Tropical methods in diophantine geometry

Walter Gubler
Humboldt Universität zu Berlin

June 20, 2008
(1) Contents
(2) Berkovich analytic spaces
(3) Tropical analytic geometry
(4) Canonical measures
(5) Equidistribution and the Bogomolov conjecture

Main references

- [Gu1] W. Gubler: Tropical varieties for non-archimedean analytic spaces. Invent. Math. 169, 321-376 (2007)
- [Gu2] W. Gubler: The Bogomolov conjecture for totally degenerate abelian varieties. Invent. Math. 169, 377-400 (2007)
- [Gu3] W. Gubler: Non-archimedean canonical measures on abelian varieties. ArXiv(2008)
- [Gu4] W. Gubler: Equidistribution over function fields. ArXiv (2008)
- A complete list of references is located at the end of the talk.
- In the frametitle, there is usually a reference where one finds additional material.

(1) Contents

(2) Berkovich analytic spaces
(3) Tropical analytic geometry

4 Canonical measures
(5) Equidistribution and the Bogomolov conjecture

Notation

- Let K be a field with a non-trivial non-archimedean absolute value $|\mid$.
- $v():=-\log | |$ is the associated valuation.
- The valuation ring $K^{\circ}:=\{\alpha \in K \mid v(\alpha) \geq 0\}$ has the unique maximal ideal $K^{\circ \circ}:=\{\alpha \in K \mid v(\alpha)>0\}$ and residue field $\widetilde{K}:=K^{\circ} / K^{\circ \circ}$.
- We have completion K_{v} and algebraic closure \bar{K} of K.
- $\mathbb{C}_{K}:=\left(\overline{K_{v}}\right)_{v}$ is the smallest algebraically closed field extension of K which is complete with respect to an extension of || to a complete absolute value.
- By abuse of notation, we use also v and $\left|\mid\right.$ on \mathbb{C}_{K}.
- Let κ be the residue field of \mathbb{C}_{K}. One can easily show that κ is algebraically closed.

Tate-algebra [BGR,Ch.5]

- All analytic considerations will be done over \mathbb{C}_{K}.
- Idea: Proceed as in the theory of affine varieties or complex spaces.
- For $f=\sum a_{m} x^{m} \in \mathbb{C}_{K}\left[x_{1}, \ldots, x_{n}\right]$, we have the Gauss-norm

$$
|f|:=\sup \left|a_{m}\right|
$$

By the Gauss-Lemma, this is a multiplicative norm.

Definition

The completion $\mathbb{C}_{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of $\mathbb{C}_{K}\left[x_{1}, \ldots, x_{n}\right]$ with respect to the Gauss-norm is called the Tate-algebra.

The elements of $\mathbb{C}_{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ are the power series $f=\sum a_{m} x^{m}$ characterized by $\lim _{|m| \rightarrow \infty}\left|a_{m}\right|=0$. They are called strictly convergent on the closed cube $\mathbb{B}^{n}:=\left\{\alpha \in \mathbb{C}_{K}^{n}| | \alpha \mid \leq 1\right\}$. Here, $|m|$ and $|\alpha|$ are the max-norms.

Affinoid algebras [BGR,Ch.6]

Definition

A \mathbb{C}_{K}-algebra \mathscr{A} is called an affinoid algebra if there is an ideal l in $\mathbb{C}_{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ with $\mathscr{A} \cong \mathbb{C}_{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle / I$.
$a \in \mathscr{A}$ is an analytic function on $Z(I):=\left\{\alpha \in \mathbb{B}^{n} \mid f(\alpha)=0 \forall f \in I\right\}$.

Definition

- The supremum-seminorm for $f \in \mathscr{A}$ is $|f|_{\text {sup }}:=\sup _{x \in Z(I)}|f(x)|$.
- We get the $\left(\mathbb{C}_{K}\right)^{\circ}$-algebra $\mathscr{A}^{\circ}:=\left\{\left.f \in \mathscr{A}| | f\right|_{\text {sup }} \leq 1\right\}$ with ideal $\mathscr{A}^{00}:=\left\{\left.f \in \mathscr{A}| | f\right|_{\text {sup }}<1\right\}$ and residue algebra $\widetilde{\mathscr{A}}:=\mathscr{A}^{\circ} / \mathscr{A}^{00}$.

Example

If $\mathscr{A}=\mathbb{C}_{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle$, then $\left|\left.\right|_{\text {sup }}\right.$ is the Gauss-norm and hence

$$
\widetilde{\mathscr{A}}=\kappa\left[x_{1}, \ldots, x_{n}\right] .
$$

Properties of affinoid algebras [BGR,Ch.6-7]

Proposition

Similarly to the coordinate ring of an affine variety, the affinoid algebra $\mathscr{A} \cong \mathbb{C}_{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle / I$ satisfies the following properties:

- \mathscr{A} is noetherian.
- Hilbert's Nullstellensatz holds.
- $\widetilde{\mathscr{A}}$ is a finitely generated reduced algebra over the residue field κ.
- $\operatorname{dim}(\mathscr{A})=\operatorname{dim}(\widetilde{\mathscr{A}})$
- The reduction map

$$
\pi: Z(I) \rightarrow \operatorname{Max}(\widetilde{\mathscr{A}}), x \mapsto\left\{f \in \mathscr{A}^{\circ}| | f(x) \mid<1\right\} / \mathscr{A}^{00}
$$

is surjective.

More notation

For $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$, we use the notation

$$
x \cdot y:=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

and

$$
x^{y}:=x_{1}^{y_{1}} \cdots x_{n}^{y_{n}} .
$$

In the following, $\Gamma:=v\left(\mathbb{C}_{K}^{\times}\right)$denotes the value group.

Definition

A polyhedron Δ in \mathbb{R}^{n} is a finite intersection of half spaces of the form $\left\{u \in \mathbb{R}^{n} \mid u \cdot m \geq c\right\}$. We call $\Delta \Gamma$-rational if we may choose all $m \in \mathbb{Z}^{n}$ and all $c \in \Gamma$. A polytope is a bounded polyhedron.

The valuation extends to the multiplicative torus by

$$
\text { val : }\left(\mathbb{C}_{K}^{\times}\right)^{n} \rightarrow \mathbb{R}^{n}, x \mapsto\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right)
$$

Polytopal domains [Gu1,§4]

Let Δ be a Γ-rational polytope. We set $U_{\Delta}:=\operatorname{val}^{-1}(\Delta)$ and

$$
\mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle:=\left\{f:=\sum_{m \in \mathbb{Z}^{n}} a_{m} x^{m}\left|\lim _{|m| \rightarrow \infty}\right| a_{m} \mid e^{-u \cdot m}=0 \quad \forall u \in \Delta\right\} .
$$

By construction, the elements of $\mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle$ are convergent Laurent series on the polytopal domain U_{Δ} in $\left(\mathbb{C}_{K}^{\times}\right)^{n}$. More precisely, we have:

Proposition

$\mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle$ is an affinoid algebra with supremum norm

$$
|f|_{\text {sup }}:=\sup _{m \in \mathbb{Z}^{n}, u \in \Delta}\left|a_{m}\right| e^{-u \cdot m}
$$

and maximal spectrum U_{Δ}.

Berkovich spectra [Ber1,Ch.1]

If X is an affine variety, then $\operatorname{Spec}(K[X])$ is a "compactification" of X. Berkovich has given a similar construction for an affinoid \mathbb{C}_{K}-algebra \mathscr{A} :

Definition

The Berkovich spectrum $\mathscr{M}(\mathscr{A})$ is the set of multiplicative bounded seminorms p on \mathscr{A}, i.e.

- $p: \mathscr{A} \rightarrow \mathbb{R}_{+}$
- $p(a+b) \leq p(a)+p(b)$ for $a, b \in \mathscr{A}$
- $p(\lambda a)=|\lambda| p(a)$ for $\lambda \in \mathbb{C}_{K}$ and $a \in \mathscr{A}$
- $p(1)=1$ and $p(a b)=p(a) p(b)$ for $a, b \in \mathscr{A}$
- $p(a) \leq|a|_{\text {sup }}$ for $a \in \mathscr{A}$

We endow $\mathscr{M}(\mathscr{A})$ with the coarsest topology such that the maps $p \mapsto p(a)$ are continuous for all $a \in \mathscr{A}$.

Properties [Ber1,Ch.1-2]

- Multiplicative bounded seminorms p satisfy the ultrametric triangle inequality.
- p induces a non-archimedean absolute value || on the completion $\mathscr{H}(p)$ of the quotient field of $\mathscr{A} /\{a \in \mathscr{A} \mid p(a)=0\}$ and a bounded character $\chi: \mathscr{A} \rightarrow \mathscr{H}(p)$.
- Conversely, every bounded character on \mathscr{A} to a complete extension of \mathbb{C}_{K} induces a bounded multiplicative seminorm.
\Rightarrow Analogy to the Gelfand spectrum of a C^{*}-algebra.
- We have a canonical embedding $Z(I)=\operatorname{Max}(\mathscr{A}) \rightarrow \mathscr{M}(\mathscr{A})$, mapping $x \in Z(I)$ to the seminorm $p_{x}(f):=|f(x)|$.

Theorem

$\mathscr{M}(\mathscr{A})$ is a compactification of $\operatorname{Max}(\mathscr{A})$.

Reduction [Ber1,Ch.2]

Definition

The reduction of the Berkovich spectrum $X:=\mathscr{M}(\mathscr{A})$ is $\widetilde{X}:=\operatorname{Spec}(\widetilde{\mathscr{A}})$.
The reduction map $\pi: Z(I) \rightarrow \operatorname{Max}(\widetilde{\mathscr{A}})$ extends to a map $\pi: X \rightarrow \widetilde{X}, p \mapsto\left\{f \in \mathscr{A}^{\circ} \mid p(f)<1\right\} / \mathscr{A}^{\circ \circ}$.

Proposition

- $\pi: X \rightarrow \widetilde{X}$ is surjective.
- For every irreducible component Y of \widetilde{X}, there is a unique $\xi_{Y} \in X$ with $\pi\left(\xi_{Y}\right)$ dense in Y.

In fact, $\left\{\xi_{Y} \mid Y\right.$ irred. comp. of $\left.\widetilde{X}\right\}$ is the Shilov boundary of X, i.e. the minimal subset S of X such that $|f|_{\text {sup }}=\sup _{p \in S} p(f)$ for all $f \in \mathscr{A}$.

Examples

Example

- We redefine the closed unit ball by $\mathbb{B}^{n}:=\mathscr{M}\left(\mathbb{C}_{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)$. Then $\widetilde{\mathbb{B}^{n}}=\operatorname{Spec}\left(\kappa\left[x_{1}, \ldots, x_{n}\right]\right)$ is the affine n-space over the residue field κ and hence it is irreducible.
- The generic point of the reduction corresponds to $\{0\}$. If $p \in \mathbb{B}^{n}$ satisfies $\pi(p)=\{0\}$, then $\left\{f \in \mathscr{A}^{\circ} \mid p(f)<1\right\}=\mathscr{A}^{\circ \circ}$ and hence $p=| |_{\text {sup }}$. Obviously, the Gauss-norm is the Shilov-boundary of \mathbb{B}^{n}.

Example

Let $U_{\Delta}:=\mathscr{M}\left(\mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle\right)$ and $u \in \Delta$. We get a multiplicative norm

$$
|f|_{u}:=\sup _{m \in \mathbb{Z}^{n}}\left|a_{m}\right| e^{-u \cdot m}, \quad f=\sum_{m \in \mathbb{Z}^{n}} a_{m} x^{m} \in \mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle .
$$

Obviously, $\left\{\left|\left.\right|_{u}\right| u\right.$ vertex of $\left.\Delta\right\}$ is the Shilov boundary of U_{Δ}.

Analytic spaces [Ber1], [Ber2]

- The category of Berkovich spectra is antiequivalent to the category of affinoid spaces.
- An analytic space X is given by an atlas of Berkovich spectra (see [Ber2], §1, for the precise definition). Technical difficulties arise as the charts are not open in X but compact. We look only at the relevant examples:

Example

The analytic space $\left(\mathbb{A}^{n}\right)^{\text {an }}$ associated to the affine space \mathbb{A}^{n} is

$$
\left\{p: \mathbb{C}_{K}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{R}^{n} \mid p \text { multiplicative seminorm }\right\}
$$

endowed with the coarsest topology such that $p \mapsto p(f)$ is continuous for all $f \in K\left[x_{1}, \ldots, x_{n}\right]$. The cuboids $\mathbb{B}_{r}^{n}:=\left\{p \in\left(\mathbb{A}^{n}\right)^{\text {an }} \mid p\left(x_{i}\right) \leq r_{i} \forall i\right\}$ with $r \in \Gamma^{n}$ form an atlas.

GAGA principle [Ber1,Ch.3]

Let $X=\operatorname{Spec}(A)$ be a scheme of finite type over K, i.e.
$A=K\left[x_{1}, \ldots, x_{n}\right] / I$ for an ideal I.

Definition

The analytic space $X^{\text {an }}$ associated to X is

$$
\left\{p: A \otimes K^{\circ} \mathbb{C}_{K}^{\circ} \rightarrow \mathbb{R}^{n} \mid p \text { multiplicative seminorm }\right\}
$$

endowed with the coarsest topology such that $p \mapsto p(f)$ is continuous for all $f \in A$. The charts are given by $\mathbb{B}_{r}^{n} \cap X^{\text {an }}, r \in \Gamma^{n}$.

- By a glueing process, we get an analytic space $X^{\text {an }}$ associated to every scheme X of finite type over K.
- The complex GAGA theorems hold here as well (e.g. X is separated/proper over $K \Longleftrightarrow X^{\text {an }}$ is hausdorff/compact).

Tropicalization [Gu1,§5]

Of major importance for the course is the following:

Example

Let \mathbb{G}_{m}^{n} be the multiplicative torus $\operatorname{Spec}\left(K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]\right)$. In simpler terms, it is $\left(K^{\times}\right)^{n}$. Note that

$$
\operatorname{val}:\left(\mathbb{C}_{K}^{\times}\right)^{n} \rightarrow \mathbb{R}^{n}, x \mapsto\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right)
$$

extends to a continuous map

$$
\text { val : }\left(\mathbb{G}_{m}^{n}\right)^{\text {an }} \rightarrow \mathbb{R}^{n}, p \mapsto\left(-\log p\left(x_{1}\right), \ldots,-\log p\left(x_{n}\right)\right) .
$$

If X is a closed subscheme of \mathbb{G}_{m}^{n}, then $\operatorname{val}\left(X^{\mathrm{an}}\right)$ is called the tropical variety associated to X. If $X_{\bar{K}}$ is connected, then $X^{\text {an }}$ is connected by GAGA and hence $\operatorname{val}\left(X^{\mathrm{an}}\right)$ is connected.

Admissible formal schemes [BL2]

Definition

An admissible formal scheme \mathscr{X} over \mathbb{C}_{K}° is a locally finite union of admissible formal affine schemes over \mathbb{C}_{K}° of the form $\operatorname{Spf}(A)$ for $A \cong \mathbb{C}_{K}^{\circ}\left\langle x_{1}, \ldots, x_{n}\right\rangle / I$ without \mathbb{C}_{K}°-torsion (i.e. A is flat over \mathbb{C}_{K}°).

- \mathscr{X} has a generic fibre $\mathscr{X}^{\text {an }}$ which is an analytic space over \mathbb{C}_{K} locally given by the Berkovich spectrum of $A \otimes_{\mathbb{C}_{K}} \mathbb{C}_{K}$.
- \mathscr{X} has a special fibre $\widetilde{\mathscr{X}}$ which is a scheme over κ locally given by $\operatorname{Spec}\left(A \otimes_{\mathbb{C}_{K}^{\circ}} \kappa\right)$.

Example

The formal completion of the affine space \mathbb{A}^{n} over \mathbb{C}_{K}° along the special fibre is $\mathscr{X}:=\operatorname{Spf}\left(\mathbb{C}_{K}^{\circ}\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)$. Then $\mathscr{X}^{\text {an }}=\mathbb{B}^{n}$ and $\mathscr{X}^{\mathrm{an}}\left(\mathbb{C}_{K}\right)=\mathbb{A}^{n}\left(\mathbb{C}_{K}^{\circ}\right)$.

\mathbb{C}_{K}°-models

- This generalizes to any flat scheme \mathfrak{X} of finite type over \mathbb{C}_{K}°. Then the formal completion \mathscr{X} of \mathfrak{X} along the special fibre is an admissible formal scheme and $\mathscr{X}^{\text {an }}\left(\mathbb{C}_{K}\right)$ is the set of \mathbb{C}_{K}°-integral points of \mathfrak{X}_{K}.
- If \mathfrak{X} is proper over \mathbb{C}_{K}° (e.g. projective), then $\mathscr{X}^{\text {an }}=\left(\mathfrak{X}_{K}\right)^{\mathrm{an}}$.

Definition

A \mathbb{C}_{K}°-model \mathscr{X} for the scheme X of finite type over K is an admissible formal scheme over \mathbb{C}_{K}° with $X^{\text {an }}=\mathscr{X}^{\text {an }}$ and similarly for line bundles.

As a working definition, you may think about algebraic models which is okay as we deal with projective varieties (formal GAGA-principle).

Strictly semistable models [dJ]

Definition

A \mathbb{C}_{K}°-model \mathscr{X} is called strictly semistable if \mathscr{X} is covered by formal open subsets \mathscr{U} with an étale morphism

$$
\psi: \mathscr{U} \longrightarrow \operatorname{Spf}\left(\mathbb{C}_{K}^{\circ}\left\langle x_{0}, \ldots, x_{n}\right\rangle /\left\langle x_{0} \cdots x_{r}-\pi\right\rangle\right)
$$

for some $r \leq n$ and $\pi \in \mathbb{C}_{K}^{\circ \circ}$.
i.e. the special fibre of \mathscr{X} is a divisor with normal crossings in \mathscr{X}. The importance of strictly semistable models comes from the semistable alteration theorem:

Theorem (de Jong)

If K° is a complete discrete valuation ring, then every variety X over K has a generically finite covering by a variety X^{\prime} with a strictly semistable \mathbb{C}_{K}°-model.

Strictly semistable examples

Example

Let $\Delta:=\left\{u \in \mathbb{R}_{+}^{n} \mid u_{1}+\cdots+u_{n} \leq v(\pi)\right\}$ (standard simplex). Then $\operatorname{Spf}\left(\left(\mathbb{C}_{K}\langle\Delta\rangle\right)^{\circ}\right) \cong \operatorname{Spf}\left(\mathbb{C}_{K}^{\circ}\left\langle x_{0}, \ldots, x_{n}\right\rangle /\left\langle x_{0} \cdots x_{r}-\pi\right\rangle\right)$ is a strictly semistable \mathbb{C}_{K}°-model for U_{Δ} with special fibre $x_{0} \cdots x_{r}=0$ in $\left(\mathbb{G}_{m}^{n}\right)_{\kappa}$. Up to étale coverings, these are the building blocks in the definition.

Example

Figure: corresponding dual graph $S(\mathscr{X})$
Figure: $\mathscr{X}^{\text {an }}$ and $\widetilde{\mathscr{X}}$ for a strictly semistable model \mathscr{X}

Skeleton

- Let $\left(Y_{i}\right)_{i \in I}$ be the irreducible components of the special fibre $\widetilde{\mathscr{X}}$ of a strictly semistable \mathbb{C}_{K}°-model \mathscr{X}. By definition, they are smooth.
- For $p \geq 1$, let $Y^{(p)}:=\bigcup_{J \subset I,|J|=p} \bigcap_{j \in J} Y_{j}$.
- Then $Y^{(p)} \backslash Y^{(p+1)}$ is smooth and the irreducible components are called strata of $\widetilde{\mathscr{X}}$.
- The strata form a partition of $\widetilde{\mathscr{X}}$.

Definition

The skeleton $S(\mathscr{X})$ is an abstract simplicial set given as the union of canonical simplices Δ_{S} which are in bijective correspondence to the strata S of \mathscr{X} subject to the following rules:

- $\bar{S} \subset \bar{T}$ if and only if Δ_{T} is a closed face of Δ_{S}. Moreover, every closed face of Δ_{S} is of this form.
- $\Delta_{R} \cap \Delta_{S}$ is the union of all Δ_{T} with $\bar{R} \cup \bar{S} \subset \bar{T}$.

Realization of the skeleton [Ber3], [Ber4]

We may realize the skeleton as an abstact metrized simplicial set:

- There is a formal affine open covering \mathscr{U} of \mathscr{X} such that we have an étale map ψ from \mathscr{U} to $\operatorname{Spf}\left(\mathbb{C}_{K}^{\circ}\left\langle x_{0}, \ldots, x_{n}\right\rangle /\left\langle x_{0} \ldots x_{r}-\pi\right\rangle\right)$.
- By passing to a subcovering, we may assume that $\bigcap_{Y_{i} \cap \tilde{\mathscr{U}} \neq \emptyset} Y_{i} \cap \widetilde{\mathscr{U}}$ is a stratum S. Then $\Delta_{S}:=\left\{u \in \mathbb{R}_{+}^{r+1} \mid u_{0}+\cdots+u_{r}=v(\pi)\right\}$.
- The coordinates u_{j} correspond to Y_{i} with $Y_{i} \cap \widetilde{\mathscr{U}} \neq \emptyset$ and hence $S(\mathscr{X})$ may be glued according to the rules.
- There is a canonical Val : $\mathscr{X}^{\text {an }} \rightarrow S(\mathscr{X})$, given on $\mathscr{U}^{\text {an }}$ by $\operatorname{Val}(p):=\left(-\log p\left(\psi^{*} x_{0}\right), \ldots,-\log p\left(\psi^{*} x_{r}\right)\right) \in \Delta_{S}$.
- Berkovich has shown that the skeleton $S(\mathscr{X})$ may be identified with a subset of $\mathscr{X}^{\text {an }}$ given by certain maximal points.

Theorem (Berkovich)

There is a continuous deformation retraction $d: \mathscr{X}^{\text {an }} \times[0,1] \rightarrow \mathscr{X}^{\text {an }}$ with $d(x, 0)=x, d(x, 1)=\operatorname{Val}(x)$ and $d(u, t)=u$ for all $u \in S(\mathscr{X}), t \in[0,1]$.

Abelian varieties

- Abelian varieties are projective group varieties.
- An abelian variety of dimension 1 is called an elliptic curve.

Definition

An abelian variety A over K is called of potentially good reduction with respect to v if $A^{\text {an }}$ is the generic fibre of an admissible formal group scheme \mathscr{B} over $\mathbb{C}_{K}^{\text {an }}$ such that $\widetilde{\mathscr{B}}$ is an abelian variety over κ.

- Algebraically, this is equivalent to the existence of an abelian scheme over \mathbb{C}_{K}° with generic fibre $A_{\mathbb{C}_{K}}$.
- For an elliptic curve E, this is equivalent to $|j(E)| \leq 1$.

Definition

An abelian variety A has totally degenerate reduction with respect to v if $A^{\text {an }}$ is isomorphic as an analytic group to $\left(\mathbb{G}_{m}^{n}\right)^{\text {an }} / M$ for a discrete subgroup M of \mathbb{C}_{K}^{\times}such that $\operatorname{val}(M)$ is a lattice in \mathbb{R}^{n}.

Tate elliptic curve [BG, $\S 9.5]$

Theorem (Tate)

For an elliptic curve E the following properties are equivalent:
(i) $|j(E)|>1$.
(ii) $E^{\text {an }} \cong \mathbb{C}_{K}^{\times} / q^{\mathbb{Z}}$ for some $q \in K^{\circ \circ}$.
(iii) E is totally degenerate with respect to v.

Remark

For q in (ii), the elliptic curve E can be defined by the Weierstrass equation $y^{2}+x y=x^{3}+a_{4} x+a_{6}$ where a_{4} and a_{6} are convergent power series given by

$$
a_{4}(q)=\sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{n}}, \quad a_{6}(q)=-\frac{1}{12} \sum_{n=1}^{\infty} \frac{\left(7 n^{5}+5 n^{3}\right) q^{n}}{1-q^{n}}
$$

Properties

Remark

- The isomorphism $\mathbb{C}_{K}^{\times} / q^{\mathbb{Z}} \rightarrow E$ in (ii) is given by the convergent power series

$$
\begin{aligned}
& x(\zeta, q)=\sum_{n=-\infty}^{\infty} \frac{q^{n} \zeta}{\left(1-q^{n} \zeta\right)^{2}}-2 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}} \\
& y(\zeta, q)=\sum_{n=-\infty}^{\infty} \frac{q^{2 n} \zeta^{2}}{\left(1-q^{n} \zeta\right)^{3}}+\sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}
\end{aligned}
$$

- Furthermore $j(E)=\frac{1}{q}+744+196884 q+\ldots$
- The reduction of E is given by $y^{2}+x y=x^{3}$.

Raynaud extension [BL1]

For higher dimensional abelian varieties A, a mixture of good reduction and total degeneration is possible. It is given by the Raynaud extension

$$
1 \rightarrow\left(\mathbb{G}_{m}^{n}\right)^{\mathrm{an}} \rightarrow E \rightarrow B^{\mathrm{an}} \rightarrow 0
$$

- This is a short exact sequence of analytic groups with B an abelian variety of good reduction. We omit the construction which is canonical. E is locally trivial over $B^{\text {an }}$ such that the $\left|x_{j}\right|$ are well-defined on E for the coordinates x_{j} on $\left(\mathbb{G}_{m}^{n}\right)^{\text {an }}$.
- This leads to a continuous map val : $E \rightarrow \mathbb{R}^{n}, p \mapsto\left(-\log p\left(x_{j}\right)\right)$.
- We have a uniformization of A, i.e. $A^{\text {an }} \cong E / M$ for a discrete subgroup M of $E\left(\mathbb{C}_{K}\right)$ such that $\operatorname{val}(M)$ is a lattice in \mathbb{R}^{n}.
- If A has potentially good reduction, then $A=B$.
- If A has totally degenerate reduction, then $B=0$.

(1) Contents

(2) Berkovich analytic spaces
(3) Tropical analytic geometry
(4) Canonical measures
(5) Equidistribution and the Bogomolov conjecture

Notation

- Let K be a field with a non-trivial non-archimedean absolute value $|\mid$.
- $v():=-\log | |$ is the associated valuation.
- The valuation ring $K^{\circ}:=\{\alpha \in K \mid v(\alpha) \geq 0\}$ has the unique maximal ideal $K^{\circ \circ}:=\{\alpha \in K \mid v(\alpha)>0\}$ and residue field $\widetilde{K}:=K^{\circ} / K^{\circ \circ}$.
- We have the completion K_{v} and algebraic closure \bar{K} of K.
- $\mathbb{C}_{K}:=\left(\overline{K_{v}}\right)_{v}$ is the smallest algebraically closed field extension of K which is complete with respect to an extension of | | to a complete absolute value.
- By abuse of notation, we use also v and $\left|\mid\right.$ on \mathbb{C}_{K}.
- Let κ be the residue field of \mathbb{C}_{K}.
- Let $\Gamma:=v\left(\mathbb{C}_{K}^{\times}\right)$be the value group of \mathbb{C}_{K}.

Tropical algebraic geometry

We consider the multiplicative torus \mathbb{G}_{m}^{n} with $\mathbb{G}_{m}^{n}\left(\mathbb{C}_{K}\right)=\left(\mathbb{C}_{K}^{\times}\right)^{n}$ and

$$
\operatorname{val}:\left(\mathbb{C}_{K}^{\times}\right)^{n} \rightarrow \mathbb{R}^{n}, \quad \operatorname{val}\left(x_{1}, \ldots, x_{n}\right)=\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) .
$$

Let X be a closed algebraic subvariety of \mathbb{G}_{m}^{n} and $d:=\operatorname{dim}(X)$.

Definition

The closure of $\operatorname{val}(X)$ in \mathbb{R}^{n} is denoted by $\operatorname{trop}(X)$ and is called the tropical variety associated to X.

Theorem (Einsiedler, Kapranov, Lind)

$\operatorname{trop}(X)$ is a finite connected union of d-dimensional Γ-rational polyhedrons.

Indeed, we have seen that $\operatorname{trop}(X)=\operatorname{val}\left(X^{\text {an }}\right)$ which is the set of valuations on $K[X]$ extending v. It was shown by Bieri and Groves that this set has the required properties.

Examples [RST]

Figure: Plane conics

Figure: Plane biquadratic curves

Figure: Plane cubics

Toric varieties [KKMS,Ch.I]

Definition

A \mathbb{G}_{m}^{n}-toric variety over the arbitrary field F is a normal variety Y with an algebraic \mathbb{G}_{m}^{n}-action containing a dense n-dimensional orbit.

Proposition

There are bijective correspondences between
(a) rational polyhedral cones σ in \mathbb{R}^{n} which do not contain a linear subspace $\neq\{0\}$,
(b) finitely generated saturated semigroups S in \mathbb{Z}^{n} which generate \mathbb{Z}^{n} as a group,
(c) affine \mathbb{G}_{m}^{n}-toric varieties Y over F (up to equivariant isomorphisms).

They are given by $S=\check{\sigma} \cap \mathbb{Z}^{n}$ and $Y=\operatorname{Spec}\left(F\left[x^{S}\right]\right)$, where $\check{\sigma}$ is the dual cone $\left\{u^{\prime} \in \mathbb{R}^{n} \mid u \cdot u^{\prime} \geq 0 \forall u \in \sigma\right\}$ and $x^{S}:=\left\{x^{m} \mid m \in S\right\}$.

Fans and toric varieties, [KKMS,Ch.I]

Definition

A rational polyhedral fan \mathscr{C} in \mathbb{R}^{n} is a set of rational polyhedral cones such that
(a) $\sigma \in \mathscr{C} \Rightarrow$ all closed faces of σ are in \mathscr{C};
(b) $\sigma, \rho \in \mathscr{C} \Rightarrow \sigma \cap \rho$ is either empty or a closed face of ρ and σ.
(c) No $\sigma \in \mathscr{C}$ contains a linear subspace $\neq\{0\}$.

Remark

- If ρ is a closed face of $\sigma \in \mathscr{C}$, then $\check{\sigma} \subset \check{\rho}$ induced a canonical open immersion $\operatorname{Spec}\left(F\left[x^{\text {ค̆ } \cap \mathbb{Z}^{n}}\right]\right) \rightarrow \operatorname{Spec}\left(F\left[x^{\check{\sigma} \cap \mathbb{Z}^{n}}\right]\right)$.
- Hence one can glue the affine toric varieties corresponding to the elements of \mathscr{C} and we get a \mathbb{G}_{m}^{n}-toric variety.
- Every \mathbb{G}_{m}^{n}-toric variety is of this form.
- The toric variety is proper over F if and only if $\bigcup_{\sigma \in \mathscr{C}} \sigma=\mathbb{R}^{n}$.

Reduction of a polytopal domain [Gu1,§4]

- Let Δ be a Γ-rational polytope in \mathbb{R}^{n}. Then we have seen the polytopal domain $U_{\Delta}:=\operatorname{val}^{-1}(\Delta)$ in $\left(\mathbb{G}_{m}^{n}\right)^{\text {an }}$.
- The affinoid torus $\mathbb{T}_{1}^{\text {an }}$ acts on U_{Δ}. It is defined by $\mathbb{T}_{1}^{\mathrm{an}}:=\left\{p \in\left(\mathbb{G}_{m}^{n}\right)_{\mathbb{K}}^{\mathrm{an}} \mid p\left(x_{j}\right)=1\right.$ for $\left.j=1, \ldots, n\right\}=\mathrm{val}^{-1}(0)$.
- Passing to reductions, we get a torus action of $\left(\mathbb{G}_{m}^{n}\right)_{\kappa}$ on \widetilde{U}_{Δ}.

Proposition

(a) There is a bijective order reversing correspondence between torus orbits Z of $\widetilde{U_{\Delta}}$ and open faces τ of Δ, given by $Z_{\tau}=\pi\left(\operatorname{val}^{-1}(\tau)\right)$ and $\tau_{Z}=\operatorname{val}\left(\pi^{-1}(Z)\right)$.
(b) $\operatorname{dim}(\tau)+\operatorname{dim}\left(Z_{\tau}\right)=n$.
(c) If Y_{u} is the irreducible component of $\widetilde{U_{\Delta}}$ corresponding to the vertex u of Δ by (a), then the natural $\left(\mathbb{G}_{m}^{n}\right)_{\kappa}$-action of $\widetilde{U_{\Delta}}$ makes Y_{u} into an affine toric variety with polyhedral cone generated by $\Delta-u$.

Polytopal decompositions [Gu1,§4]

Definition

A polytopal decomposition of \mathbb{R}^{n} is a locally finite set \mathscr{C} of polytopes with (a) $\Delta \in \mathscr{C} \Rightarrow$ all closed faces of Δ are in \mathscr{C};
(b) $\Delta, \sigma \in \mathscr{C} \Rightarrow \Delta \cap \sigma$ is either empty or a closed face of Δ and σ.
(c) $\bigcup_{\Delta \in \mathscr{C}} \Delta=\mathbb{R}^{n}$.

Remark

- If Δ^{\prime} is a closed face of $\Delta \in \mathscr{C}$, then the canonical morphism $U_{\Delta^{\prime}} \rightarrow U_{\Delta}$ induces an open immersion of the reductions.
- Hence one can glue the formal affine schemes $\operatorname{Spf}\left(\mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle\right)$ to get a \mathbb{C}_{K}°-model \mathscr{X} of \mathbb{G}_{m}^{n}.
- Clearly, $\left(\mathbb{G}_{m}^{n}\right)_{\kappa}$ acts on the special fibre $\widetilde{\mathscr{X}}$.

Properties of these models \mathscr{X} of $\mathbb{G}_{m}^{n}[G u 1, \S 4]$

Proposition

(a) There is a bijective correspondence between torus orbits of $\widetilde{\mathscr{X}}$ and open faces of \mathscr{C}.
(b) The irreducible components of $\widetilde{\mathscr{X}}$ match with the vertices of \mathscr{C}.
(c) If Y_{u} is the irreducible component of $\widetilde{\mathscr{X}}$ corresponding to the vertex u, then Y_{u} is a toric variety with fan given by the cones σ in \mathbb{R}^{n} which are generated by $\Delta-u$ for $\Delta \in \mathscr{C}$ with vertex u.

Example

We pave \mathbb{R}^{2} by squares of length $v(\pi)$ for a fixed $\pi \in \mathbb{C}_{K}^{\circ \circ}$ and then we choose in every square a diagonal. This gives a simplex decomposition \mathscr{C} of \mathbb{R}^{2}. The associated \mathbb{C}_{K}°-model \mathscr{X} of \mathbb{G}_{m}^{n} is strictly semistable since the local pieces are $\operatorname{Spf}\left(\mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle^{\circ}\right) \cong \operatorname{Spf}\left(\mathbb{C}_{K}^{\circ}\left\langle x_{0}, x_{1}, x_{2}\right\rangle /\left\langle x_{0} x_{1} x_{2}-\pi\right\rangle\right)$. The torus orbits are equal to the strata and hence the skeleton is \mathbb{R}^{n}.

Analytic subvarieties of polytopal domains [Gu1,§5]

It will be important in the sequel to generalize the tropicalization to analytic subvarieties of \mathbb{G}_{m}^{n}. We start locally:

- Let U_{Δ} be a Γ-rational polytopal domain in \mathbb{R}^{n}.
- A closed analytic subvariety X of U_{Δ} is given by a unique ideal I in $\mathscr{A}:=\mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle$ such that $X=\mathscr{M}(\mathscr{A} / I)$.
- Note that I is not assumed to be reduced or prime.
- $\operatorname{trop}(X):=\operatorname{val}(X)$ is called the tropical variety associated to X.

Theorem (Gu1)

$\operatorname{trop}(X)$ is a finite union of Γ-rational polytopes of dimension $\leq \operatorname{dim}(X)$.
This can be deduced from de Jong's alteration theorem.

The dimension theorem [Gu1, §5]

Theorem (Gu1)

Suppose that Δ is n-dimensional and that X is an analytic subvariety of U_{Δ} of pure dimension d. If $\operatorname{val}(X)$ contains an interior point of Δ, then $\operatorname{trop}(X) \cap \operatorname{int}(\Delta)$ is of pure dimension d.

Remark

This proves also the dimension theorem for the tropical variety of a closed subscheme of \mathbb{G}_{m}^{n}. Indeed, we may use a polytopal decomposition of \mathbb{R}^{n} to deduce it from the local dimension theorem above.

For the proof, we need the following result for affinoid algebras.

Proposition

Let $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ be a homomorphism of affinoid algebras. Then φ is finite (i.e. \mathscr{B} is a finite \mathscr{A}-algebra) if and only if $\widetilde{\varphi}: \widetilde{A} \rightarrow \widetilde{\mathscr{B}}$ is finite.

Proof of the dimension theorem for $N=0$

- It is enough to prove $d \leq N:=\operatorname{dim}(\operatorname{trop}(X))$.
- We may assume X irreducible and therefore $\operatorname{val}(X)$ is connected.
- We handle $N=0$ on this slide, hence $\operatorname{val}(X)$ is a point in Γ^{n}.
- Since the embedding $i: X \hookrightarrow U_{\Delta}$ of Berkovich spectra is finite, the reduction $\widetilde{i}: \widetilde{X} \rightarrow \widetilde{U_{\Delta}}$ is also finite.
- Since $\operatorname{val}(X) \subset \operatorname{int}(\Delta)$, we deduce that \widetilde{X} is mapped to the closed orbit of $\widetilde{U_{\Delta}}$.
- The latter is a point and hence \widetilde{X} is finite.
- We conclude $\operatorname{dim}(X)=\operatorname{dim}(\widetilde{X})=0$.

Proof of the dimension theorem for $N>0$.

- By shrinking Δ, we may assume that $\operatorname{val}(X)$ is pure dimensional.
- There is $x \in X\left(\mathbb{C}_{K}\right)$ with $u:=\operatorname{val}(x) \in \operatorname{int}(\Delta)$.
- Using x for a change of coordinates, we may assume $u=0$.
- There is $m \in \mathbb{Z}^{n}$ such that the hyperplane $\{u \cdot m=0\}$ intersects $\operatorname{val}(X)$ transversally.
- We apply the induction hypothesis to $X^{\prime}:=X \cap\left\{x^{m}=1\right\}$.
- Hence we get $d-1=\operatorname{dim}\left(X^{\prime}\right) \leq \operatorname{dim}\left(\operatorname{val}\left(X^{\prime}\right)\right)$.
- Using $\operatorname{val}\left(X^{\prime}\right) \subset \operatorname{val}(X) \cap\{u \cdot m=0\}$, we deduce $d-1 \leq N-1$.

Periodical tropical geometry I [Gu1, §6]

Let X be a d-dim. algebraic subvariety of a totally degenerate abelian variety A wrt. v, i.e. $A^{\text {an }}=T / M$ and $\Lambda=\operatorname{val}(M)$ is a lattice in \mathbb{R}^{n}.

$$
\begin{array}{ccc}
T & \text { val } & \mathbb{R}^{n} \\
\downarrow p & & \downarrow \\
A^{\text {an }} \xrightarrow{\overline{\text { val }}} & \mathbb{R}^{n} / \Lambda
\end{array}
$$

Definition

$\overline{\operatorname{val}}\left(X^{\mathrm{an}}\right)$ is called the tropical variety and is denoted by $\operatorname{Trop}(X)$.
Applying the dimension theorem to the analytic subvariety $p^{-1}(X)$, we get:
Theorem (Gu1)
$\operatorname{Trop}(X)$ is a finite union of d dimensional Γ-rational polytopes in \mathbb{R}^{n} / Λ.

Periodical tropical geometry II [Gu3,§3]

Let A be an abelian variety with uniformization E from the Raynaud extension $1 \rightarrow\left(\mathbb{G}_{m}^{n}\right)^{\text {an }} \rightarrow E \rightarrow B^{\text {an }} \rightarrow 0$ such that $A^{\text {an }}=E / M$.

Definition

$\overline{\operatorname{val}}\left(X^{\mathrm{an}}\right)$ is called the tropical variety associated to the algebraic subvariety X of A and is denoted by $\operatorname{Trop}(X)$.

Theorem (Gu3)
There is $e \in\{0,1, \ldots, \min \{\operatorname{dim}(X), \operatorname{dim}(B)\}\}$ such that $\operatorname{Trop}(X)$ is a finite union of Γ-rational polytopes of dimension $\operatorname{dim}(X)-e$ in \mathbb{R}^{n} / Λ.

Illustration of tropical excess

Example

- Assume $A=B_{1} \times B_{2}$ with B_{1} of potentially good reduction and B_{2} totally degenerate.
- Then $\left(B_{2}\right)^{\mathrm{an}}=\left(\mathbb{G}_{m}^{n}\right)^{\mathrm{an}} / M$ and the Raynaud extension is given by $1 \rightarrow\left(\mathbb{G}_{m}^{n}\right)^{\text {an }} \rightarrow B_{1}^{\text {an }} \times\left(\mathbb{G}_{m}^{n}\right)^{\text {an }} \rightarrow B_{1}^{\text {an }} \rightarrow 0$.
- If X is a d-dimensional algebraic subvariety of A, then $\operatorname{Trop}(X)=\overline{\operatorname{val}}\left(p_{2}\left(X^{\text {an }}\right)\right)$ and hence $\operatorname{dim}(\operatorname{Trop}(X))=\operatorname{dim}\left(p_{2}(X)\right)$.
- This dimension is $d-e$, where any $e \in\{0,1, \ldots, \min \{d, \operatorname{dim}(B)\}\}$ can be achieved.

By using the local triviality of the Raynaud extension, essentially the same argument proves the previous theorem in general.

Mumford's construction [Gu1,§6]

Let A be a totally degenerate abelian variety with respect to v, i.e. $A^{\text {an }}=T / M$ and $\Lambda=\operatorname{val}(M)$ is a lattice in \mathbb{R}^{n}.

Definition

- A polytope $\bar{\Delta}$ in \mathbb{R}^{n} / Λ is given by a polytope Δ in \mathbb{R}^{n} such that Δ maps bijectively onto $\bar{\Delta}$.
- A polytopal decomposition of \mathbb{R}^{n} / Λ is a finite family $\overline{\mathscr{C}}$ of polytopes in \mathbb{R}^{n} / Λ induced by a Λ-periodic polytopal decomposition \mathscr{C} of \mathbb{R}^{n}.
- Glueing the polytopal domains, we get a \mathbb{C}_{K}°-model \mathscr{U} of \mathbb{G}_{m}^{n}.
- By Λ-periodicity, \mathscr{U} has a canonical action of M. We get a \mathbb{C}_{K}°-model $\mathscr{A}:=\mathscr{U} / M$ of A.
- \mathscr{A} is obtained by glueing the formal affine $\mathscr{U}_{\Delta}:=\operatorname{Spf}\left(\mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle\right)$ along commen faces and by identifying \mathscr{U}_{Δ} and $\mathscr{U}_{\Delta+\lambda}$ for all $\lambda \in \Lambda$.

Mumford models [Gu1, §6]

Definition

We call \mathscr{A} the Mumford model associated to A.

Proposition

- There is a bijective order reversing correspondence between torus orbits Z of \mathscr{A} and open faces $\bar{\tau}$ of $\overline{\mathscr{C}}$.
- The irreducible components Y of $\widetilde{\mathscr{A}}$ are toric varieties and correspond to the vertices of $\overline{\mathscr{C}}$.
- The Mumford model is strictly semistable if there is $\pi \in \mathbb{C}_{K}^{\circ 0}$ such that every maximal $\Delta \in \mathscr{C}$ is $G L(n, \mathbb{Z})$-isomorphic to the standard simplex $\left\{u \in \mathbb{R}_{+}^{n} \mid u_{1}+\ldots+u_{n} \leq v(\pi)\right\}$.
- Then the associated skeleton is the fundamental domain \mathbb{R}^{n} / Λ and the canonicial simplices are the elements of $\overline{\mathscr{C}}$.

(1) Contents

(2) Berkovich analytic spaces

(3) Tropical analytic geometry

4 Canonical measures
(5) Equidistribution and the Bogomolov conjecture

Notation

- Let K be a field with a non-trivial non-archimedean absolute value $|\mid$.
- $v():=-\log | |$ is the associated valuation.
- The valuation ring $K^{\circ}:=\{\alpha \in K \mid v(\alpha) \geq 0\}$ has the unique maximal ideal $K^{\circ \circ}:=\{\alpha \in K \mid v(\alpha)>0\}$ and residue field $\widetilde{K}:=K^{\circ} / K^{\circ \circ}$.
- We have the completion K_{v} and algebraic closure \bar{K} of K.
- $\mathbb{C}_{K}:=\left(\overline{K_{v}}\right)_{v}$ is the smallest algebraically closed field extension of K which is complete with respect to an extension of | | to a complete absolute value.
- By abuse of notation, we use also v and $\left|\mid\right.$ on \mathbb{C}_{K}.
- Let κ be the residue field of \mathbb{C}_{K}.
- Let $\Gamma:=v\left(\mathbb{C}_{K}^{\times}\right)$be the value group of \mathbb{C}_{K}.

Metrics

- Let X be a projective variety over \mathbb{C}_{K}. By GAGA, $X^{\text {an }}$ is compact.
- We consider a line bundle L on X, i.e. a family of 1-dimensional vector spaces $\left(L_{x}\right)_{x \in X}$ with a continuity condition.
- A metric $\left\|\|\right.$ on $L^{\text {an }}$ is a norm on each fibre $L_{x}^{\text {an }} \cong \mathbb{C}_{K}$.
- A section of L on the open subset U of X is a family $s(x) \in L_{x}$, $x \in U$, which gives a morphism $s: U \rightarrow L$.
- We consider only continuous metrics, i.e. $x \mapsto\|s(x)\|$ is continuous with respect to the analytic topology for every local section.
- For continuous metrics $\|\|,\|\|^{\prime}$ on L, we have the distance of uniform convergence

$$
d\left(\|\|,\|\|^{\prime}\right):=\sup _{x \in X^{\text {an }}}\left|\log \left(\|s(x)\| /\|s(x)\|^{\prime}\right)\right|
$$

- Clearly, the definition is independent of the choice of $s(x) \in L_{x} \backslash\{0\}$.

Formal metrics [Gu4,§2]

- Let \mathscr{L} be a formal \mathbb{C}_{K}°-model of L, i.e. \mathscr{L} is a line bundle on the \mathbb{C}_{K}°-model \mathscr{X} with $L=\left.\mathscr{L}\right|_{X^{\text {an }}}$.
- The associated metric $\left\|\|_{\mathscr{L}}\right.$ on L is defined as follows: Every $x \in X^{\text {an }}$ is contained in $\mathscr{U}^{\text {an }}$ for a trivialization \mathscr{U} of \mathscr{L}. The latter means that there is a section s of \mathscr{L} without zeros.
- We set $\|s(x)\|_{\mathscr{L}}:=1$. This is well-defined as $s(x)$ is determined up to units in \mathbb{C}_{K}° and determines the metric completely.
- On $\mathscr{U}^{\text {an }}$, every section t of L corresponds to an analytic function f with respect to the trivialization and $\|t(x)\|=|f(x)|$, therefore the metric is continuous.

Definition

- Metrics of the form $\left\|\|_{\mathscr{L}}\right.$ are called formal.
- A root of a formal metric is a metric $\|\|$ on L such that $\| \|^{\otimes m}$ is a formal metric for some non-zero $m \in \mathbb{N}$.

Semipositive admissible metrics [Gu4,§2]

Theorem (Gu, 1998)

The roots of formal metrics are dense in the space of continuous metrics on $L^{\text {an }}$. In particular, the set of roots of formal metrics on $O_{X^{\text {an }}}$ is embedded onto a dense subset of $C\left(X^{\mathrm{an}}\right)$ by the map $\|\|\mapsto-\log \| 1\|$.

- A line bundle F on a projective variety Y is called nef if $\operatorname{deg}_{F}(C) \geq 0$ for all closed curves C in Y.
- Then one can show that the degree of any closed subvariety with respect to F is non-negative.

Definition

- A metric $\left\|\|_{\mathscr{L}}\right.$ induced by the line bundle \mathscr{L} on the \mathbb{C}_{K}°-model \mathscr{X} is called semipositive if the reduction $\widetilde{\mathscr{L}}$ is a nef line bundle on the special fibre $\widetilde{\mathscr{X}}$.
- A semipositive admissible metric $\|\|$ on L is a uniform limit of roots of semipositive formal metrics $\left\|\|_{n}\right.$ on L.

Canonical metrics [BG, $\S 9.5]$

- Now let (L, ρ) be a rigidified line bundle on the abelian variety A over K, i.e. $\rho \in L_{0}(K) \backslash\{0\}$.
- Then there is a canonical metric $\left\|\|_{\rho}\right.$ for (L, ρ) which behaves well with respect to tensor product and homomorphic pull-back.
- We restrict to the case that L is ample and symmetric, then $\left\|\|_{\rho}\right.$ is given by the following variant of Tate's limit argument.
- The rigidification and the theorem of the cube yield an identification $[m]^{*} L=L^{\otimes m^{2}}$ for $m \in \mathbb{Z}$.
- The canonical metric is characterized by $[m]^{*}\| \|_{\text {can }}=\| \|_{\text {can }}{ }^{\otimes m^{2}}$ and it is given by

$$
\left\|\|_{\text {can }}=\lim _{m \rightarrow \infty}\left([m]^{*}\| \|\right)^{1 / m^{2}}\right.
$$

where $\left\|\|\right.$ is any continuous metric on $L^{\text {an }}$.

- In particular, we may choose $\|\|$ as a root of a semipositive formal metric and hence $\left\|\|_{\rho}\right.$ is a semipositive admissible metric.

Examples of canonical metrics [BG, $\S 9.5]$

Example

If A is an abelian variety with potentially good reduction, then $L^{\otimes 2}$ has an ample symmetric \mathbb{C}_{K}°-model \mathscr{L} and hence $\left\|\left\|_{\text {can }}=\right\|\right\|_{\mathscr{L}}^{1 / 2}$ is a root of a semipositive formal metric.

If A has bad reduction, then $\left\|\|_{\text {can }}\right.$ is no longer a root of a formal metric.

Example

- Let E be a Tate elliptic curve, i.e. $E^{\text {an }}=\mathbb{C}_{K}^{\times} / q^{\mathbb{Z}}$ and let $L=O([P])$ be the line bundle for the 2-torsion point P given by $\tilde{q}:=q^{1 / 2}$.
- Then P is the divisor of the global section of L corresponding to the theta function $\theta(\zeta, q):=\sum_{n=-\infty}^{\infty} \tilde{q}^{n^{2}} \zeta^{n}$.
- The pull-back of the even ample line bundle L to \mathbb{C}_{K}^{\times}is trivial and we can easily compute $-\log \left(\|1\|_{\text {can }, \zeta}\right)=\frac{v(\zeta)^{2}}{2 v(q)}$.

Chambert-Loir's measures [Gu1, §3]

Theorem (Chambert-Loir)

For a d-dimensional projective variety X and $\bar{L}=(L,\| \|)$ an ample line bundle endowed with a semipositive admissible metric, there is a unique positive regular Borel measure $c_{1}(\bar{L})^{\wedge d}$ on $X^{\text {an }}$ with the properties:
(a) $c_{1}\left(\bar{L}^{\otimes m}\right)^{\wedge d}=m^{d} c_{1}(\bar{L})^{d}$ and $c_{1}(\bar{L})^{\wedge d}$ is continuous in $\|\|$.
(b) If $\varphi: Y \rightarrow X$ is a morphism of d-dimensional projective varieties, then the projection formula $\varphi_{*}\left(c_{1}\left(\varphi^{*} \bar{L}\right)^{\wedge d}\right)=\operatorname{deg}(\varphi) c_{1}(\bar{L})^{\wedge d}$ holds.
(c) $c_{1}(\bar{L})^{\wedge d}$ has total measure $\operatorname{deg}_{L}(X)$.
(d) If \mathscr{X} is a formal \mathbb{C}_{K}°-model of X with reduced special fibre and if the metric of \bar{L} is induced by a formal \mathbb{C}_{K}°-model \mathscr{L} of L on \mathscr{X}, then $c_{1}(\bar{L})^{\wedge d}=\sum_{Y} \operatorname{deg}_{\mathscr{L}}(Y) \delta_{\xi_{Y}}$, where Y ranges over the irreducible components of $\widetilde{\mathscr{X}}$ and $\delta_{\xi_{Y}}$ is the Dirac measure in the unique point ξ_{Y} of $X^{\text {an }}$ which reduces to the generic point of Y.

Canonical measures

Now we consider an ample symmetric line bundle L on an abelian variety A and a d-dimensional subvariety X of A.

Definition

We call $\mu:=c_{1}\left(L_{X},\| \|_{\text {can }}\right)^{\wedge d}$ the canonical measure on X associated to L.

Example

If $X=A$ and if A has potentially good reduction, then (d) from the above theorem shows that $\mu=\operatorname{deg}_{L}(A) \delta_{\xi}$, where ξ is the unique point of $A^{\text {an }}$ which reduces to the generic point of the Néron-model \mathscr{A}.

Setup

- We assume that v is a discrete valuation of K and hence $\Gamma=\mathbb{Q}$.
- Let X be a closed d-dimensional variety of the abelian variety A.
- The tropical excess e was defined by $\operatorname{dim}(\operatorname{Trop}(X))=d-e$.
- We assume for simplicity that X has a strictly semistable \mathbb{C}_{K}°-model \mathscr{X}, otherwise we have to use a strictly semistable alteration.
- Recall that the skeleton $S(\mathscr{X})$ of \mathscr{X} is a subset of $X^{\text {an }}$ given as the union of canonical simplices Δ_{S} corresponding to the strata S of $\widetilde{\mathscr{X}}$.
- Let $b:=\operatorname{dim}(B)$ for the abelian variety B of good reduction in the Raynaud extension $1 \rightarrow\left(\mathbb{G}_{m}^{n}\right)^{\text {an }} \rightarrow E \rightarrow B^{\text {an }} \rightarrow 0$ of A.

Explicit description of canonical measures [Gu3]

Theorem (Gu3)

There is a list of canonical simplices $\left(\Delta_{S}\right)_{S \in I}$ with the properties:

- The maximal simplices $\left(\Delta_{S}\right)_{s \in J}$ from this list are $(d-e)$-dimensional.
- $\overline{\text { val }}$ is one-to-one on every $\Delta_{S}, S \in I$, and $\bigcup_{S \in J} \overline{\operatorname{val}}\left(\Delta_{S}\right)=\operatorname{Trop}(X)$.
- For any ample line bundle \bar{L} on A, the canonical measure $\mu:=c_{1}\left(L_{X},\| \|_{\text {can }}\right)^{\wedge d}$ is supported in $\bigcup_{S \in J} \Delta_{S}$.
- The restriction of μ to the relative interior of Δ_{S} is a positive multiple of the relative Lebesgue measure which may be explicitly computed in terms of convex geometry.

Remark

- If A is totally degenerate, then $\operatorname{dim}\left(\Delta_{S}\right)=d$ for all $S \in I$.
- In general, there are examples where simplices of all dimensions in $\{d-b, \ldots, d-e\}$ may occur for a single canonical measure.

Sketch of proof I

- We sketch the proof in the special case $X=A$ totally degenerate.
- Hence $A^{\text {an }}=\left(\mathbb{G}_{m}^{n}\right)^{\text {an }} / M$ for a discrete subgroup M of $\left(\mathbb{C}_{K}^{\times}\right)^{n}$ such that $\Lambda:=\operatorname{val}(M)$ is a lattice in \mathbb{R}^{n}.
- Since Λ is a subgroup of \mathbb{Q}^{n} of rank n, there is a basis b_{1}, \ldots, b_{n} of $\mathbb{Z}^{n}, k \in \mathbb{N}$ and $k_{1}\left|k_{2}\right| \cdots \mid k_{n} \in \mathbb{Z}$ such that $\frac{k_{1}}{k} b_{1}, \ldots, \frac{k_{n}}{k} b_{n}$ is a basis of Λ.
- The fundamental domain of Λ is a cuboid with respect to the basis b_{1}, \ldots, b_{n} and hence we can easily pave \mathbb{R}^{n} by translates of $\frac{1}{m} Q$, where Q is the unit cube and $m \in \mathbb{N}$ is fixed.
- We deduce that there is a rational Λ-periodic simplex decomposition \mathscr{C} of \mathbb{R}^{n} such that every n-dimensional $\Delta \in \mathscr{C}$ is $\operatorname{GL}(n, \mathbb{Z})$ isomorphic to a translate of $\frac{1}{m} \Delta_{1}$ for the standard simplex

$$
\Delta_{1}:=\left\{u \in \mathbb{R}_{+}^{n} \mid u_{1}+\cdots+u_{n} \leq 1\right\} .
$$

Sketch of proof II

- We conclude that the Mumford model \mathscr{A} of A associated to \mathscr{C} is strictly semistable.
- Note that the skeleton $S(\mathscr{A})$ of \mathscr{A} is \mathbb{R}^{n} / Λ with canonical simplices given by $\overline{\mathscr{C}}:=\mathscr{C} / \Lambda$. Moreover, $S(\mathscr{A})$ is a subset of $A^{\text {an }}$.
- By a result of Künnemann, we may assume that L has a \mathbb{C}_{K}°-model \mathscr{L} on \mathscr{A} such that the formal affine open subsets $\mathscr{U}_{\Delta}:=\operatorname{Spf}\left(\mathbb{C}_{K}\left\langle U_{\Delta}\right\rangle^{\circ}\right)$ form a trivialization of \mathscr{L}.
- We identify the pull-back $p^{*} L$ to $\left(\mathbb{G}_{m}^{n}\right)^{\text {an }}$ with $\left(\mathbb{G}_{m}^{n}\right)^{\text {an }} \times \mathbb{C}_{K}$. Then the section 1 corresponds to a $\gamma \in K\left\langle U_{\Delta}\right\rangle^{\times}$with respect to the trivialization \mathscr{U}_{Δ}.
- It is easy to show that γ is equal to $a_{\Delta} x^{m_{\Delta}}$ up to smaller terms.
- We conclude that $f_{\mathscr{L}}:=-\log p^{*}\|1\|_{\mathscr{L}}$ is a continuous function on \mathbb{R}^{n} with $f_{\mathscr{L}}(u)=m_{\Delta} \cdot u+v\left(a_{\Delta}\right)$ on Δ.

Dual complex

- $f_{\mathscr{L}}$ induces a canonical dual complex $\mathscr{C}^{f_{\mathscr{L}}}$ on \mathbb{R}^{n}.
- The vertices of $\mathscr{C}^{f_{\mathscr{L}}}$ are given by $m_{\Delta}, \Delta \in \mathscr{C}$.
- Every k-dimensional polytope σ of \mathscr{C} induces an $(n-k)$-dimensional polytope $\sigma^{f}{ }_{\mathscr{L}}$ given by the vertices $m_{\Delta}, \Delta \supset \sigma$.
- By results of Mac Mullen, $\mathscr{C}^{f} \mathscr{L}$ is a polytopal decomposition of $\left(\mathbb{R}^{n}\right)^{*}=\mathbb{R}^{n}$ for a suitable lattice Λ^{L} not depending on \mathscr{L}.

Figure: simplex decomposition \mathscr{C}

Figure: dual complex

Facts from the theory of toric varieties [KKMS,Ch.I]

- We know that every vertex \bar{u} of $\overline{\mathscr{C}}$ corresponds to an irreducible component $Y_{\bar{u}}$ of \mathscr{A}.
- We have seen that $Y_{\bar{u}}$ is a $\left(\mathbb{G}_{m}^{n}\right)_{\kappa}$-toric variety.
- \mathscr{L} is ample on \mathscr{A} if and only if $f_{\mathscr{L}}$ is strictly convex with respect to \mathscr{C}, i.e. a convex function such that the maximal domains of "linearity" are the n-dimensional polytopes in \mathscr{C}.
- $\operatorname{deg}_{\mathscr{L}}\left(Y_{\bar{u}}\right)=n!\operatorname{vol}\left(\{u\}^{f_{\mathscr{L}}}\right)$

Sketch of proof III

- Chambert-Loir's measure with respect to the formal metric $\left\|\|_{\mathscr{L}}\right.$ is given by

$$
c_{1}\left(L,\| \| \|_{\mathscr{L}}\right)^{\wedge n}=\sum_{\bar{u}} \operatorname{deg}_{\mathscr{L}}\left(Y_{\bar{u}}\right) \delta_{\xi_{\bar{u}}},
$$

where \bar{u} ranges over the vertices of $\overline{\mathscr{C}}$ in $\bar{\Omega}$ and $\xi_{\bar{u}}$ is the unique point of $A^{\text {an }}$ with reduction equal to the generic point of the irreducible component $Y_{\bar{u}}$.

- For $\bar{\Omega}$ measurable in \mathbb{R}^{n} / Λ, we have

$$
\mu_{1}(\bar{\Omega}):=\int_{\bar{\Omega}} c_{1}\left(L,\| \|_{\mathscr{L}}\right)^{\wedge n}=\sum_{\bar{u} \in \bar{\Omega}} \operatorname{deg}_{\mathscr{L}}\left(Y_{\bar{u}}\right)=n!\sum_{\bar{u} \in \bar{\Omega}} \operatorname{vol}\left(\{\bar{u}\}^{f_{\mathscr{L}}}\right)
$$

where \bar{u} is always supposed to be a vertex in $\overline{\mathscr{C}}$.

Sketch of proof IV

Figure: Ω

Figure: $\mu_{1}(\bar{\Omega})$

- By Tate's limit argument, we have

$$
\left\|\|_{\text {can }}=\lim _{m \rightarrow \infty}\left([m]^{*}\| \|_{\mathscr{L}}\right)^{1 / m^{2}} .\right.
$$

Sketch of proof V

- Let \mathscr{A}_{m} be the Mumford model of A associated to $\mathscr{C}_{m}:=\frac{1}{m} \mathscr{C}$. [m] extends to a morphism $\mathscr{A}_{m} \rightarrow \mathscr{A}_{1}$ and hence $[m]^{*} \mathscr{L}$ is a \mathbb{C}_{K}°-model of $[m]^{*} L=L^{\oplus m^{2}}$ an A.

$$
\Rightarrow\left\|\|_{\text {can }}=\lim _{m \rightarrow \infty}\left(\| \|_{[m]^{*}} \mathscr{L}\right)^{1 / m^{2}}\right.
$$

- The canonical measure $\mu:=c_{1}\left(L,\| \|_{\text {can }}\right)^{\wedge n}$ is given by

$$
\mu=\lim _{m \rightarrow \infty} m^{-2 n} c_{1}\left(L,\| \|_{[m]^{*}} \mathscr{L}\right)=\lim _{m \rightarrow \infty} m^{-2 n} \mu_{m}
$$

with

$$
\mu_{m}(\bar{\Omega})=n!\sum_{\overline{u_{m}} \in \bar{\Omega}} \operatorname{vol}\left(\left\{u_{m}\right\}^{m f_{\mathscr{L}}}\right)=n!m^{n} \sum_{\overline{u_{m}} \in \bar{\Omega}} \operatorname{vol}\left(\left\{u_{m}\right\}^{f_{\mathscr{L}}}\right)
$$

where $\overline{u_{m}}$ is supposed to be a vertex of $\overline{\mathscr{C}_{m}}$.

Sketch of proof VI

Figure: Ω and \mathscr{C}_{2}

Figure: $\mu_{2}(\bar{\Omega})$

Sketch of proof VII

- For $m \gg 0$, an easy calculation shows

$$
\sum_{\overline{u_{m}} \in \bar{\Omega}} \operatorname{vol}\left(\left\{u_{m}\right\}^{f \mathscr{L}}\right) \sim m^{n} \operatorname{vol}(\bar{\Omega}) \frac{\operatorname{vol}\left(\Lambda^{L}\right)}{\operatorname{vol}(\Lambda)}
$$

and hence

$$
\mu(\bar{\Omega})=n!\operatorname{vol}(\bar{\Omega}) \frac{\operatorname{vol}\left(\Lambda^{L}\right)}{\operatorname{vol}(\Lambda)}
$$

- By construction, we have $\operatorname{supp}(\mu)=S(\mathscr{A})$.

Canonical measure for $X=A$

Corollary [Gu3]

If $X=A$ is a d-dimensional abelian variety, then the canonical measure $c_{1}\left(L,\| \|_{\text {can }}\right)^{\wedge d}$ for an ample line bundle L is equal to the Haar measure μ on the skeleton \mathbb{R}^{n} / Λ of A determined by $\mu(\bar{\Omega})=\operatorname{deg}_{L}(A)$.

Proof.

If A is totally degenerate, then the claim follows from the above proof and the fact that Chambert-Loir's measures have total measure equal to the degree. We skip the general case.

(1) Contents

(2) Berkovich analytic spaces

(3) Tropical analytic geometry

4 Canonical measures
(5) Equidistribution and the Bogomolov conjecture

Diophantine geometry

Example

The diophantine equation $x^{4}-y^{4}=5$ has only finitely many rational solutions, e.g. $\left(\frac{3}{2}, \frac{1}{2}\right)$.

In general, we have for any number field K the Mordell-conjecture.

Theorem (Faltings 1983)

An algebraic curve of genus $g>1$ has only finitely many points with coordinates in K.

- A central tool is the height of a point.
- The height measures the arithmetic complexity of the point.
- e.g. $h\left(\frac{3}{2}, \frac{1}{2}\right)=\log (3)$, as we have the projective solution $(2: 3: 1)$.

Product formula [BG,Ch.1]

- Let M_{K} be the set of absolute values on the number field K which extend the usual absolute value or the p-adic absolute values on \mathbb{Q}.
- For $v \in M_{K}$ extending $q \in M_{\mathbb{Q}}$, let K_{v}, \mathbb{Q}_{q} be the completions and let $\mu(v):=\frac{\left[K_{v}: \mathbb{Q}_{q}\right]}{[K: \mathbb{Q}]}$.
- For non-zero $\alpha \in K$, we have the product formula

$$
\prod_{v \in M_{K}}|\alpha|_{v}^{\mu(v)}=1
$$

Remark

- If $K=k(B)$ is the function field of a smooth curve B over an algebraically closed field, then every point $v \in B$ induces the discrete absolute value $|f|_{v}:=e^{-\operatorname{ord}(f, v)}$ and we set $M_{K}:=B$.
- The product formula holds here as in the number field case.

In the following, the field K is either a number field or a function field.

Semipositive admissible metrics [Gu4, §3]

- Let L be an ample line bundle on the projective variety X over K.
- If v is non-archimedean, then we are going to apply the theory of semipositive admissible metrics on the Berkovich analytic space $X_{v}^{\text {an }}$.
- If $v \mid \infty$, then $X_{v}^{\text {an }}$ is a complex space and there is also a notion of semipositive admissible metric $\left\|\|_{v}\right.$ on $L_{v}^{\text {an }}$. For X smooth, this means that $\left\|\|_{v}\right.$ is a smooth hermitian metric with semipositive curvature.

Example

If \mathscr{L} is an ample O_{K}-model for $L^{\otimes m}$, then we have seen that $\left\|\|_{\mathscr{L}, v}^{1 / m}\right.$ defines a semipositive formal metric on $L_{v}^{\text {an }}$ for $v \not \backslash \infty$.

Definition

A semipositive admissible metric $\|\|$ on L is a family of semipositive admissible metrics $\left\|\|_{v}\right.$ on $L_{v}^{\text {an }}, v \in M_{K}$, which are as in the above example up to finitely many $v \in M_{K}$.

Heights [BG,Ch.2]

Let \bar{L} be the ample line bundle L endowed with a semipositive admissible metric || \|.

Definition

The height of $P \in X(\bar{K})$ is given by

$$
h_{\bar{L}}(P):=-\sum_{w \in M_{F}} \mu(w) \log \|s(x)\|_{w},
$$

where F / K is a finite extension with $P \in X(F)$ and $s(x) \in L_{x} \backslash\{0\}$.

- $\mu(w)$ ensures that the height does not depend on F.
- The product formula shows that the height does not depend on $s(x)$.

Theorem (Weil)

The height does not depend on || || up to bounded functions.

Néron-Tate-heights [BG,Ch.9]

- Let A be an abelian variety over K with an ample even line bundle L.
- For $v \in M_{K}$, let $\left\|\|_{\text {can }, v}\right.$ be the canoncial metric of $L_{v}^{\text {an }}$ with respect to a fixed rigidification of L.
- This induces a semipositive admissible metric $\left\|\|_{\text {can }}\right.$ on L.

Definition

We call $\hat{h}_{L}:=h_{\left(L,\| \| \|_{\text {can }}\right)}$ the Néron-Tate-height with respect to L.

- By Weil's theorem, $\hat{h}_{L}(P)=\lim _{m \rightarrow \infty} m^{-2} h_{(L,\| \|)}(m P)$ for any semipositive admissible metric $\|\|$ on L (Tate's limit formula).
- \hat{h}_{L} is a positive semidefinite quadratic form.
- The kernel of the associated bilinear form is the torsion group.
- We get canonical semidistance $d_{L}(P, Q):=\hat{h}_{L}(P-Q)$ on A.

The Bogomolov conjecture over the number field K [Zh]

Definition

A torsion subvariety of A has the form $B+t$ for an abelian subvariety B and a torsion point t of A.

For a closed subvariety X of A, we have the Bogomolov conjecture:

Theorem (Ullmo 1998 for curves, Zhang 1998 in general)

- There are only finitely many maximal torsion subvarieties in X.
- \hat{h}_{L} has a positive lower bound on their complement in X.
- This is a statement for points with coordinates in \bar{K}.
- The torsion points are dense in every torsion subvariety.
- The statement is independent of the choice of L.

Bogomolov conjecture over the function field $K=k(B)$

Many proofs are easier for function fields:

- Fermat's conjecture: Tschebyscheff, Liouville, Korkine, 19th century
- Mordell conjecture: Manin, Grauert, Samuel, 1963-1966

Theorem (Gu2)

The Bogomolov conjecture holds if A is totally degenerate with respect to some $v \in M_{K}$.

- The Bogomolov conjecture is wrong if X and A are defined over k.
- It is conjectured only if $\operatorname{Tr}_{\mathrm{L} / \mathrm{k}}(\mathrm{A})=0$ for all finite L / K.
- The Bogomolov conjecture was known only for some curves (e.g. $g=2$) due to Moriwaki, Yamaki.
- Recent work of Zhang and Faber give all curves $g \leq 4$ and more examples.

Setup for equidistribution

The proof of the Bogomolov conjecture relies on the following equidistribution result:

- If X is a closed subvariety of the abelian variety A and L is an even ample line bundle on A.
- We fix a place $v \in M_{K}$ and an embedding $\bar{K} \hookrightarrow \mathbb{C}_{K_{v}}$ over K to identify $X(\bar{K})$ with a subset of $X_{v}^{\text {an }}$.
- Note that the absolute Galois group $G:=\operatorname{Gal}(\bar{K} / K)$ acts on $X(\bar{K})$.
- Suppose that $\left(P_{n}\right)$ is a small generic sequence in $X(\bar{K})$:
- generic means $\left\{n \in \mathbb{N} \mid P_{n} \in Y\right\}$ is finite for every closed $Y \subsetneq X$.
- small means that $\lim _{n \rightarrow \infty} \hat{h}_{L}\left(P_{n}\right)=0$.
- We consider the discrete probability measure μ_{n} on $X_{v}^{\text {an }}$ which has support $G P_{n}$ and is equidistributed on this Galois orbit.

Equidistribution theorem [Yu], [Gu4]

Theorem

We have the weak convergence $\mu_{n} \rightarrow\left(\operatorname{deg}_{L}(X)^{-1} c_{1}\left(\left.L\right|_{X},\| \|_{\text {can, } v}\right)^{\wedge d}\right.$ of regular probability measures on $X_{V}^{\text {an }}$.

Remark

There is a generalization to arbitrary projective varieties X and any semipositive admissible metric $\|\|$ on L, where now small means that $h_{(L,\| \|)}\left(P_{n}\right)$ converges to the height $h_{(L,\| \|)}(X)$ of X.

If K is a number field, the equidistribution theorem was proved by:

- Szpiro, Ullmo and Zhang for $v \mid \infty$ and positive curvature at v.
- Chambert-Loir for $v \nless \infty$ if $\left\|\|_{v}\right.$ is induced by an ample model.
- Yuan in general.

Methods of proof [Yu], [Gu4]

- If the curvature is positive (or the metric is induced by an ample model), then the arithmetic Hilbert-Samuel formula is used to prove the fundamental inequality

$$
h_{(L,\| \|)}(X) \leq \liminf _{n \rightarrow \infty} h_{(L,\| \|)}\left(P_{n}\right)
$$

- A variational principle for metrics on L is used to deduce the equidistribution theorem from the fundamental inequality.
- This is possible as the variational metrics remain semipositive.
- For semipositive admissible metrics, this is no longer true.
- Yuan's idea is to prove a variational form of the fundamental inequality based on Siu's theorem in the theory of big line bundles.
- This is good enough to prove the equidistribution theorem as above.

Yuan's proof may be adapted to function fields. This was done by Faber in the special case $h_{(L,\| \|)}(X)=0$ and independently by [Gu4] in general.

Tropical equidistribution theorem [Gu2,§5]

- Let A be an abelian variety which is totally degenerate with respect to a fixed $v \in M_{K}$ and let X be a d-dimensional closed subvariety.
- Let $\left(P_{n}\right)_{n \in \mathbb{N}}$ be a small generic sequence in X as before.
- Let us consider the following discrete probability measure on $\operatorname{Trop}(X)$:

$$
\mu_{n}=\frac{1}{\left|G P_{n}\right|} \sum_{Q \in G P_{n}} \delta_{\overline{\operatorname{val}}(Q)}
$$

Theorem (Gu2)

Then μ_{n} converges weakly to a strictly positive volume form μ on $\operatorname{Trop}(X)$, i.e. $\operatorname{Trop}(X)$ is a finite union of d-dimensional polytopes Δ such that $\left.\mu\right|_{\Delta}$ is a positive multiple of the Lebesgue measure.

This follows by taking $\overline{\mathrm{val}}_{*}$ in the previous equidistribution theorem and then using the explicit description of the canonical measures.

Proof of the Bogomolov conjecture I [Gu2,§6]

It is easy to see that the Bogomolov conjecture is equivalent to:

Theorem (Gu2)

Let X be a closed subvariety of the abelian variety A over K. We assume that A is totally degenerate with respect to $v \in M_{K}$. If X is no torsion subvariety of A, then there is no small generic sequence in $X(\bar{K})$.

- Similarly as in Zhang's proof, we can assume that the morphism

$$
\alpha: X^{N} \longrightarrow A^{N-1}, \quad \mathbf{x} \mapsto\left(x_{2}-x_{1}, \ldots, x_{N}-x_{N-1}\right)
$$

is generically finite for N sufficiently large.

- If the Bogomolov conjecture is wrong, then there is a small generic sequence in $X(\bar{K})$.
- Then there is also a small generic sequence $\left(\mathrm{x}_{n}\right)_{n \in \mathbb{N}}$ in X^{N}.
- We conclude that $\alpha\left(\mathbf{x}_{n}\right)$ is a small generic sequence in $Y=\alpha\left(X^{N}\right)$.

Proof of the Bogomolov conjecture II [Gu2,§6]

- We get equidistribution measures μ on $\operatorname{Trop}\left(X^{N}\right)$ and ν on $\operatorname{Trop}(Y)$.
- By construction, we have $\nu=\alpha_{\text {aff }}(\mu)$ for the canonical $\alpha_{\text {aff }}$:

- The diagonal X in X^{N} satisfies $\alpha(X)=0$.
- The same holds for the diagonal $\operatorname{Trop}(X)$ in $\operatorname{Trop}\left(X^{N}\right)=\operatorname{Trop}(X)^{N}$.
- There is an $N d$-dimensional simplex Δ in $\operatorname{Trop}\left(X^{N}\right)$ with d-dimensional face in $\operatorname{Trop}(X)$.
- $\operatorname{dim}\left(\alpha_{\text {aff }}(\Delta)\right)<\operatorname{dim}(\Delta)$ and hence $\nu\left(\alpha_{\text {aff }}(\Delta)\right)=0$.
- This proves $\mu(\Delta)=0$ which contradicts the strict positivity of μ.

References I

- [Ber1] V.G. Berkovich: Spectral theory and analytic geometry over non-archimedean fields. AMS (1990).
- [Ber2] V.G. Berkovich: Étale cohomology for non-archimedean analytic spaces. Publ. Math. IHES 78, 5-161 (1993).
- [Ber3] V.G. Berkovich: Smooth p-adic analytic spaces are locally contractible. Invent. Math. 137, No.1, 1-84 (1999).
- [Ber4] V.G. Berkovich: Smooth p-adic analytic spaces are locally contractible. II. Adolphson, Alan (ed.) et al., Geometric aspects of Dwork theory. Vol. I. Berlin: de Gruyter. 293-370 (2004).
- [BGR] S. Bosch, U. Güntzer, R. Remmert: Non-Archimedean analysis. A systematic approach to rigid analytic geometry. Springer (1984).
- [BL1] S. Bosch, W. Lütkebohmert: Degenerating abelian varieties. Topology 30, No.4, 653-698 (1991).
- [BL2] S. Bosch, W. Lütkebohmert: Formal and rigid geometry. I: Rigid spaces. Math. Ann. 295, No.2, 291-317 (1993).
- [BG] E. Bombieri, W. Gubler: Heights in diophantine geometry. Cambridge University Press, xvi+652 pp. (2006)

References II

- [Gu1] W. Gubler: Tropical varieties for non-archimedean analytic spaces. Invent. Math. 169, 321-376 (2007)
- [Gu2] W. Gubler: The Bogomolov conjecture for totally degenerate abelian varieties. Invent. Math. 169, 377-400 (2007)
- [Gu3] W. Gubler: Non-archimedean canonical measures on abelian varieties. ArXiv(2008)
- [Gu4] W. Gubler: Equidistribution over function fields. ArXiv (2008)
- [dJ] A. J. de Jong: Smoothness, semi-stability and alterations. Publ. Math. IHES 83, 51-93 (1996).
- [KKMS] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat: Toroidal embeddings. I. LNM 339. Berlin etc.: Springer-Verlag (1973).
- [RST] J. Richter-Gebert, B. Sturmfels, T. Theobald: First steps in tropical geometry. Contemporary Mathematics 377, 289-317 (2005).
- [Yu] X. Yuan: Positive line bundles over arithmetic varieties. ArXiv (2006)
- [Zh] S. Zhang: Equidistribution of small points on abelian varieties. Ann. Math. (2) 147, No.1, 159-165 (1998).

