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The idea of parallel transport

Definition
A Riemannian manifold (M, g) is a smooth manifold M endowed
with a scalar product gy in T,M depending smoothly on x € M.

Idea of parallel transport
Associate to any curve of a Riemannian manifold M from a point
x to a point y an isomorphism of the tangent spaces at x and y.



Parallel transport

Let ¢ : [0,1] — M be a smooth curve from x to y.

Parallel transport of vectors v € T,M from x to y along ¢

C

v
X y

defines a linear isometry

Pe: (TM,g) — (T,M, g,).



The holonomy group

If x =y, then the curve c is a loop based at x and

the parallel transport satisfies
P. € O(T«M).
The subgroup
Hol(x) := (P¢|c loop based at x) C O(TM) == O(n)

is called the holonomy group of (M", g) at x.



Independence of the base point

Let ¢ be a curve from x to y

then the holonomy groups at x and y are related by
Hol(x) = PZ*Hol(y)P..

Hence, for connected M we do not need to specify x.
The group Hol C O(n) is well-defined up to conjugation.



Berger's list

Theorem

Let M be a complete irreducible simply connected Riemannian
manifold.

Then M is a symmetric space or Hol belongs to the following list:

v

SO(n) (generic case),

SU(n), U(n) C SO(2n),

Sp(n),  Sp(n) - Sp(1) € SO(4n),
Gy C SO(7),

Spin(7) C SO(8).
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The groups Sp(n) and Sp(n) - Sp(1)

The groups Sp(n) and Sp(n) - Sp(1) act on H" = R*".

We consider H" as right vector space over the quaternions H.
The group Sp(n) := O(4n) N GL(n,H) is a compact real form
of the complex symplectic group Sp(n,C) = Sp(C?").

The Sp(1)-factor in Sp(n) - Sp(1) is the group of unit
quaternions acting from the right.



Classical special holonomy groups

Definition
A Riemannian manifold is called
» Kahler if Hol C U(n),
» Calabi-Yau if Hol C SU(n),
» Hyper-Kahler if Hol C Sp(n),
» quaternionic Kahler if Hol C Sp(n) - Sp(1) with n > 1.



Inclusions between classical holonomies

We have the following implications:
h.-Kahler == Calabi Yau == Kabhler

\\/

A (complete s.c.) non-symm. quaternionic Kahler manifold is
Kahler if and only if it is already hyper-Kahler.

Geometrically the q.K. condition means that M admits a
parallel subbundle @ C End TM which is locally spanned by 3
anticommuting skew-symm. almost cx. structures

N, I, J3 = J1Jp. In the h.K. case the J, are globally defined
and parallel.



Algebraic curvature tensors

Situation
Given a Euclidian vector space (V/, (-,-)) and a Lie subalgebra
g C so(V).

Definition
An algebraic curvature tensor of type g is
> an element R € g ® A2V*,

VxVa(X,Y)—R(X,Y)eg
» satisfying the first Bianchi identity
R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y =0.

» Denote by R(g) the space of algebraic curvature tensors of
type g.



Consequences of the Bianchi identity

The first Bianchi identity implies the symmetry in pairs
(R(X,Y)Z,W) = (R(Z, W)X, Y)

Using the scalar product, we have V & V*
and g C so(V) = A2V =2 \2v*,
This implies R € S%g C S?A%V.



Algebraic curvature tensors of quaternionic Kahler type

The curvature tensor of a q.K. manifold M is of type

g =sp(n) ®sp(l) at each x € M.

Let V = H" be the standard sp(n) & sp(1)-module.
Complexified it becomes a tensor-product V€ = H ®¢ E,
where H = C? is the standard irreducible module of
sp(1) C sp(C?)

and E = C?" is the standard irreducible module of

sp(n) C sp(C?").



Algebraic curvature tensors of quaternionic Kahler type Il

The complex bilinear extension (-, )¢ of (-, -)
equals (-, )¢ = wy ® wg,
where wy and wg are the invariant symplectic forms.

Let jy and jg be the invariant quaternionic structures on H
and E.

V is recovered as the set of fixed-points of the antilinear
involution p = jy ® JE.



Main result

Theorem
(Alekseevsky 1968, Salamon 1980)

» It holds
R(sp(n) ®sp(1)) = RRo + R(sp(n)),

> where Ry is the curvature tensor of Py and
> R(sp(n))C = S*E.



Sketch of the proof

Proof.
The complexification of g = sp(n) @ sp(1) is
a® = sp(H) @ sp(E) = S?H @ S2E.
This implies: S2g¢ = S?(S%H @ S%E) =
$°S?H + S?S°E + S?H ®s S’E =
(CBypr) + S?°S?E) + S§S*H +S’H®s S°E.
—_— ——

=S*H.irred. irred.



sketch of the proof Il

Proof.

The sp(n) @ sp(1)-module CByy1) + S2S?E does not contain any
submodule isomorphic to S35?H or S2H ®s S2E.

Therefore it suffices to prove:

1. Ro = aByp(1) + bBup(n) € CBap(r) + S2S2E with 2, b € R,
. Jtensor T € S2S?H sit. T ¢ R(g)C,

. Jtensor T € S?H ®s S?E s.t. T ¢ R(g)C,

| S2S?ENR(g)C = S°E.

A~ wN



sketch of the proof Il

Proof.

The curvature tensor of Pf is well-known to be

1 1
Ro(X.Y) =2 > (X, Jo ¥ ) ot (x AY + D JuX A da Y) :

It is normalized s.t. % <k <1,
K(X A JouX) =1 and scalg, = 4n(n+ 2).
It is easy to see
Ro = nTtep(1) + Tap(n) A’V — g =sp(n) @ sp(1).
The tensors Bgy(1), Bep(n) € S2A2V* N2V — N2V* =2 N2V

<'7'>
are scalar multiples of g1y and mep(n)-



sketch of the proof IV

Proof.
More precisely a = _%2’ b= —m and for
n=1= a=b=—1 This finishes point (1).

4
To check (2) and (3) one can take T = h* and h%e? with

he Hand e€ E.
It remains point (4). Let (h;)2_; and (ea)3™; be bases of H

a=1
and E. We denote by e;4 = h; ® es the corresponding basis

of VC=H®E.
We use upper indices for the dual bases.



sketch of the proof V
Proof.

T € S?S?E =~ S2S2E* is given by

T:ZTABCDeA®eB®eC®eD,

where Tagcp is symmetric in (A, B) and (C, D)
and in the pair ((A, B, ), (C, D)).

N(HoE) "%

T(ean; ebB)

T(eaa, ebB)ecc

wy ® S?E =~ S?E,

Zwab TABCDGC & (:"D and
C,D

> wabTascohce®
D
Ho E* = H® E = VC

WE



sketch of the proof VI

Proof.
The Bianchi identity reads:
0 = wapb TaBcphe + Whe TecADha + wea TcaBp hi
Choose (h;) s.t. wap := wy(ha, hp) = €25 and
a=1,b=2 = c in the Bianchi identity to obtain
0= Tagcpoh2 — Tcaph2 < Tasco = Tcasp-
Using the symmetries of T this implies T € S*E.

Conversely, one can check that T € S*E satisfies the Bianchi
identity (due to dimH = 2.).

O



Geometric consequences

Corollary
Any q.K. manifold is Einstein, i.e. Ric =cg and c =0 iff M is
locally h.K.

Proof.

Py is Einstein and

S*E is completely trace-free with respect to wy ® we, since
S*E ~w? @ S*E C S?2A’H @ S?S?E C S?(AN°H ® S%E) =
S2A2VC,

We will be mainly be interested in ¢ # 0.



Geometric consequences |l

Corollary
For a q.K. manifold we have

scal # 0 < hol = Lie Hol D sp(1).

Proof.
Ro(Ja) = nwsp(l)Ja + Wsp(n)Ja = nJy € hol.



Geometric consequences Il

Corollary
Any q.K. manifold of scal # 0 is locally irreducible.

Proof.
If M =5c. M1 X My then hol,,. = hol; + hol, and the
holonomy module splitsas V = V; &, V,.
By the previous corollary sp(1) C hol C sp(1) @ sp(n).
Hence hol = sp(1) @ b and sp(1) C hol; for i =1 or i = 2.

Suppose i = 1 then sp(1) acts trivially on V5, which is
impossible, as J2 = —Id.



Examples: Wolf spaces

Apart from HP" there is a list a compact symmetric spaces
which are q.K. of positive scalar curvature,

the famous Wolf spaces.
They all can be obtained as follows:
» Let G be a cp. s.c. simple Lie group and h C g = LieG a
Cartan subalgebra,
> 1 the highest root w.r.t. some system of simple roots and
> s. =span{H,, Ex+,} C g the corresponding
three-dimensional subalgebra.
» H, € ib is normalized such that

[Hy, Ex,] = £2E4,.

» Then ady, has eigenvalues 0, +1, £2.



Wolf spaces Il

v

This defines a grading

=920 109D g1 D oo,

» where g4» = CE1,, and g =CH, ® ch(sff).
» We put

> s =gNsg,

> ti=gn ozizgi = 5, D Zy(su) = Ng(sp)-
»mi=gn ) g

i=+1



Wolf spaces Il

» Then g =@ m is a symmetric decomposition,
» which defines a s.c. q.K. symmetric space of cp. type

M= G/K,

» where K = Ng(s,) C G is the Lie subgroup generated by .
» The holonomy of M is identified with the isotropy group

Hol = Adk|m,

by the Ambrose-Singer theorem.
» The invariant quaternionic structure @ is defined by the
adjoint action of s, = sp(1) on m = T,M with o = eK.



Duals of Wolf spaces

» Let M = G/K be a Wolf space and G the s.c. simple Lie
group with

LieG =§=t+imC g°.

Then M = @/R is a q.K. symm. space of non.-cp. type.

It has negative scalar curvature.

For M = P, the quaternionic projective space, M = Hyp is the
quaternionic hyperbolic space.

vV vy vVvYy



Duals of Wolf spaces I

The Wolf spaces and their duals can be characterized as
follows:

Theorem (Alekseevsky-Cortés '97)

Let M be a q.K. mf. of non-zero scalar curvature admitting a
transitive unimodular group of isometries. Then M is a Wolf space
or dual to a Wolf space.

The duals of the Wolf space admit compact quotients which
are examples of cp. q.K. mfs. of negative scalar curvature.

A complete q.K. mf. of positive scalar curvature is compact,
by Myer's Thm, and there is the following:

Conjecture (Le Brun-Salamon '94)
Any complete q.K. mf. M of scal > 0 is a Wolf space.



Status of the Lebrun-Salamon conjecture

The conjecture is proven for
» dim=4 (Hitchin '81, Friedrich-Kurke '82),
» dim=8 (Poon-Salamon '91),
» dim=12 (Herrera-Herrera '02).

Moreover there exists the following result:

Theorem Le Brun '93
For any n, there are only finitely many complete q.K. mfs. of
dimension 4n and scal > 0, up to isometries and rescaling.
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