2) = k2.ζQ(−1).

(
ζ ′Q(−1)

ζQ(−1)
+

1

2

)
.
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Product of modular curves

We consider the arithmetic threefold H = X (1)×Z X (1); we let
p1, resp. p2 denote the projection onto the first, resp. second
factor. The divisor

D = p∗1 X (1)× p∗2 s∞ + p∗1 s∞ × p∗2 X (1)

induces a normal crossing divisor DR on HR. For k, l ∈ N, 12|k,
12|l , we define the Hermitian line bundle

L(k, l) = p∗1 Mk ⊗ p∗2 Ml ,

which is log-singular along D.
We have

d̂eg(ĉ1(L(k, l))3) =
k2 · l + l2 · k

4

(
1

2
ζQ(−1) + ζ ′Q(−1)

)
.
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Hecke correspondence divisors

Let N be a positive integer, and MN the set of integral
(2× 2)-matrices of determinant N. Recall that the group SL2(Z)
acts from the right on the set MN and that a complete set of
representatives for this action is given by the set

RN =

{
γ =

(
a b
0 d

) ∣∣∣∣ a, b, d ∈ Z; ad = N; d > 0; 0 ≤ b < d

}
.

The cardinality of RN is σ(N).
Put

TN =
{
(z1, z2) ∈ H× H

∣∣ ∃γ ∈ MN : z1 = γz2

}
.

This defines a divisor on X (1)× X (1), whose components are
graphs of Hecke correspondences.
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Height of Hecke cycles

We consider the Hilbert modular form with divisor TN :

sN(z1, z2) = ∆(z1)
σ(N)∆(z2)

σ(N)
∏

γ∈RN

(j(γz1)− j(z2)) .

It is a section of L(12σ(N), 12σ(N)); we put TN = div(sN) ⊆ H.

Theorem (—, Kühn, Kramer; Autissier)

htL(k,k)(TN) = (2k)2
(
σ(N)

(
1

2
ζQ(−1) + ζ ′Q(−1)

)
+

∑
d |N

d log(d)

24
− σ(N) log(N)

48

)
.
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Hilbert modular surfaces

Let p ≡ 1 mod 4 be a prime and let OK be the ring of integers of
K = Q(

√
p).

Let

ΓK (N) =

{(
a b
c d

)
∈ SL2(OK ) | (a− 1), b, c , (d − 1) ∈ N.OK

}
.

Write X (N) = H2/ΓK (N).
Let ζN be a primitive root of unity. Following Deligne-Pappas
X (N) has a regular integral model X (N) defined over
Spec(Z[ζN , 1/N]). Moreover, following Rapoport we know that
there is a regular toroidal compactification that we denote X̃ (N).
For k sufficiently divisible there is a line bundle Mk(ΓK (N)) on
X̃ (N), whose global sections correspond to holomorphic Hilbert
modular forms of weight k for Γk(N) with Fourier coefficients in
Z[ζN , 1/N].
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Hilbert modular surfaces

Let X̃ (N) be the corresponding toroidal compactification of X (N).
We denote by T c

N(m) the Hirzebruch-Zagier divisors on X̃ (N). Let

T c
N (m) be the Zariski closure of T c

N(m) in X̃ (N).
Bruinier has constructed Green functions for the divisors T c

N(m)
that we denote gN(m).
We put SN = Spec Z[ζN , 1/N] and

RN = R

/〈∑
p|N

Q · log(p)

〉

Then there is a well defined degree map

d̂eg : ĈH
1
(SN) −→ RN .
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Hilbert modular surfaces

Let Σ be the set of complex embeddings from Q(ζN) into C and
we let

D =
∐
σ∈Σ

(X̃ (N) \ X (N)).

For k sufficiently divisible we denote by Mk(ΓK (N)) the line
bundle Mk(ΓK (N)) equipped with the Petersson metric.

Proposition

There is a well defined arithmetic Chern class

ĉ1(Mk(ΓK (N))) ∈ ĈH
1
(X̃ (N), 〈〈D〉〉).

Moreover the pairs T̂ c
N (m) = (T c

N (m), gN(m)) also define classes in

ĈH
1
(X̃ (N), 〈〈D〉〉)
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Hilbert modular surfaces

We write symbolically

ĉ1(M
∨
1/2) = − 1

2k
ĉ1(Mk(ΓK (N))).

Theorem (Bruinier, ,Kühn)

The arithmetic generating series

ĉ1(M
∨
1/2) +

∑
m>0

T̂ c
N (m)qN

is a modular form of weight 2, level p and character χp with values

in ĈH
1
(X̃ (N), 〈〈D〉〉).
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Hilbert modular surfaces

Write dN = [Q(ζN) : Q] · [Γ : Γ(N)].

Theorem (Bruinier,—,Kühn)

In RN it holds the equality

d̂eg ĉ1(M(ΓK (N)))3 =

− k3dNζK (−1)

(
ζ ′K (−1)

ζK (−1)
+
ζ ′(−1)

ζ(−1)
+

3

2
+

1

2
log(p)

)
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