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Notation

Let K be a field with a non-trivial non-archimedean absolute value | |.

v( ) := − log | | is the associated valuation.

The valuation ring K ◦ := {α ∈ K | v(α) ≥ 0} has the unique maximal
ideal K ◦◦ := {α ∈ K | v(α) > 0} and residue field K̃ := K ◦/K ◦◦.

We have completion Kv and algebraic closure K of K .

CK := (Kv )v is the smallest algebraically closed field extension of K

which is complete with respect to an extension of | | to a complete
absolute value.

By abuse of notation, we use also v and | | on CK .

Let κ be the residue field of CK . One can easily show that κ is
algebraically closed.
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Tate-algebra [BGR,Ch.5]

All analytic considerations will be done over CK .

Idea: Proceed as in the theory of affine varieties or complex spaces.

For f =
∑

amxm ∈ CK [x1, . . . , xn], we have the Gauss-norm

|f | := sup |am|.

By the Gauss-Lemma, this is a multiplicative norm.

Definition

The completion CK 〈x1, . . . , xn〉 of CK [x1, . . . , xn] with respect to the
Gauss-norm is called the Tate-algebra.

The elements of CK 〈x1, . . . , xn〉 are the power series f =
∑

amxm

characterized by lim|m|→∞ |am| = 0. They are called strictly convergent on
the closed cube Bn := {α ∈ Cn

K | |α| ≤ 1}. Here, |m| and |α| are the
max-norms.
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Affinoid algebras [BGR,Ch.6]

Definition

A CK -algebra A is called an affinoid algebra if there is an ideal I in
CK 〈x1, . . . , xn〉 with A ∼= CK 〈x1, . . . , xn〉/I .

a ∈ A is an analytic function on Z (I ) := {α ∈ Bn | f (α) = 0 ∀f ∈ I}.

Definition

The supremum-seminorm for f ∈ A is |f |sup := supx∈Z(I ) |f (x)|.

We get the (CK )◦-algebra A ◦ := {f ∈ A | |f |sup ≤ 1} with ideal

A ◦◦ := {f ∈ A | |f |sup < 1} and residue algebra Ã := A ◦/A ◦◦.

Example

If A = CK 〈x1, . . . , xn〉, then | |sup is the Gauss-norm and hence

Ã = κ[x1, . . . , xn].
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Properties of affinoid algebras [BGR,Ch.6-7]

Proposition

Similarly to the coordinate ring of an affine variety, the affinoid algebra
A ∼= CK 〈x1, . . . , xn〉/I satisfies the following properties:

A is noetherian.

Hilbert’s Nullstellensatz holds.

Ã is a finitely generated reduced algebra over the residue field κ.

dim(A ) = dim(Ã )

The reduction map

π : Z (I ) → Max(Ã ), x 7→ {f ∈ A
◦ | |f (x)| < 1}/A ◦◦

is surjective.
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More notation

For x = (x1, . . . , xn), y = (y1, . . . , yn), we use the notation

x · y := x1y1 + · · · + xnyn

and
xy := x

y1
1 · · · xyn

n .

In the following, Γ := v(C×
K ) denotes the value group.

Definition

A polyhedron ∆ in Rn is a finite intersection of half spaces of the form
{u ∈ Rn | u · m ≥ c}. We call ∆ Γ-rational if we may choose all m ∈ Zn

and all c ∈ Γ. A polytope is a bounded polyhedron.

The valuation extends to the multiplicative torus by

val : (C×
K )n → Rn, x 7→ (v(x1), . . . , v(xn)).
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Polytopal domains [Gu1,§4]

Let ∆ be a Γ-rational polytope. We set U∆ := val−1(∆) and

CK 〈U∆〉 :=

{
f :=

∑

m∈Zn

amxm

∣∣∣∣∣ lim
|m|→∞

|am|e
−u·m = 0 ∀u ∈ ∆

}
.

By construction, the elements of CK 〈U∆〉 are convergent Laurent series on
the polytopal domain U∆ in (C×

K )n. More precisely, we have:

Proposition

CK 〈U∆〉 is an affinoid algebra with supremum norm

|f |sup := sup
m∈Zn,u∈∆

|am|e
−u·m

and maximal spectrum U∆.
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Berkovich spectra [Ber1,Ch.1]

If X is an affine variety, then Spec(K [X ]) is a “compactification” of X .
Berkovich has given a similar construction for an affinoid CK -algebra A :

Definition

The Berkovich spectrum M (A ) is the set of multiplicative bounded
seminorms p on A , i.e.

p : A → R+

p(a + b) ≤ p(a) + p(b) for a, b ∈ A

p(λa) = |λ|p(a) for λ ∈ CK and a ∈ A

p(1) = 1 and p(ab) = p(a)p(b) for a, b ∈ A

p(a) ≤ |a|sup for a ∈ A

We endow M (A ) with the coarsest topology such that the maps
p 7→ p(a) are continuous for all a ∈ A .
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Properties [Ber1,Ch.1-2]

Multiplicative bounded seminorms p satisfy the ultrametric triangle
inequality.

p induces a non-archimedean absolute value | | on the completion
H (p) of the quotient field of A /{a ∈ A | p(a) = 0} and a bounded
character χ : A → H (p).

Conversely, every bounded character on A to a complete extension of
CK induces a bounded multiplicative seminorm.
⇒ Analogy to the Gelfand spectrum of a C ∗-algebra.

We have a canonical embedding Z (I ) = Max(A ) → M (A ),
mapping x ∈ Z (I ) to the seminorm px(f ) := |f (x)|.

Theorem

M (A ) is a compactification of Max(A ).
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Reduction [Ber1,Ch.2]

Definition

The reduction of the Berkovich spectrum X := M (A ) is X̃ := Spec(Ã ).

The reduction map π : Z (I ) → Max(Ã ) extends to a map
π : X → X̃ , p 7→ {f ∈ A ◦ | p(f ) < 1}/A ◦◦.

Proposition

π : X → X̃ is surjective.

For every irreducible component Y of X̃ , there is a unique ξY ∈ X

with π(ξY ) dense in Y .

In fact, {ξY | Y irred. comp. of X̃} is the Shilov boundary of X , i.e. the
minimal subset S of X such that |f |sup = supp∈S p(f ) for all f ∈ A .
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Examples

Example

We redefine the closed unit ball by Bn := M (CK 〈x1, . . . , xn〉). Then

B̃n = Spec(κ[x1, . . . , xn]) is the affine n-space over the residue field κ
and hence it is irreducible.

The generic point of the reduction corresponds to {0}. If p ∈ Bn

satisfies π(p) = {0}, then {f ∈ A ◦ | p(f ) < 1} = A ◦◦ and hence
p = | |sup. Obviously, the Gauss-norm is the Shilov-boundary of Bn.

Example

Let U∆ := M (CK 〈U∆〉) and u ∈ ∆. We get a multiplicative norm

|f |u := sup
m∈Zn

|am|e
−u·m, f =

∑

m∈Zn

amxm ∈ CK 〈U∆〉.

Obviously, {| |u | u vertex of ∆} is the Shilov boundary of U∆.
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Analytic spaces [Ber1], [Ber2]

The category of Berkovich spectra is antiequivalent to the category of
affinoid spaces.

An analytic space X is given by an atlas of Berkovich spectra (see
[Ber2], §1, for the precise definition). Technical difficulties arise as the
charts are not open in X but compact. We look only at the relevant
examples:

Example

The analytic space (An)an associated to the affine space An is

{p : CK [x1, . . . , xn] → Rn | p multiplicative seminorm}

endowed with the coarsest topology such that p 7→ p(f ) is continuous for
all f ∈ K [x1, . . . , xn]. The cuboids Bn

r := {p ∈ (An)an | p(xi ) ≤ ri ∀i}
with r ∈ Γn form an atlas.
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GAGA principle [Ber1,Ch.3]

Let X = Spec(A) be a scheme of finite type over K , i.e.
A = K [x1, . . . , xn]/I for an ideal I .

Definition

The analytic space X an associated to X is

{p : A ⊗ K ◦C◦
K → Rn | p multiplicative seminorm}

endowed with the coarsest topology such that p 7→ p(f ) is continuous for
all f ∈ A. The charts are given by Bn

r ∩ X an, r ∈ Γn.

By a glueing process, we get an analytic space X an associated to
every scheme X of finite type over K .

The complex GAGA theorems hold here as well (e.g. X is
separated/proper over K ⇐⇒ X an is hausdorff/compact).
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Tropicalization [Gu1,§5]

Of major importance for the course is the following:

Example

Let Gn
m be the multiplicative torus Spec(K [x±1

1 , . . . , x±1
n ]). In simpler

terms, it is (K×)n. Note that

val : (C×
K )n → Rn, x 7→ (v(x1), . . . , v(xn))

extends to a continuous map

val : (Gn
m)an → Rn, p 7→ (− log p(x1), . . . ,− log p(xn)).

If X is a closed subscheme of Gn
m, then val(X an) is called the tropical

variety associated to X . If XK is connected, then X an is connected by
GAGA and hence val(X an) is connected.
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Admissible formal schemes [BL2]

Definition

An admissible formal scheme X over C◦
K is a locally finite union of

admissible formal affine schemes over C◦
K of the form Spf(A) for

A ∼= C◦
K 〈x1, . . . , xn〉/I without C◦

K -torsion (i.e. A is flat over C◦
K ).

X has a generic fibre X an which is an analytic space over CK locally
given by the Berkovich spectrum of A ⊗C◦

K
CK .

X has a special fibre X̃ which is a scheme over κ locally given by
Spec(A ⊗C◦

K
κ).

Example

The formal completion of the affine space An over C◦
K along the special

fibre is X := Spf(C◦
K 〈x1, . . . , xn〉). Then X an = Bn and

X an(CK ) = An(C◦
K ).
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C◦
K -models

This generalizes to any flat scheme X of finite type over C◦
K . Then

the formal completion X of X along the special fibre is an admissible
formal scheme and X an(CK ) is the set of C◦

K -integral points of XK .

If X is proper over C◦
K (e.g. projective), then X an = (XK )an.

Definition

A C◦
K -model X for the scheme X of finite type over K is an admissible

formal scheme over C◦
K with X an = X an and similarly for line bundles.

As a working definition, you may think about algebraic models which is
okay as we deal with projective varieties (formal GAGA-principle).
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Strictly semistable models [dJ]

Definition

A C◦
K -model X is called strictly semistable if X is covered by formal

open subsets U with an étale morphism

ψ : U −→ Spf (C◦
K 〈x0, . . . , xn〉/〈x0 · · · xr − π〉)

for some r ≤ n and π ∈ C◦◦
K .

i.e. the special fibre of X is a divisor with normal crossings in X . The
importance of strictly semistable models comes from the semistable

alteration theorem:

Theorem (de Jong)

If K ◦ is a complete discrete valuation ring, then every variety X over K

has a generically finite covering by a variety X ′ with a strictly semistable

C◦
K -model.
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Strictly semistable examples

Example

Let ∆ := {u ∈ Rn
+ | u1 + · · · + un ≤ v(π)} (standard simplex). Then

Spf((CK 〈∆〉)◦) ∼= Spf (C◦
K 〈x0, . . . , xn〉/〈x0 · · · xr − π〉) is a strictly

semistable C◦
K -model for U∆ with special fibre x0 · · · xr = 0 in (Gn

m)κ . Up
to étale coverings, these are the building blocks in the definition.

Example

Figure: X an and X̃ for a strictly
semistable model X

Figure: corresponding dual graph S(X )

21 / 82



Skeleton

Let (Yi )i∈I be the irreducible components of the special fibre X̃ of a
strictly semistable C◦

K -model X . By definition, they are smooth.

For p ≥ 1, let Y (p) :=
⋃

J⊂I ,|J|=p

⋂
j∈J Yj .

Then Y (p) \ Y (p+1) is smooth and the irreducible components are

called strata of X̃ .

The strata form a partition of X̃ .

Definition

The skeleton S(X ) is an abstract simplicial set given as the union of
canonical simplices ∆S which are in bijective correspondence to the strata
S of X subject to the following rules:

S ⊂ T if and only if ∆T is a closed face of ∆S . Moreover, every
closed face of ∆S is of this form.

∆R ∩ ∆S is the union of all ∆T with R ∪ S ⊂ T .
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Realization of the skeleton [Ber3], [Ber4]

We may realize the skeleton as an abstact metrized simplicial set:

There is a formal affine open covering U of X such that we have an
étale map ψ from U to Spf (C◦

K 〈x0, . . . , xn〉/〈x0 . . . xr − π〉).

By passing to a subcovering, we may assume that
⋂

Yi∩Ũ 6=∅
Yi ∩ Ũ is

a stratum S . Then ∆S := {u ∈ Rr+1
+ | u0 + · · · + ur = v(π)}.

The coordinates uj correspond to Yi with Yi ∩ Ũ 6= ∅ and hence
S(X ) may be glued according to the rules.

There is a canonical Val : X an → S(X ), given on U an by
Val(p) := (− log p(ψ∗x0), . . . ,− log p(ψ∗xr )) ∈ ∆S .

Berkovich has shown that the skeleton S(X ) may be identified with
a subset of X an given by certain maximal points.

Theorem (Berkovich)

There is a continuous deformation retraction d : X an × [0, 1] → X an with

d(x , 0) = x, d(x , 1) = Val(x) and d(u, t) = u for all u ∈ S(X ), t ∈ [0, 1].
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Abelian varieties

Abelian varieties are projective group varieties.

An abelian variety of dimension 1 is called an elliptic curve.

Definition

An abelian variety A over K is called of potentially good reduction with
respect to v if Aan is the generic fibre of an admissible formal group
scheme B over Can

K such that B̃ is an abelian variety over κ.

Algebraically, this is equivalent to the existence of an abelian scheme
over C◦

K with generic fibre ACK
.

For an elliptic curve E , this is equivalent to |j(E )| ≤ 1.

Definition

An abelian variety A has totally degenerate reduction with respect to v if
Aan is isomorphic as an analytic group to (Gn

m)an/M for a discrete
subgroup M of C×

K such that val(M) is a lattice in Rn.
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Tate elliptic curve [BG,§9.5]

Theorem (Tate)

For an elliptic curve E the following properties are equivalent:

(i) |j(E )| > 1.

(ii) E an ∼= C×
K/q

Z for some q ∈ K ◦◦.

(iii) E is totally degenerate with respect to v.

Remark

For q in (ii), the elliptic curve E can be defined by the Weierstrass
equation y2 + xy = x3 + a4x + a6 where a4 and a6 are convergent power
series given by

a4(q) =
∞∑

n=1

n3qn

1 − qn
, a6(q) = −

1

12

∞∑

n=1

(7n5 + 5n3)qn

1 − qn
.
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Properties

Remark

The isomorphism C×
K/q

Z → E in (ii) is given by the convergent
power series

x(ζ, q) =

∞∑

n=−∞

qnζ

(1 − qnζ)2
− 2

∞∑

n=1

nqn

1 − qn

y(ζ, q) =
∞∑

n=−∞

q2nζ2

(1 − qnζ)3
+

∞∑

n=1

nqn

1 − qn
.

Furthermore j(E ) = 1
q

+ 744 + 196884q + . . .

The reduction of E is given by y2 + xy = x3.
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Raynaud extension [BL1]

For higher dimensional abelian varieties A, a mixture of good reduction
and total degeneration is possible. It is given by the Raynaud extension

1 → (Gn
m)an → E → Ban → 0.

This is a short exact sequence of analytic groups with B an abelian
variety of good reduction. We omit the construction which is
canonical. E is locally trivial over Ban such that the |xj | are
well-defined on E for the coordinates xj on (Gn

m)an.

This leads to a continuous map val : E → Rn, p 7→ (− log p(xj)).

We have a uniformization of A, i.e. Aan ∼= E/M for a discrete
subgroup M of E (CK ) such that val(M) is a lattice in Rn.

If A has potentially good reduction, then A = B.

If A has totally degenerate reduction, then B = 0.
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Notation

Let K be a field with a non-trivial non-archimedean absolute value | |.

v( ) := − log | | is the associated valuation.

The valuation ring K ◦ := {α ∈ K | v(α) ≥ 0} has the unique maximal
ideal K ◦◦ := {α ∈ K | v(α) > 0} and residue field K̃ := K ◦/K ◦◦.

We have the completion Kv and algebraic closure K of K .

CK := (Kv )v is the smallest algebraically closed field extension of K

which is complete with respect to an extension of | | to a complete
absolute value.

By abuse of notation, we use also v and | | on CK .

Let κ be the residue field of CK .

Let Γ := v(C×
K ) be the value group of CK .
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Tropical algebraic geometry

We consider the multiplicative torus Gn
m with Gn

m(CK ) = (C×
K )n and

val : (C×
K )n → Rn, val(x1, . . . , xn) = (v(x1), . . . , v(xn)) .

Let X be a closed algebraic subvariety of Gn
m and d := dim(X ).

Definition

The closure of val(X ) in Rn is denoted by trop(X ) and is called the
tropical variety associated to X .

Theorem (Einsiedler, Kapranov, Lind)

trop(X ) is a finite connected union of d-dimensional Γ-rational

polyhedrons.

Indeed, we have seen that trop(X ) = val(X an) which is the set of
valuations on K [X ] extending v . It was shown by Bieri and Groves that
this set has the required properties.
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Examples [RST]

Figure: Plane conics

Figure: Plane biquadratic curves
Figure: Plane cubics
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Toric varieties [KKMS,Ch.I]

Definition

A Gn
m-toric variety over the arbitrary field F is a normal variety Y with an

algebraic Gn
m-action containing a dense n-dimensional orbit.

Proposition

There are bijective correspondences between

(a) rational polyhedral cones σ in Rn which do not contain a linear
subspace 6= {0},

(b) finitely generated saturated semigroups S in Zn which generate Zn as
a group,

(c) affine Gn
m-toric varieties Y over F (up to equivariant isomorphisms).

They are given by S = σ̌ ∩ Zn and Y = Spec(F [xS ]), where σ̌ is the dual
cone {u′ ∈ Rn | u · u′ ≥ 0 ∀u ∈ σ} and xS := {xm | m ∈ S}.
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Fans and toric varieties, [KKMS,Ch.I]

Definition

A rational polyhedral fan C in Rn is a set of rational polyhedral cones
such that

(a) σ ∈ C ⇒ all closed faces of σ are in C ;

(b) σ, ρ ∈ C ⇒ σ ∩ ρ is either empty or a closed face of ρ and σ.

(c) No σ ∈ C contains a linear subspace 6= {0}.

Remark

If ρ is a closed face of σ ∈ C , then σ̌ ⊂ ρ̌ induced a canonical open

immersion Spec(F [x ρ̌∩Zn
]) → Spec(F [x σ̌∩Zn

]).

Hence one can glue the affine toric varieties corresponding to the
elements of C and we get a Gn

m-toric variety.

Every Gn
m-toric variety is of this form.

The toric variety is proper over F if and only if
⋃

σ∈C
σ = Rn.
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Reduction of a polytopal domain [Gu1,§4]

Let ∆ be a Γ-rational polytope in Rn. Then we have seen the
polytopal domain U∆ := val−1(∆) in (Gn

m)an.

The affinoid torus Tan
1 acts on U∆. It is defined by

Tan
1 := {p ∈ (Gn

m)anK | p(xj) = 1 for j = 1, . . . , n} = val−1(0).

Passing to reductions, we get a torus action of (Gn
m)κ on Ũ∆.

Proposition

(a) There is a bijective order reversing correspondence between torus

orbits Z of Ũ∆ and open faces τ of ∆, given by Zτ = π(val−1(τ))
and τZ = val(π−1(Z )).

(b) dim(τ) + dim(Zτ ) = n.

(c) If Yu is the irreducible component of Ũ∆ corresponding to the vertex

u of ∆ by (a), then the natural (Gn
m)κ-action of Ũ∆ makes Yu into

an affine toric variety with polyhedral cone generated by ∆ − u.
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Polytopal decompositions [Gu1,§4]

Definition

A polytopal decomposition of Rn is a locally finite set C of polytopes with

(a) ∆ ∈ C ⇒ all closed faces of ∆ are in C ;

(b) ∆, σ ∈ C ⇒ ∆ ∩ σ is either empty or a closed face of ∆ and σ.

(c)
⋃

∆∈C
∆ = Rn.

Remark

If ∆′ is a closed face of ∆ ∈ C , then the canonical morphism
U∆′ → U∆ induces an open immersion of the reductions.

Hence one can glue the formal affine schemes Spf(CK 〈U∆〉) to get a
C◦

K -model X of Gn
m.

Clearly, (Gn
m)κ acts on the special fibre X̃ .
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Properties of these models X of Gn
m [Gu1,§4]

Proposition

(a) There is a bijective correspondence between torus orbits of X̃ and
open faces of C .

(b) The irreducible components of X̃ match with the vertices of C .

(c) If Yu is the irreducible component of X̃ corresponding to the vertex
u, then Yu is a toric variety with fan given by the cones σ in Rn

which are generated by ∆ − u for ∆ ∈ C with vertex u.

Example

We pave R2 by squares of length v(π) for a fixed π ∈ C◦◦
K and then we

choose in every square a diagonal. This gives a simplex decomposition C

of R2. The associated C◦
K -model X of Gn

m is strictly semistable since the
local pieces are Spf(CK 〈U∆〉◦) ∼= Spf(C◦

K 〈x0, x1, x2〉/〈x0x1x2 − π〉). The
torus orbits are equal to the strata and hence the skeleton is Rn.
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Analytic subvarieties of polytopal domains [Gu1,§5]

It will be important in the sequel to generalize the tropicalization to
analytic subvarieties of Gn

m. We start locally:

Let U∆ be a Γ-rational polytopal domain in Rn.

A closed analytic subvariety X of U∆ is given by a unique ideal I in
A := CK 〈U∆〉 such that X = M (A /I ).

Note that I is not assumed to be reduced or prime.

trop(X ) := val(X ) is called the tropical variety associated to X .

Theorem (Gu1)

trop(X ) is a finite union of Γ-rational polytopes of dimension ≤ dim(X ).

This can be deduced from de Jong’s alteration theorem.
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The dimension theorem [Gu1,§5]

Theorem (Gu1)

Suppose that ∆ is n-dimensional and that X is an analytic subvariety of

U∆ of pure dimension d. If val(X ) contains an interior point of ∆, then

trop(X ) ∩ int(∆) is of pure dimension d.

Remark

This proves also the dimension theorem for the tropical variety of a closed
subscheme of Gn

m. Indeed, we may use a polytopal decomposition of Rn to
deduce it from the local dimension theorem above.

For the proof, we need the following result for affinoid algebras.

Proposition

Let ϕ : A → B be a homomorphism of affinoid algebras. Then ϕ is finite
(i.e. B is a finite A -algebra) if and only if ϕ̃ : Ã → B̃ is finite.
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Proof of the dimension theorem for N = 0

It is enough to prove d ≤ N := dim(trop(X )).

We may assume X irreducible and therefore val(X ) is connected.

We handle N = 0 on this slide, hence val(X ) is a point in Γn.

Since the embedding i : X ↪→ U∆ of Berkovich spectra is finite, the
reduction ĩ : X̃ → Ũ∆ is also finite.

Since val(X ) ⊂ int(∆), we deduce that X̃ is mapped to the closed

orbit of Ũ∆.

The latter is a point and hence X̃ is finite.

We conclude dim(X ) = dim(X̃ ) = 0.
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Proof of the dimension theorem for N > 0.

By shrinking ∆, we may assume that val(X ) is pure dimensional.

There is x ∈ X (CK ) with u := val(x) ∈ int(∆).

Using x for a change of coordinates, we may assume u = 0.

There is m ∈ Zn such that the hyperplane {u · m = 0} intersects
val(X ) transversally.

We apply the induction hypothesis to X ′ := X ∩ {xm = 1}.

Hence we get d − 1 = dim(X ′) ≤ dim(val(X ′)).

Using val(X ′) ⊂ val(X ) ∩ {u ·m = 0}, we deduce d − 1 ≤ N − 1.
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Periodical tropical geometry I [Gu1,§6]

Let X be a d-dim. algebraic subvariety of a totally degenerate abelian
variety A wrt. v , i.e. Aan = T/M and Λ = val(M) is a lattice in Rn.

T
val

−−−−→ Rn

yp

y

Aan val
−−−−→ Rn/Λ

Definition

val(X an) is called the tropical variety and is denoted by Trop(X ).

Applying the dimension theorem to the analytic subvariety p−1(X ), we get:

Theorem (Gu1)

Trop(X ) is a finite union of d dimensional Γ-rational polytopes in Rn/Λ.

41 / 82



Periodical tropical geometry II [Gu3,§3]

Let A be an abelian variety with uniformization E from the Raynaud
extension 1 → (Gn

m)an → E → Ban → 0 such that Aan = E/M.

E
val

−−−−→ Rn

yp

y

Aan val
−−−−→ Rn/Λ

Definition

val(X an) is called the tropical variety associated to the algebraic subvariety
X of A and is denoted by Trop(X ).

Theorem (Gu3)

There is e ∈ {0, 1, . . . ,min{dim(X ), dim(B)}} such that Trop(X ) is a

finite union of Γ-rational polytopes of dimension dim(X ) − e in Rn/Λ.
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Illustration of tropical excess

Example

Assume A = B1 × B2 with B1 of potentially good reduction and B2

totally degenerate.

Then (B2)
an = (Gn

m)an/M and the Raynaud extension is given by
1 → (Gn

m)an → Ban
1 × (Gn

m)an → Ban
1 → 0.

If X is a d-dimensional algebraic subvariety of A, then
Trop(X ) = val(p2(X

an)) and hence dim(Trop(X )) = dim(p2(X )).

This dimension is d − e, where any e ∈ {0, 1, . . . ,min{d , dim(B)}}
can be achieved.

By using the local triviality of the Raynaud extension, essentially the same
argument proves the previous theorem in general.
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Mumford’s construction [Gu1,§6]

Let A be a totally degenerate abelian variety with respect to v , i.e.
Aan = T/M and Λ = val(M) is a lattice in Rn.

Definition

A polytope ∆ in Rn/Λ is given by a polytope ∆ in Rn such that ∆
maps bijectively onto ∆.

A polytopal decomposition of Rn/Λ is a finite family C of polytopes
in Rn/Λ induced by a Λ-periodic polytopal decomposition C of Rn.

Glueing the polytopal domains, we get a C◦
K -model U of Gn

m.

By Λ-periodicity, U has a canonical action of M. We get a C◦
K -model

A := U /M of A.

A is obtained by glueing the formal affine U∆ := Spf(CK 〈U∆〉)
along commen faces and by identifying U∆ and U∆+λ for all λ ∈ Λ.
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Mumford models [Gu1,§6]

Definition

We call A the Mumford model associated to A.

Proposition

There is a bijective order reversing correspondence between torus
orbits Z of Ã and open faces τ of C .

The irreducible components Y of Ã are toric varieties and correspond
to the vertices of C .

The Mumford model is strictly semistable if there is π ∈ C◦◦
K such

that every maximal ∆ ∈ C is GL(n,Z)-isomorphic to the standard
simplex {u ∈ Rn

+ | u1 + . . .+ un ≤ v(π)}.

Then the associated skeleton is the fundamental domain Rn/Λ and
the canonicial simplices are the elements of C .
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Notation

Let K be a field with a non-trivial non-archimedean absolute value | |.

v( ) := − log | | is the associated valuation.

The valuation ring K ◦ := {α ∈ K | v(α) ≥ 0} has the unique maximal
ideal K ◦◦ := {α ∈ K | v(α) > 0} and residue field K̃ := K ◦/K ◦◦.

We have the completion Kv and algebraic closure K of K .

CK := (Kv )v is the smallest algebraically closed field extension of K

which is complete with respect to an extension of | | to a complete
absolute value.

By abuse of notation, we use also v and | | on CK .

Let κ be the residue field of CK .

Let Γ := v(C×
K ) be the value group of CK .
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Metrics

Let X be a projective variety over CK . By GAGA, X an is compact.

We consider a line bundle L on X , i.e. a family of 1-dimensional
vector spaces (Lx)x∈X with a continuity condition.

A metric ‖ ‖ on Lan is a norm on each fibre Lan
x

∼= CK .

A section of L on the open subset U of X is a family s(x) ∈ Lx ,
x ∈ U, which gives a morphism s : U → L.

We consider only continuous metrics, i.e. x 7→ ‖s(x)‖ is continuous
with respect to the analytic topology for every local section.

For continuous metrics ‖ ‖, ‖ ‖′ on L, we have the distance of

uniform convergence

d(‖ ‖, ‖ ‖′) := sup
x∈Xan

∣∣log
(
‖s(x)‖/‖s(x)‖′

)∣∣ .

Clearly, the definition is independent of the choice of s(x) ∈ Lx \ {0}.
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Formal metrics [Gu4,§2]

Let L be a formal C◦
K -model of L, i.e. L is a line bundle on the

C◦
K -model X with L = L |Xan .

The associated metric ‖ ‖
L

on L is defined as follows: Every x ∈ X an

is contained in U an for a trivialization U of L . The latter means
that there is a section s of L without zeros.

We set ‖s(x)‖L := 1. This is well-defined as s(x) is determined up to
units in C◦

K and determines the metric completely.

On U an, every section t of L corresponds to an analytic function f

with respect to the trivialization and ‖t(x)‖ = |f (x)|, therefore the
metric is continuous.

Definition

Metrics of the form ‖ ‖
L

are called formal.

A root of a formal metric is a metric ‖ ‖ on L such that ‖ ‖⊗m is a
formal metric for some non-zero m ∈ N.
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Semipositive admissible metrics [Gu4,§2]

Theorem (Gu, 1998)

The roots of formal metrics are dense in the space of continuous metrics

on Lan. In particular, the set of roots of formal metrics on OXan is

embedded onto a dense subset of C (X an) by the map ‖ ‖ 7→ − log ‖1‖.

A line bundle F on a projective variety Y is called nef if degF (C ) ≥ 0
for all closed curves C in Y .
Then one can show that the degree of any closed subvariety with
respect to F is non-negative.

Definition

A metric ‖ ‖
L

induced by the line bundle L on the C◦
K -model X is

called semipositive if the reduction L̃ is a nef line bundle on the
special fibre X̃ .

A semipositive admissible metric ‖ ‖ on L is a uniform limit of roots
of semipositive formal metrics ‖ ‖n on L.
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Canonical metrics [BG,§9.5]

Now let (L, ρ) be a rigidified line bundle on the abelian variety A over
K , i.e. ρ ∈ L0(K ) \ {0}.

Then there is a canonical metric ‖ ‖ρ for (L, ρ) which behaves well
with respect to tensor product and homomorphic pull-back.

We restrict to the case that L is ample and symmetric, then ‖ ‖ρ is
given by the following variant of Tate’s limit argument.

The rigidification and the theorem of the cube yield an identification
[m]∗L = L⊗m2

for m ∈ Z.

The canonical metric is characterized by [m]∗‖ ‖can = ‖ ‖can
⊗m2

and
it is given by

‖ ‖can = lim
m→∞

([m]∗‖ ‖)1/m2

,

where ‖ ‖ is any continuous metric on Lan.

In particular, we may choose ‖ ‖ as a root of a semipositive formal
metric and hence ‖ ‖ρ is a semipositive admissible metric.
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Examples of canonical metrics [BG,§9.5]

Example

If A is an abelian variety with potentially good reduction, then L⊗2 has an

ample symmetric C◦
K -model L and hence ‖ ‖can = ‖ ‖

1/2
L

is a root of a
semipositive formal metric.

If A has bad reduction, then ‖ ‖can is no longer a root of a formal metric.

Example

Let E be a Tate elliptic curve, i.e. E an = C×
K/q

Z and let L = O([P])
be the line bundle for the 2-torsion point P given by q̃ := q1/2.

Then P is the divisor of the global section of L corresponding to the
theta function θ(ζ, q) :=

∑∞
n=−∞ q̃n2

ζn.

The pull-back of the even ample line bundle L to C×
K is trivial and we

can easily compute − log(‖1‖can,ζ) = v(ζ)2

2v(q) .
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Chambert-Loir’s measures [Gu1,§3]

Theorem (Chambert-Loir)

For a d-dimensional projective variety X and L = (L, ‖ ‖) an ample line

bundle endowed with a semipositive admissible metric, there is a unique

positive regular Borel measure c1(L)∧d on X an with the properties:

(a) c1(L
⊗m

)∧d = mdc1(L)d and c1(L)∧d is continuous in ‖ ‖.

(b) If ϕ : Y → X is a morphism of d-dimensional projective varieties,

then the projection formula ϕ∗

(
c1(ϕ

∗L)∧d
)

= deg(ϕ)c1(L)∧d holds.

(c) c1(L)∧d has total measure degL(X ).

(d) If X is a formal C◦
K -model of X with reduced special fibre and if the

metric of L is induced by a formal C◦
K -model L of L on X , then

c1(L)∧d =
∑

Y deg
L̃

(Y )δξY
, where Y ranges over the irreducible

components of X̃ and δξY
is the Dirac measure in the unique point

ξY of X an which reduces to the generic point of Y .
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Canonical measures

Now we consider an ample symmetric line bundle L on an abelian variety
A and a d-dimensional subvariety X of A.

Definition

We call µ := c1(L|X , ‖ ‖can)
∧d the canonical measure on X associated to

L.

Example

If X = A and if A has potentially good reduction, then (d) from the above
theorem shows that µ = degL(A)δξ, where ξ is the unique point of Aan

which reduces to the generic point of the Néron-model A .
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Setup

We assume that v is a discrete valuation of K and hence Γ = Q.

Let X be a closed d-dimensional variety of the abelian variety A.

The tropical excess e was defined by dim(Trop(X )) = d − e.

We assume for simplicity that X has a strictly semistable C◦
K -model

X , otherwise we have to use a strictly semistable alteration.

Recall that the skeleton S(X ) of X is a subset of X an given as the

union of canonical simplices ∆S corresponding to the strata S of X̃ .

Let b := dim(B) for the abelian variety B of good reduction in the
Raynaud extension 1 → (Gn

m)an → E → Ban → 0 of A.
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Explicit description of canonical measures [Gu3]

Theorem (Gu3)

There is a list of canonical simplices (∆S)S∈I with the properties:

The maximal simplices (∆S)S∈J from this list are (d − e)-dimensional.

val is one-to-one on every ∆S , S ∈ I , and
⋃

S∈J val(∆S) = Trop(X ).

For any ample line bundle L on A, the canonical measure

µ := c1(L|X , ‖ ‖can)
∧d is supported in

⋃
S∈J ∆S .

The restriction of µ to the relative interior of ∆S is a positive

multiple of the relative Lebesgue measure which may be explicitly

computed in terms of convex geometry.

Remark

If A is totally degenerate, then dim(∆S) = d for all S ∈ I .

In general, there are examples where simplices of all dimensions in
{d − b, . . . , d − e} may occur for a single canonical measure.
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Sketch of proof I

We sketch the proof in the special case X = A totally degenerate.

Hence Aan = (Gn
m)an/M for a discrete subgroup M of (C×

K )n such
that Λ := val(M) is a lattice in Rn.

Since Λ is a subgroup of Qn of rank n, there is a basis b1, . . . , bn of
Zn, k ∈ N and k1|k2| · · · |kn ∈ Z such that k1

k
b1, . . . ,

kn

k
bn is a basis of

Λ.

The fundamental domain of Λ is a cuboid with respect to the basis
b1, . . . , bn and hence we can easily pave Rn by translates of 1

m
Q,

where Q is the unit cube and m ∈ N is fixed.

We deduce that there is a rational Λ-periodic simplex decomposition
C of Rn such that every n-dimensional ∆ ∈ C is GL(n,Z) isomorphic
to a translate of 1

m
∆1 for the standard simplex

∆1 := {u ∈ Rn
+ | u1 + · · · + un ≤ 1}.
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Sketch of proof II

We conclude that the Mumford model A of A associated to C is
strictly semistable.

Note that the skeleton S(A ) of A is Rn/Λ with canonical simplices
given by C := C /Λ. Moreover, S(A ) is a subset of Aan.

By a result of Künnemann, we may assume that L has a C◦
K -model

L on A such that the formal affine open subsets
U∆ := Spf(CK 〈U∆〉◦) form a trivialization of L .

We identify the pull-back p∗L to (Gn
m)an with (Gn

m)an × CK . Then
the section 1 corresponds to a γ ∈ K 〈U∆〉× with respect to the
trivialization U∆.

It is easy to show that γ is equal to a∆xm∆ up to smaller terms.

We conclude that fL := − log p∗‖1‖L is a continuous function on Rn

with fL (u) = m∆ · u + v(a∆) on ∆.
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Dual complex

fL induces a canonical dual complex C fL on Rn.
The vertices of C fL are given by m∆, ∆ ∈ C .
Every k-dimensional polytope σ of C induces an (n − k)-dimensional
polytope σfL given by the vertices m∆, ∆ ⊃ σ.
By results of Mac Mullen, C fL is a polytopal decomposition of
(Rn)∗ = Rn for a suitable lattice ΛL not depending on L .

Figure: simplex decomposition C Figure: dual complex
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Facts from the theory of toric varieties [KKMS,Ch.I]

We know that every vertex u of C corresponds to an irreducible
component Yu of Ã .

We have seen that Yu is a (Gn
m)κ-toric variety.

L is ample on A if and only if fL is strictly convex with respect to
C , i.e. a convex function such that the maximal domains of
“linearity” are the n-dimensional polytopes in C .

degL (Yu) = n! vol({u}fL )
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Sketch of proof III

Chambert-Loir’s measure with respect to the formal metric ‖ ‖L is
given by

c1(L, ‖ ‖L )∧n =
∑

u

degL (Yu)δξu
,

where u ranges over the vertices of C in Ω and ξu is the unique point
of Aan with reduction equal to the generic point of the irreducible
component Yu.

For Ω measurable in Rn/Λ, we have

µ1(Ω) :=

∫

Ω
c1(L, ‖ ‖L )∧n =

∑

u∈Ω

degL (Yu) = n!
∑

u∈Ω

vol({u}fL )

where u is always supposed to be a vertex in C .
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Sketch of proof IV

Figure: Ω Figure: µ1(Ω)

By Tate’s limit argument, we have

‖ ‖can = lim
m→∞

([m]∗‖ ‖L )
1/m2

.
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Sketch of proof V

Let Am be the Mumford model of A associated to Cm := 1
m

C .
[m] extends to a morphism Am → A1 and hence [m]∗L is a
C◦

K -model of [m]∗L = L⊕m2
an A.

⇒ ‖ ‖can = lim
m→∞

(‖ ‖[m]∗L )
1/m2

.

The canonical measure µ := c1(L, ‖ ‖can)
∧n is given by

µ = lim
m→∞

m−2nc1(L, ‖ ‖[m]∗L ) = lim
m→∞

m−2nµm

with

µm(Ω) = n!
∑

um∈Ω

vol({um}
mfL ) = n! mn

∑

um∈Ω

vol({um}
fL )

where um is supposed to be a vertex of Cm.
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Sketch of proof VI

Figure: Ω and C2 Figure: µ2(Ω)
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Sketch of proof VII

For m � 0, an easy calculation shows

∑

um∈Ω

vol({um}
fL ) ∼ mn vol(Ω)

vol(ΛL)

vol(Λ)

and hence

µ(Ω) = n! vol(Ω)
vol(ΛL)

vol(Λ)
.

By construction, we have supp(µ) = S(A ).
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Canonical measure for X = A

Corollary [Gu3]

If X = A is a d-dimensional abelian variety, then the canonical measure
c1(L, ‖ ‖can)

∧d for an ample line bundle L is equal to the Haar measure µ
on the skeleton Rn/Λ of A determined by µ(Ω) = degL(A).

Proof.

If A is totally degenerate, then the claim follows from the above proof and
the fact that Chambert-Loir’s measures have total measure equal to the
degree. We skip the general case.
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Diophantine geometry

Example

The diophantine equation x4 − y4 = 5 has only finitely many rational
solutions, e.g. (3

2 ,
1
2).

In general, we have for any number field K the Mordell-conjecture.

Theorem (Faltings 1983)

An algebraic curve of genus g > 1 has only finitely many points with

coordinates in K.

A central tool is the height of a point.

The height measures the arithmetic complexity of the point.

e.g. h(3
2 ,

1
2) = log(3), as we have the projective solution (2 : 3 : 1).
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Product formula [BG,Ch.1]

Let MK be the set of absolute values on the number field K which
extend the usual absolute value or the p-adic absolute values on Q.

For v ∈ MK extending q ∈ MQ, let Kv ,Qq be the completions and let

µ(v) :=
[Kv :Qq]
[K :Q] .

For non-zero α ∈ K , we have the product formula
∏

v∈MK

|α|
µ(v)
v = 1.

Remark

If K = k(B) is the function field of a smooth curve B over an
algebraically closed field, then every point v ∈ B induces the discrete
absolute value |f |v := e−ord(f ,v) and we set MK := B.

The product formula holds here as in the number field case.

In the following, the field K is either a number field or a function field.
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Semipositive admissible metrics [Gu4,§3]

Let L be an ample line bundle on the projective variety X over K .

If v is non-archimedean, then we are going to apply the theory of
semipositive admissible metrics on the Berkovich analytic space X an

v .

If v |∞, then X an
v is a complex space and there is also a notion of

semipositive admissible metric ‖ ‖v on Lan
v . For X smooth, this means

that ‖ ‖v is a smooth hermitian metric with semipositive curvature.

Example

If L is an ample OK -model for L⊗m, then we have seen that ‖ ‖
1/m

L ,v

defines a semipositive formal metric on Lan
v for v 6 |∞.

Definition

A semipositive admissible metric ‖ ‖ on L is a family of semipositive
admissible metrics ‖ ‖v on Lan

v , v ∈ MK , which are as in the above
example up to finitely many v ∈ MK .
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Heights [BG,Ch.2]

Let L be the ample line bundle L endowed with a semipositive admissible
metric ‖ ‖.

Definition

The height of P ∈ X (K ) is given by

hL(P) := −
∑

w∈MF

µ(w) log ‖s(x)‖w ,

where F/K is a finite extension with P ∈ X (F ) and s(x) ∈ Lx \ {0}.

µ(w) ensures that the height does not depend on F .

The product formula shows that the height does not depend on s(x).

Theorem (Weil)

The height does not depend on ‖ ‖ up to bounded functions.
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Néron–Tate–heights [BG,Ch.9]

Let A be an abelian variety over K with an ample even line bundle L.

For v ∈ MK , let ‖ ‖can,v be the canoncial metric of Lan
v with respect

to a fixed rigidification of L.

This induces a semipositive admissible metric ‖ ‖can on L.

Definition

We call ĥL := h(L,‖ ‖can) the Néron–Tate–height with respect to L.

By Weil’s theorem, ĥL(P) = limm→∞ m−2h(L,‖ ‖)(mP) for any
semipositive admissible metric ‖ ‖ on L (Tate’s limit formula).

ĥL is a positive semidefinite quadratic form.

The kernel of the associated bilinear form is the torsion group.

We get canonical semidistance dL(P,Q) := ĥL(P − Q) on A.
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The Bogomolov conjecture over the number field K [Zh]

Definition

A torsion subvariety of A has the form B + t for an abelian subvariety B

and a torsion point t of A.

For a closed subvariety X of A, we have the Bogomolov conjecture:

Theorem (Ullmo 1998 for curves, Zhang 1998 in general)

There are only finitely many maximal torsion subvarieties in X .

ĥL has a positive lower bound on their complement in X .

This is a statement for points with coordinates in K .

The torsion points are dense in every torsion subvariety.

The statement is independent of the choice of L.
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Bogomolov conjecture over the function field K = k(B)

Many proofs are easier for function fields:

Fermat’s conjecture: Tschebyscheff, Liouville, Korkine, 19th century

Mordell conjecture: Manin, Grauert, Samuel, 1963-1966

Theorem (Gu2)

The Bogomolov conjecture holds if A is totally degenerate with respect to

some v ∈ MK .

The Bogomolov conjecture is wrong if X and A are defined over k .

It is conjectured only if TrL/k(A) = 0 for all finite L/K .

The Bogomolov conjecture was known only for some curves (e.g.
g = 2) due to Moriwaki, Yamaki.

Recent work of Zhang and Faber give all curves g ≤ 4 and more
examples.
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Setup for equidistribution

The proof of the Bogomolov conjecture relies on the following
equidistribution result:

If X is a closed subvariety of the abelian variety A and L is an even
ample line bundle on A.

We fix a place v ∈ MK and an embedding K ↪→ CKv
over K to

identify X (K ) with a subset of X an
v .

Note that the absolute Galois group G := Gal(K/K ) acts on X (K ).

Suppose that (Pn) is a small generic sequence in X (K ):

generic means {n ∈ N | Pn ∈ Y } is finite for every closed Y ( X .
small means that limn→∞ ĥL(Pn) = 0.

We consider the discrete probability measure µn on X an
v which has

support GPn and is equidistributed on this Galois orbit.
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Equidistribution theorem [Yu], [Gu4]

Theorem

We have the weak convergence µn → (degL(X )−1c1(L|X , ‖ ‖can,v )∧d of

regular probability measures on X an
v .

Remark

There is a generalization to arbitrary projective varieties X and any
semipositive admissible metric ‖ ‖ on L, where now small means that
h(L,‖ ‖)(Pn) converges to the height h(L,‖ ‖)(X ) of X .

If K is a number field, the equidistribution theorem was proved by:

Szpiro, Ullmo and Zhang for v |∞ and positive curvature at v .

Chambert-Loir for v 6 |∞ if ‖ ‖v is induced by an ample model.

Yuan in general.
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Methods of proof [Yu], [Gu4]

If the curvature is positive (or the metric is induced by an ample
model), then the arithmetic Hilbert-Samuel formula is used to prove
the fundamental inequality

h(L,‖ ‖)(X ) ≤ lim inf
n→∞

h(L,‖ ‖)(Pn).

A variational principle for metrics on L is used to deduce the
equidistribution theorem from the fundamental inequality.

This is possible as the variational metrics remain semipositive.

For semipositive admissible metrics, this is no longer true.

Yuan’s idea is to prove a variational form of the fundamental
inequality based on Siu’s theorem in the theory of big line bundles.

This is good enough to prove the equidistribution theorem as above.

Yuan’s proof may be adapted to function fields. This was done by Faber in
the special case h(L,‖ ‖)(X ) = 0 and independently by [Gu4] in general.
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Tropical equidistribution theorem [Gu2,§5]

Let A be an abelian variety which is totally degenerate with respect to
a fixed v ∈ MK and let X be a d-dimensional closed subvariety.

Let (Pn)n∈N be a small generic sequence in X as before.

Let us consider the following discrete probability measure on Trop(X ):

µn =
1

|GPn|

∑

Q∈GPn

δval(Q).

Theorem (Gu2)

Then µn converges weakly to a strictly positive volume form µ on

Trop(X ), i.e. Trop(X ) is a finite union of d-dimensional polytopes ∆ such

that µ|∆ is a positive multiple of the Lebesgue measure.

This follows by taking val∗ in the previous equidistribution theorem and
then using the explicit description of the canonical measures.
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Proof of the Bogomolov conjecture I [Gu2,§6]

It is easy to see that the Bogomolov conjecture is equivalent to:

Theorem (Gu2)

Let X be a closed subvariety of the abelian variety A over K. We assume

that A is totally degenerate with respect to v ∈ MK . If X is no torsion

subvariety of A, then there is no small generic sequence in X (K ).

Similarly as in Zhang’s proof, we can assume that the morphism

α : XN −→ AN−1, x 7→ (x2 − x1, . . . , xN − xN−1)

is generically finite for N sufficiently large.

If the Bogomolov conjecture is wrong, then there is a small generic
sequence in X (K ).

Then there is also a small generic sequence (xn)n∈N in XN .

We conclude that α(xn) is a small generic sequence in Y = α(XN).
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Proof of the Bogomolov conjecture II [Gu2,§6]

We get equidistribution measures µ on Trop(XN) and ν on Trop(Y ).

By construction, we have ν = αaff(µ) for the canonical αaff :

XN α
−−−−→ Y

val

y 	

yval

Trop(XN)
αaff−−−−→ Trop(Y )

The diagonal X in XN satisfies α(X ) = 0.

The same holds for the diagonal Trop(X ) in Trop(XN) = Trop(X )N .

There is an Nd-dimensional simplex ∆ in Trop(XN) with
d-dimensional face in Trop(X ).

dim(αaff(∆)) < dim(∆) and hence ν(αaff(∆)) = 0.

This proves µ(∆) = 0 which contradicts the strict positivity of µ.
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