Quaternionic Kähler manifolds

Vicente Cortés
Institut Élie Cartan
Université Henri Poincaré - Nancy I
cortes@iecn.u-nancy.fr

June 2, 2005

Outline of the lecture

The holonomy group of a Riemannian manifold

Space of algebraic curvature tensors of quaternionic Kähler type and geometric consequences

Examples

The idea of parallel transport

Definition

A Riemannian manifold (M, g) is a smooth manifold M endowed with a scalar product g_{x} in $T_{x} M$ depending smoothly on $x \in M$.

Idea of parallel transport
Associate to any curve of a Riemannian manifold M from a point x to a point y an isomorphism of the tangent spaces at x and y.

Parallel transport

Let $c:[0,1] \rightarrow M$ be a smooth curve from x to y.
Parallel transport of vectors $v \in T_{x} M$ from x to y along c

defines a linear isometry

$$
P_{c}:\left(T_{x} M, g_{x}\right) \rightarrow\left(T_{y} M, g_{y}\right)
$$

The holonomy group

If $x=y$, then the curve c is a loop based at x and the parallel transport satisfies

$$
P_{c} \in O\left(T_{x} M\right) .
$$

The subgroup

$$
\left.\operatorname{Hol}(x):=\left\langle P_{c}\right| c \text { loop based at } x\right\rangle \subset O\left(T_{x} M\right) \cong O(n)
$$

is called the holonomy group of $\left(M^{n}, g\right)$ at x.

Independence of the base point

Let c be a curve from x to y
then the holonomy groups at x and y are related by

$$
\operatorname{Hol}(x)=P_{c}^{-1} \operatorname{Hol}(y) P_{c} .
$$

Hence, for connected M we do not need to specify x.
The group $\operatorname{Hol} \subset O(n)$ is well-defined up to conjugation.

Berger's list

Theorem
Let M be a complete irreducible simply connected Riemannian manifold.
Then M is a symmetric space or Hol belongs to the following list:

- $S O(n)$ (generic case),
- $S U(n), U(n) \subset S O(2 n)$,
- $\operatorname{Sp}(n), \quad S p(n) \cdot S p(1) \subset S O(4 n)$,
- $G_{2} \subset S O(7)$,
- $\operatorname{Spin}(7) \subset S O(8)$.

The groups $S p(n)$ and $S p(n) \cdot S p(1)$

The groups $S p(n)$ and $S p(n) \cdot S p(1)$ act on $\mathbb{H}^{n}=\mathbb{R}^{4 n}$.
We consider \mathbb{H}^{n} as right vector space over the quaternions \mathbb{H}.
The group $S p(n):=O(4 n) \cap G L(n, \mathbb{H})$ is a compact real form of the complex symplectic group $\operatorname{Sp}(n, \mathbb{C})=S p\left(\mathbb{C}^{2 n}\right)$.
The $S p(1)$-factor in $S p(n) \cdot S p(1)$ is the group of unit quaternions acting from the right.

Classical special holonomy groups

Definition

A Riemannian manifold is called

- Kähler if $\mathrm{Hol} \subset U(n)$,
- Calabi-Yau if $\mathrm{Hol} \subset S U(n)$,
- Hyper-Kähler if $\mathrm{Hol} \subset S p(n)$,
- quaternionic Kähler if $\mathrm{Hol} \subset S p(n) \cdot S p(1)$ with $n>1$.

Inclusions between classical holonomies

We have the following implications:
h.-Kähler \Longrightarrow Calabi Yau \Longrightarrow Kähler

q. Kähler

A (complete s.c.) non-symm. quaternionic Kähler manifold is Kähler if and only if it is already hyper-Kähler.
Geometrically the q.K. condition means that M admits a parallel subbundle $Q \subset$ End $T M$ which is locally spanned by 3 anticommuting skew-symm. almost cx. structures $J_{1}, J_{2}, J_{3}=J_{1} J_{2}$. In the h.K. case the J_{α} are globally defined and parallel.

Algebraic curvature tensors

Situation

Given a Euclidian vector space ($V,\langle\cdot, \cdot\rangle$) and a Lie subalgebra $\mathfrak{g} \subset \mathfrak{s o}(V)$.

Definition
An algebraic curvature tensor of type \mathfrak{g} is

- an element $R \in \mathfrak{g} \otimes \Lambda^{2} V^{*}$,

$$
V \times V \ni(X, Y) \mapsto R(X, Y) \in \mathfrak{g}
$$

- satisfying the first Bianchi identity

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 .
$$

- Denote by $\mathcal{R}(\mathfrak{g})$ the space of algebraic curvature tensors of type \mathfrak{g}.

Consequences of the Bianchi identity

The first Bianchi identity implies the symmetry in pairs

$$
\langle R(X, Y) Z, W\rangle=\langle R(Z, W) X, Y\rangle
$$

Using the scalar product, we have $V \cong V^{*}$
and $\mathfrak{g} \subset \operatorname{so}(V) \cong \Lambda^{2} V \cong \Lambda^{2} V^{*}$.
This implies $R \in S^{2} \mathfrak{g} \subset S^{2} \Lambda^{2} V$.

Algebraic curvature tensors of quaternionic Kähler type

The curvature tensor of a q.K. manifold M is of type $\mathfrak{g}=\mathfrak{s p}(n) \oplus \mathfrak{s p}(1)$ at each $x \in M$.
Let $V=\mathbb{H}^{n}$ be the standard $\mathfrak{s p}(n) \oplus \mathfrak{s p}(1)$-module.
Complexified it becomes a tensor-product $V^{\mathbb{C}} \cong H \otimes_{\mathbb{C}} E$, where $H=\mathbb{C}^{2}$ is the standard irreducible module of $\mathfrak{s p}(1) \subset \mathfrak{s p}\left(\mathbb{C}^{2}\right)$
and $E=\mathbb{C}^{2 n}$ is the standard irreducible module of $\mathfrak{s p}(n) \subset \mathfrak{s p}\left(\mathbb{C}^{2 n}\right)$.

Algebraic curvature tensors of quaternionic Kähler type II

The complex bilinear extension $\langle\cdot, \cdot\rangle_{\mathbb{C}}$ of $\langle\cdot, \cdot\rangle$
equals $\langle\cdot, \cdot\rangle_{\mathbb{C}}=\omega_{H} \otimes \omega_{E}$,
where ω_{H} and ω_{E} are the invariant symplectic forms.
Let j_{H} and j_{E} be the invariant quaternionic structures on H
and E.
V is recovered as the set of fixed-points of the antilinear involution $\rho=j_{H} \otimes j_{E}$.

Main result

Theorem
(Alekseevsky 1968, Salamon 1980)

- It holds

$$
\mathcal{R}(\mathfrak{s p}(n) \oplus \mathfrak{s p}(1))=\mathbb{R} R_{0}+\mathcal{R}(\mathfrak{s p}(n)),
$$

- where R_{0} is the curvature tensor of $P_{\mathbb{H}}^{n}$ and
- $\mathcal{R}(\mathfrak{s p}(n))^{\mathbb{C}} \cong S^{4} E$.

Sketch of the proof

Proof.

The complexification of $\mathfrak{g}=\mathfrak{s p}(n) \oplus \mathfrak{s p}(1)$ is

$$
\mathfrak{g}^{\mathbb{C}}=\mathfrak{s p}(H) \oplus \mathfrak{s p}(E) \underset{\omega_{H}, \omega_{E}}{\cong} S^{2} H \oplus S^{2} E .
$$

This implies: $S^{2} \mathfrak{g}^{\mathbb{C}}=S^{2}\left(S^{2} H \oplus S^{2} E\right)=$
$S^{2} S^{2} H+S^{2} S^{2} E+S^{2} H \otimes S S^{2} E=$
$\left(\mathbb{C} B_{\text {sp }(1)}+S^{2} S^{2} E\right)+\underbrace{S_{0}^{2} S^{2} H}_{=S^{4} H, \text { irred }}+\underbrace{S^{2} H \otimes s S^{2} E}_{\text {irred. }}$.

sketch of the proof II

Proof.

The $\mathfrak{s p}(n) \oplus \mathfrak{s p}(1)$-module $\mathbb{C} B_{\mathfrak{s p}(1)}+S^{2} S^{2} E$ does not contain any submodule isomorphic to $S_{0}^{2} S^{2} H$ or $S^{2} H \otimes_{S} S^{2} E$.
Therefore it suffices to prove:

1. $R_{0}=a B_{\mathfrak{s p}(1)}+b B_{\mathfrak{s p}(n)} \in \mathbb{C} B_{\mathfrak{s p}(1)}+S^{2} S^{2} E$ with $a, b \in \mathbb{R}^{*}$,
2. \exists tensor $T \in S_{0}^{2} S^{2} H$ s.t. $T \notin \mathcal{R}(\mathfrak{g})^{\mathbb{C}}$,
3. \exists tensor $T \in S^{2} H \otimes_{S} S^{2} E$ s.t. $T \notin \mathcal{R}(\mathfrak{g})^{\mathbb{C}}$,
4. $S^{2} S^{2} E \cap \mathcal{R}(\mathfrak{g})^{\mathbb{C}}=S^{4} E$.

sketch of the proof III

Proof.

The curvature tensor of $P_{\mathbb{H}}^{n}$ is well-known to be

$$
R_{0}(X, Y)=\frac{1}{2} \sum_{\alpha}\left\langle X, J_{\alpha} Y\right\rangle J_{\alpha}+\frac{1}{4}\left(X \wedge Y+\sum_{\alpha} J_{\alpha} X \wedge J_{\alpha} Y\right)
$$

It is normalized s.t. $\frac{1}{4} \leq \kappa \leq 1$,

$$
\kappa\left(X \wedge J_{\alpha} X\right)=1 \text { and } \operatorname{scal}_{R_{0}}=4 n(n+2)
$$

It is easy to see

$$
R_{0}=n \pi_{\mathfrak{s p}(1)}+\pi_{\mathfrak{s p}(n)}: \Lambda^{2} V \rightarrow \mathfrak{g}=\mathfrak{s p}(n) \oplus \mathfrak{s p}(1)
$$

The tensors $B_{\mathfrak{s p}(1)}, B_{\mathfrak{s p}(n)} \in S^{2} \Lambda^{2} V^{*}, \Lambda^{2} V \rightarrow \Lambda^{2} V^{*} \cong \Lambda^{2} V$ are scalar multiples of $\pi_{\mathfrak{s p}(1)}$ and $\pi_{\mathfrak{s p}(n)}$.

sketch of the proof IV

Proof.
More precisely $a=-\frac{n^{2}}{4}, b=-\frac{1}{4\left(2 n^{2}-3 n+2\right)}$ and for $n=1 \Rightarrow a=b=-\frac{1}{4}$. This finishes point (1).
To check (2) and (3) one can take $T=h^{4}$ and $h^{2} e^{2}$ with $h \in H$ and $e \in E$.
It remains point (4). Let $\left(h_{a}\right)_{a=1}^{2}$ and $\left(e_{A}\right)_{A=1}^{2 n}$ be bases of H and E. We denote by $e_{a A}=h_{a} \otimes e_{A}$ the corresponding basis of $V^{\mathbb{C}}=H \otimes E$.
We use upper indices for the dual bases.

sketch of the proof V

Proof.

$$
\begin{aligned}
& T \in S^{2} S^{2} E \cong S^{2} S^{2} E^{*} \text { is given by } \\
& \qquad T=\sum T_{A B C D e^{A}} \otimes e^{B} \otimes e^{C} \otimes e^{D},
\end{aligned}
$$

where $T_{A B C D}$ is symmetric in (A, B) and (C, D) and in the pair $((A, B),,(C, D))$.

$$
\begin{aligned}
\Lambda^{2}(H \otimes E) & \stackrel{\text { proj. }}{\rightarrow} \omega_{H} \otimes S^{2} E \cong S^{2} E, \\
T\left(e_{a A}, e_{b B}\right) & =\sum_{C, D} \omega_{a b} T_{A B C D} e^{C} \otimes e^{D} \text { and } \\
T\left(e_{a A}, e_{b B}\right) e_{c C} & =\sum_{D} \omega_{a b} T_{A B C D} h_{c} e^{D} \\
& \in H \otimes E^{*} \underset{\omega_{E}}{=} H \otimes E=V^{\mathbb{C}}
\end{aligned}
$$

sketch of the proof VI

Proof.

The Bianchi identity reads:

$$
0=\omega_{a b} T_{A B C D} h_{c}+\omega_{b c} T_{B C A D} h_{a}+\omega_{c a} T_{C A B D} h_{b}
$$

Choose (h_{a}) s.t. $\omega_{a b}:=\omega_{H}\left(h_{a}, h_{b}\right)=\epsilon_{a b}$ and $a=1, b=2=c$ in the Bianchi identity to obtain $0=T_{A B C D} h_{2}-T_{C A B D} h_{2} \Leftrightarrow T_{A B C D}=T_{C A B D}$.
Using the symmetries of T this implies $T \in S^{4} E$.
Conversely, one can check that $T \in S^{4} E$ satisfies the Bianchi identity (due to $\operatorname{dim} H=2$.).

Geometric consequences

Corollary
Any q.K. manifold is Einstein, i.e. Ric $=c g$ and $c=0$ iff M is locally h.K.

Proof.
$P_{\text {Hif }}^{n}$ is Einstein and
$S^{4} E$ is completely trace-free with respect to $\omega_{H} \otimes \omega_{E}$, since $S^{4} E \cong \omega_{H}^{2} \otimes S^{4} E \subset S^{2} \Lambda^{2} H \otimes S^{2} S^{2} E \subset S^{2}\left(\Lambda^{2} H \otimes S^{2} E\right)=$ $S^{2} \Lambda^{2} V^{\mathbb{C}}$.

We will be mainly be interested in $c \neq 0$.

Geometric consequences II

Corollary
For a q.K. manifold we have

$$
\text { scal } \neq 0 \Leftrightarrow \mathfrak{h o l}=\text { Lie Hol } \supset \mathfrak{s p}(1)
$$

Proof.

$$
R_{0}\left(J_{\alpha}\right)=n \pi_{\mathfrak{s p}(1)} J_{\alpha}+\pi_{\mathfrak{s p}(n)} J_{\alpha}=n J_{\alpha} \in \mathfrak{h o l} .
$$

Geometric consequences III

Corollary

Any q.K. manifold of scal $\neq 0$ is locally irreducible.
Proof.
If $M \cong{ }_{\text {loc }} . M_{1} \times M_{2}$ then $\mathfrak{h o l}_{\text {loc }}=\mathfrak{h o l}_{1}+\mathfrak{h o l}_{2}$ and the holonomy module splits as $V=V_{1} \oplus_{\perp} V_{2}$.
By the previous corollary $\mathfrak{s p}(1) \subset \mathfrak{h o l} \subset \mathfrak{s p}(1) \oplus \mathfrak{s p}(n)$.
Hence $\mathfrak{h o l}=\mathfrak{s p}(1) \oplus \mathfrak{h}$ and $\mathfrak{s p}(1) \subset \mathfrak{h o l}_{i}$ for $i=1$ or $i=2$.
Suppose $i=1$ then $\mathfrak{s p}(1)$ acts trivially on V_{2}, which is impossible, as $J_{\alpha}^{2}=-l d$.

Examples: Wolf spaces

Apart from $\mathbb{H} P^{n}$ there is a list a compact symmetric spaces which are q.K. of positive scalar curvature, the famous Wolf spaces.
They all can be obtained as follows:

- Let G be a cp. s.c. simple Lie group and $\mathfrak{h} \subset \mathfrak{g}=\operatorname{Lie} G$ a Cartan subalgebra,
- μ the highest root w.r.t. some system of simple roots and
- $s_{\mu}^{\mathbb{C}}=\operatorname{span}\left\{H_{\mu}, E_{ \pm \mu}\right\} \subset \mathfrak{g}^{\mathbb{C}}$ the corresponding three-dimensional subalgebra.
- $H_{\mu} \in i \mathfrak{h}$ is normalized such that

$$
\left[H_{\mu}, E_{ \pm \mu}\right]= \pm 2 E_{ \pm \mu}
$$

- Then $\operatorname{ad}_{H_{\mu}}$ has eigenvalues $0, \pm 1, \pm 2$.

Wolf spaces II

- This defines a grading

$$
\mathfrak{g}^{\mathbb{C}}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2},
$$

- where $\mathfrak{g}_{ \pm 2}=\mathbb{C} E_{ \pm \mu}$ and $\mathfrak{g}_{0}=\mathbb{C} H_{\mu} \oplus Z_{\mathfrak{g}} \mathbb{C}\left(s_{\mu}^{\mathbb{C}}\right)$.
- We put
- $s_{\mu}:=\mathfrak{g} \cap s_{\mu}^{\mathbb{C}}$,
- $\mathfrak{k}:=\mathfrak{g} \cap \sum_{i=0, \pm 2}^{\mu} \mathfrak{g}_{i}=s_{\mu} \oplus Z_{\mathfrak{g}}\left(s_{\mu}\right)=N_{\mathfrak{g}}\left(s_{\mu}\right)$.
- $\mathfrak{m}:=\mathfrak{g} \cap \sum_{i= \pm 1} \mathfrak{g}_{i}$.

Wolf spaces III

- Then $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$ is a symmetric decomposition,
- which defines a s.c. q.K. symmetric space of cp. type

$$
M=G / K
$$

- where $K=N_{G}\left(s_{\mu}\right) \subset G$ is the Lie subgroup generated by \mathfrak{k}.
- The holonomy of M is identified with the isotropy group

$$
\mathrm{Hol}=\left.\operatorname{Ad}_{K}\right|_{\mathfrak{m}},
$$

by the Ambrose-Singer theorem.

- The invariant quaternionic structure Q is defined by the adjoint action of $s_{\mu} \cong \mathrm{sp}(1)$ on $\mathfrak{m} \cong T_{o} M$ with $o=e K$.

Duals of Wolf spaces

- Let $M=G / K$ be a Wolf space and \hat{G} the s.c. simple Lie group with
- $\operatorname{Lie} \hat{G}=\hat{\mathfrak{g}}=\mathfrak{k}+i \mathfrak{m} \subset \mathfrak{g}^{\mathbb{C}}$.
- Then $\hat{M}=\hat{G} / \hat{K}$ is a q.K. symm. space of non.-cp. type.
- It has negative scalar curvature.
- For $M=P_{\mathbb{H}}^{n}$, the quaternionic projective space, $\hat{M}=H_{\mathbb{H}}^{n}$ is the quaternionic hyperbolic space.

Duals of Wolf spaces II

The Wolf spaces and their duals can be characterized as follows:

Theorem (Alekseevsky-Cortés '97)

Let M be a q.K. mf. of non-zero scalar curvature admitting a transitive unimodular group of isometries. Then M is a Wolf space or dual to a Wolf space.

The duals of the Wolf space admit compact quotients which are examples of cp. q.K. mfs. of negative scalar curvature. A complete q.K. mf. of positive scalar curvature is compact, by Myer's Thm, and there is the following:

Conjecture (Le Brun-Salamon '94)

Any complete q.K. mf. M of scal >0 is a Wolf space.

Status of the Lebrun-Salamon conjecture

The conjecture is proven for

- $\operatorname{dim}=4$ (Hitchin '81, Friedrich-Kurke '82),
- $\operatorname{dim}=8$ (Poon-Salamon '91),
- $\operatorname{dim}=12$ (Herrera-Herrera '02).

Moreover there exists the following result:
Theorem Le Brun '93
For any n , there are only finitely many complete q.K. mfs. of dimension $4 n$ and scal >0, up to isometries and rescaling.

