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The idea of parallel transport

Definition
A Riemannian manifold (M, g) is a smooth manifold M endowed
with a scalar product gx in TxM depending smoothly on x ∈ M.

Idea of parallel transport

Associate to any curve of a Riemannian manifold M from a point
x to a point y an isomorphism of the tangent spaces at x and y .



Parallel transport

Let c : [0, 1] → M be a smooth curve from x to y .

Parallel transport of vectors v ∈ TxM from x to y along c

v
x

c

y

defines a linear isometry

Pc : (TxM, gx) → (TyM, gy ).



The holonomy group

If x = y , then the curve c is a loop based at x and

the parallel transport satisfies

Pc ∈ O(TxM).

The subgroup

Hol(x) := 〈Pc |c loop based at x〉 ⊂ O(TxM) ∼= O(n)

is called the holonomy group of (Mn, g) at x .



Independence of the base point

Let c be a curve from x to y

then the holonomy groups at x and y are related by

Hol(x) = P−1
c Hol(y)Pc .

Hence, for connected M we do not need to specify x .

The group Hol ⊂ O(n) is well-defined up to conjugation.



Berger’s list

Theorem
Let M be a complete irreducible simply connected Riemannian
manifold.
Then M is a symmetric space or Hol belongs to the following list:

I SO(n) (generic case),

I SU(n),U(n) ⊂ SO(2n),

I Sp(n), Sp(n) · Sp(1) ⊂ SO(4n),

I G2 ⊂ SO(7),

I Spin(7) ⊂ SO(8).



The groups Sp(n) and Sp(n) · Sp(1)

The groups Sp(n) and Sp(n) · Sp(1) act on Hn = R4n.

We consider Hn as right vector space over the quaternions H.

The group Sp(n) := O(4n) ∩ GL(n, H) is a compact real form
of the complex symplectic group Sp(n, C) = Sp(C2n).

The Sp(1)-factor in Sp(n) · Sp(1) is the group of unit
quaternions acting from the right.



Classical special holonomy groups

Definition
A Riemannian manifold is called

I Kähler if Hol ⊂ U(n),

I Calabi-Yau if Hol ⊂ SU(n),

I Hyper-Kähler if Hol ⊂ Sp(n),

I quaternionic Kähler if Hol ⊂ Sp(n) · Sp(1) with n > 1.



Inclusions between classical holonomies

We have the following implications:
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A (complete s.c.) non-symm. quaternionic Kähler manifold is
Kähler if and only if it is already hyper-Kähler.

Geometrically the q.K. condition means that M admits a
parallel subbundle Q ⊂ End TM which is locally spanned by 3
anticommuting skew-symm. almost cx. structures
J1, J2, J3 = J1J2. In the h.K. case the Jα are globally defined
and parallel.



Algebraic curvature tensors

Situation
Given a Euclidian vector space (V , 〈·, ·〉) and a Lie subalgebra
g ⊂ so(V ).

Definition
An algebraic curvature tensor of type g is

I an element R ∈ g⊗ Λ2V ∗,

V × V 3 (X ,Y ) 7→ R(X ,Y ) ∈ g

I satisfying the first Bianchi identity

R(X ,Y )Z + R(Y ,Z )X + R(Z ,X )Y = 0.

I Denote by R(g) the space of algebraic curvature tensors of
type g.



Consequences of the Bianchi identity

The first Bianchi identity implies the symmetry in pairs

〈R(X ,Y )Z ,W 〉 = 〈R(Z ,W )X ,Y 〉

Using the scalar product, we have V ∼= V ∗

and g ⊂ so(V ) ∼= Λ2V ∼= Λ2V ∗.

This implies R ∈ S2g ⊂ S2Λ2V .



Algebraic curvature tensors of quaternionic Kähler type

The curvature tensor of a q.K. manifold M is of type
g = sp(n)⊕ sp(1) at each x ∈ M.

Let V = Hn be the standard sp(n)⊕ sp(1)-module.

Complexified it becomes a tensor-product V C ∼= H ⊗C E ,

where H = C2 is the standard irreducible module of
sp(1) ⊂ sp(C2)

and E = C2n is the standard irreducible module of
sp(n) ⊂ sp(C2n).



Algebraic curvature tensors of quaternionic Kähler type II

The complex bilinear extension 〈·, ·〉C of 〈·, ·〉
equals 〈·, ·〉C = ωH ⊗ ωE ,

where ωH and ωE are the invariant symplectic forms.

Let jH and jE be the invariant quaternionic structures on H
and E .

V is recovered as the set of fixed-points of the antilinear
involution ρ = jH ⊗ jE .



Main result

Theorem
(Alekseevsky 1968, Salamon 1980)

I It holds

R(sp(n)⊕ sp(1)) = RR0 +R(sp(n)),

I where R0 is the curvature tensor of Pn
H and

I R(sp(n))C ∼= S4E .



Sketch of the proof

Proof.

The complexification of g = sp(n)⊕ sp(1) is

gC = sp(H)⊕ sp(E ) ∼=
ωH ,ωE

S2H ⊕ S2E .

This implies: S2gC = S2(S2H ⊕ S2E ) =

S2S2H + S2S2E + S2H ⊗S S2E =

(CBsp(1) + S2S2E ) + S2
0S2H︸ ︷︷ ︸

=S4H,irred.

+S2H ⊗S S2E︸ ︷︷ ︸
irred.

.



sketch of the proof II

Proof.
The sp(n)⊕ sp(1)-module CBsp(1) + S2S2E does not contain any
submodule isomorphic to S2

0S2H or S2H ⊗S S2E .
Therefore it suffices to prove:

1. R0 = aBsp(1) + bBsp(n) ∈ CBsp(1) + S2S2E with a, b ∈ R∗,

2. ∃ tensor T ∈ S2
0S2H s.t. T /∈ R(g)C,

3. ∃ tensor T ∈ S2H ⊗S S2E s.t. T /∈ R(g)C,

4. S2S2E ∩R(g)C = S4E .



sketch of the proof III

Proof.

The curvature tensor of Pn
H is well-known to be

R0(X ,Y ) =
1

2

∑
α

〈X , JαY 〉Jα+
1

4

(
X ∧ Y +

∑
α

JαX ∧ JαY

)
.

It is normalized s.t. 1
4 ≤ κ ≤ 1,

κ(X ∧ JαX ) = 1 and scalR0 = 4n(n + 2).

It is easy to see

R0 = nπsp(1) + πsp(n) : Λ2V → g = sp(n)⊕ sp(1).

The tensors Bsp(1),Bsp(n) ∈ S2Λ2V ∗,Λ2V → Λ2V ∗ ∼=
〈·,·〉

Λ2V

are scalar multiples of πsp(1) and πsp(n).



sketch of the proof IV

Proof.

More precisely a = −n2

4 , b = − 1
4(2n2−3n+2)

and for

n = 1 ⇒ a = b = −1
4 . This finishes point (1).

To check (2) and (3) one can take T = h4 and h2e2 with
h ∈ H and e ∈ E .

It remains point (4). Let (ha)
2
a=1 and (eA)2n

A=1 be bases of H
and E . We denote by eaA = ha ⊗ eA the corresponding basis
of V C = H ⊗ E .

We use upper indices for the dual bases.



sketch of the proof V

Proof.

T ∈ S2S2E ∼= S2S2E ∗ is given by

T =
∑

TABCDeA ⊗ eB ⊗ eC ⊗ eD ,

where TABCD is symmetric in (A,B) and (C ,D)

and in the pair ((A,B, ), (C ,D)).

Λ2(H ⊗ E )
proj .→ ωH ⊗ S2E ∼= S2E ,

T (eaA, ebB) =
∑
C ,D

ωabTABCDeC ⊗ eD and

T (eaA, ebB)ecC =
∑
D

ωabTABCDhce
D

∈ H ⊗ E ∗ =
ωE

H ⊗ E = V C



sketch of the proof VI

Proof.

The Bianchi identity reads:

0 = ωabTABCDhc + ωbcTBCADha + ωcaTCABDhb

Choose (ha) s.t. ωab := ωH(ha, hb) = εab and
a = 1, b = 2 = c in the Bianchi identity to obtain

0 = TABCDh2 − TCABDh2 ⇔ TABCD = TCABD .

Using the symmetries of T this implies T ∈ S4E .

Conversely, one can check that T ∈ S4E satisfies the Bianchi
identity (due to dimH = 2.).



Geometric consequences

Corollary

Any q.K. manifold is Einstein, i.e. Ric = cg and c = 0 iff M is
locally h.K.

Proof.

Pn
H is Einstein and

S4E is completely trace-free with respect to ωH ⊗ ωE , since

S4E ∼= ω2
H ⊗ S4E ⊂ S2Λ2H ⊗ S2S2E ⊂ S2(Λ2H ⊗ S2E ) =

S2Λ2V C.

We will be mainly be interested in c 6= 0.



Geometric consequences II

Corollary

For a q.K. manifold we have

scal 6= 0 ⇔ hol = Lie Hol ⊃ sp(1).

Proof.

R0(Jα) = nπsp(1)Jα + πsp(n)Jα = nJα ∈ hol.



Geometric consequences III

Corollary

Any q.K. manifold of scal 6= 0 is locally irreducible.

Proof.

If M ∼=loc. M1 ×M2 then holloc = hol1 + hol2 and the
holonomy module splits as V = V1 ⊕⊥ V2.

By the previous corollary sp(1) ⊂ hol ⊂ sp(1)⊕ sp(n).

Hence hol = sp(1)⊕ h and sp(1) ⊂ holi for i = 1 or i = 2.

Suppose i = 1 then sp(1) acts trivially on V2, which is
impossible, as J2

α = −Id .



Examples: Wolf spaces

Apart from HPn there is a list a compact symmetric spaces
which are q.K. of positive scalar curvature,

the famous Wolf spaces.

They all can be obtained as follows:
I Let G be a cp. s.c. simple Lie group and h ⊂ g = LieG a

Cartan subalgebra,
I µ the highest root w.r.t. some system of simple roots and
I sC

µ = span{Hµ,E±µ} ⊂ gC the corresponding
three-dimensional subalgebra.

I Hµ ∈ ih is normalized such that

[Hµ,E±µ] = ±2E±µ.

I Then adHµ has eigenvalues 0,±1,±2.



Wolf spaces II

I This defines a grading

gC = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

I where g±2 = CE±µ and g0 = CHµ ⊕ ZgC(sC
µ ).

I We put
I sµ := g ∩ sC

µ ,
I k := g ∩

∑
i=0,±2

gi = sµ ⊕ Zg(sµ) = Ng(sµ).

I m := g ∩
∑

i=±1

gi .



Wolf spaces III

I Then g = k⊕m is a symmetric decomposition,
I which defines a s.c. q.K. symmetric space of cp. type

M = G/K ,

I where K = NG (sµ) ⊂ G is the Lie subgroup generated by k.
I The holonomy of M is identified with the isotropy group

Hol = AdK |m,

by the Ambrose-Singer theorem.
I The invariant quaternionic structure Q is defined by the

adjoint action of sµ
∼= sp(1) on m ∼= ToM with o = eK .



Duals of Wolf spaces

I Let M = G/K be a Wolf space and Ĝ the s.c. simple Lie
group with

I LieĜ = ĝ = k + im ⊂ gC.
I Then M̂ = Ĝ/K̂ is a q.K. symm. space of non.-cp. type.
I It has negative scalar curvature.
I For M = Pn

H, the quaternionic projective space, M̂ = Hn
H is the

quaternionic hyperbolic space.



Duals of Wolf spaces II

The Wolf spaces and their duals can be characterized as
follows:

Theorem (Alekseevsky-Cortés ’97)

Let M be a q.K. mf. of non-zero scalar curvature admitting a
transitive unimodular group of isometries. Then M is a Wolf space
or dual to a Wolf space.

The duals of the Wolf space admit compact quotients which
are examples of cp. q.K. mfs. of negative scalar curvature.

A complete q.K. mf. of positive scalar curvature is compact,
by Myer’s Thm, and there is the following:

Conjecture (Le Brun-Salamon ’94)

Any complete q.K. mf. M of scal > 0 is a Wolf space.



Status of the Lebrun-Salamon conjecture

The conjecture is proven for
I dim=4 (Hitchin ’81, Friedrich-Kurke ’82),
I dim=8 (Poon-Salamon ’91),
I dim=12 (Herrera-Herrera ’02).

Moreover there exists the following result:

Theorem Le Brun ’93
For any n, there are only finitely many complete q.K. mfs. of
dimension 4n and scal > 0, up to isometries and rescaling.
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