Tropical methods in diophantine geometry

Walter Gubler

Humboldt Universität zu Berlin

June 20, 2008

- 2 Berkovich analytic spaces
- Tropical analytic geometry
- 4 Canonical measures
- 5 Equidistribution and the Bogomolov conjecture

Main references

- [Gu1] W. Gubler: Tropical varieties for non-archimedean analytic spaces. Invent. Math. 169, 321–376 (2007)
- [Gu2] W. Gubler: The Bogomolov conjecture for totally degenerate abelian varieties. Invent. Math. 169, 377–400 (2007)
- [Gu3] W. Gubler: Non-archimedean canonical measures on abelian varieties. ArXiv(2008)
- [Gu4] W. Gubler: Equidistribution over function fields. ArXiv (2008)

- A complete list of references is located at the end of the talk.
- In the frametitle, there is usually a reference where one finds additional material.

2 Berkovich analytic spaces

3 Tropical analytic geometry

Canonical measures

Equidistribution and the Bogomolov conjecture

Notation

- Let K be a field with a non-trivial non-archimedean absolute value | |.
- $v() := -\log | |$ is the associated valuation.
- The valuation ring $K^{\circ} := \{ \alpha \in K \mid v(\alpha) \ge 0 \}$ has the unique maximal ideal $K^{\circ \circ} := \{ \alpha \in K \mid v(\alpha) > 0 \}$ and residue field $\widetilde{K} := K^{\circ}/K^{\circ \circ}$.
- We have completion K_v and algebraic closure \overline{K} of K.
- C_K := (K_v)_v is the smallest algebraically closed field extension of K which is complete with respect to an extension of | | to a complete absolute value.
- By abuse of notation, we use also v and | | on \mathbb{C}_{K} .
- Let κ be the residue field of C_K. One can easily show that κ is algebraically closed.

Tate-algebra [BGR,Ch.5]

- All analytic considerations will be done over $\mathbb{C}_{\mathcal{K}}$.
- Idea: Proceed as in the theory of affine varieties or complex spaces.
- For $f = \sum a_m x^m \in \mathbb{C}_K[x_1, \dots, x_n]$, we have the Gauss-norm

$$|f| := \sup |a_m|.$$

By the Gauss-Lemma, this is a multiplicative norm.

Definition

The completion $\mathbb{C}_{\mathcal{K}}\langle x_1, \ldots, x_n \rangle$ of $\mathbb{C}_{\mathcal{K}}[x_1, \ldots, x_n]$ with respect to the Gauss-norm is called the *Tate-algebra*.

The elements of $\mathbb{C}_K \langle x_1, \ldots, x_n \rangle$ are the power series $f = \sum a_m x^m$ characterized by $\lim_{|m| \to \infty} |a_m| = 0$. They are called strictly convergent on the closed cube $\mathbb{B}^n := \{ \alpha \in \mathbb{C}_K^n \mid |\alpha| \le 1 \}$. Here, |m| and $|\alpha|$ are the max-norms.

Affinoid algebras [BGR,Ch.6]

Definition

A $\mathbb{C}_{\mathcal{K}}$ -algebra \mathscr{A} is called an *affinoid algebra* if there is an ideal I in $\mathbb{C}_{\mathcal{K}}\langle x_1, \ldots, x_n \rangle$ with $\mathscr{A} \cong \mathbb{C}_{\mathcal{K}}\langle x_1, \ldots, x_n \rangle / I$.

 $a \in \mathscr{A}$ is an analytic function on $Z(I) := \{ \alpha \in \mathbb{B}^n \mid f(\alpha) = 0 \ \forall f \in I \}.$

Definition

- The supremum-seminorm for $f \in \mathscr{A}$ is $|f|_{\sup} := \sup_{x \in Z(I)} |f(x)|$.
- We get the $(\mathbb{C}_K)^{\circ}$ -algebra $\mathscr{A}^{\circ} := \{f \in \mathscr{A} \mid |f|_{\sup} \leq 1\}$ with ideal $\mathscr{A}^{\circ\circ} := \{f \in \mathscr{A} \mid |f|_{\sup} < 1\}$ and residue algebra $\widetilde{\mathscr{A}} := \mathscr{A}^{\circ}/\mathscr{A}^{\circ\circ}$.

Example

If $\mathscr{A} = \mathbb{C}_{\mathcal{K}}\langle x_1, \ldots, x_n \rangle$, then $| |_{\sup}$ is the Gauss-norm and hence

$$\widetilde{\mathscr{A}} = \kappa[x_1,\ldots,x_n].$$

Proposition

Similarly to the coordinate ring of an affine variety, the affinoid algebra $\mathscr{A} \cong \mathbb{C}_{\mathcal{K}}\langle x_1, \ldots, x_n \rangle / I$ satisfies the following properties:

- A is noetherian.
- Hilbert's Nullstellensatz holds.
- \mathscr{A} is a finitely generated reduced algebra over the residue field κ .
- dim $(\mathscr{A}) = dim(\widetilde{\mathscr{A}})$
- The reduction map

$$\pi: \mathsf{Z}(I)
ightarrow \operatorname{Max}(\widetilde{\mathscr{A})}, x \mapsto \{f \in \mathscr{A}^{\circ} \mid |f(x)| < 1\} / \mathscr{A}^{\circ \circ}$$

is surjective.

More notation

For $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$, we use the notation

$$x \cdot y := x_1 y_1 + \cdots + x_n y_n$$

and

$$x^{y} := x_1^{y_1} \cdots x_n^{y_n}.$$

In the following, $\Gamma := \nu(\mathbb{C}_{K}^{\times})$ denotes the value group.

Definition

A polyhedron Δ in \mathbb{R}^n is a finite intersection of half spaces of the form $\{u \in \mathbb{R}^n \mid u \cdot m \ge c\}$. We call Δ Γ -rational if we may choose all $m \in \mathbb{Z}^n$ and all $c \in \Gamma$. A polytope is a bounded polyhedron.

The valuation extends to the multiplicative torus by

$$\operatorname{val}: (\mathbb{C}_K^{\times})^n \to \mathbb{R}^n, x \mapsto (v(x_1), \dots, v(x_n)).$$

Polytopal domains [Gu1,§4]

Let Δ be a Γ -rational polytope. We set $U_{\Delta} := \operatorname{val}^{-1}(\Delta)$ and

$$\mathbb{C}_{\mathcal{K}}\langle U_{\Delta}\rangle := \left\{ f := \sum_{m \in \mathbb{Z}^n} a_m x^m \middle| \lim_{|m| \to \infty} |a_m| e^{-u \cdot m} = 0 \ \forall u \in \Delta \right\}.$$

By construction, the elements of $\mathbb{C}_{\mathcal{K}}\langle U_{\Delta}\rangle$ are convergent Laurent series on the *polytopal domain* U_{Δ} in $(\mathbb{C}_{\mathcal{K}}^{\times})^n$. More precisely, we have:

Proposition

 $\mathbb{C}_{\mathcal{K}}\langle U_{\Delta}\rangle$ is an affinoid algebra with supremum norm

$$|f|_{\sup} := \sup_{m \in \mathbb{Z}^n, u \in \Delta} |a_m| e^{-u \cdot m}$$

and maximal spectrum U_{Δ} .

If X is an affine variety, then $\operatorname{Spec}(K[X])$ is a "compactification" of X. Berkovich has given a similar construction for an affinoid \mathbb{C}_{K} -algebra \mathscr{A} :

Definition

The *Berkovich spectrum* $\mathcal{M}(\mathscr{A})$ is the set of multiplicative bounded seminorms p on \mathscr{A} , i.e.

We endow $\mathscr{M}(\mathscr{A})$ with the coarsest topology such that the maps $p \mapsto p(a)$ are continuous for all $a \in \mathscr{A}$.

- Multiplicative bounded seminorms p satisfy the ultrametric triangle inequality.
- *p* induces a non-archimedean absolute value | | on the completion ℋ(*p*) of the quotient field of 𝔄/{*a* ∈ 𝔄 | *p*(*a*) = 0} and a bounded character χ : 𝔄 → ℋ(*p*).
- Conversely, every bounded character on *A* to a complete extension of C_K induces a bounded multiplicative seminorm.
 ⇒ Analogy to the Gelfand spectrum of a C*-algebra.
- We have a canonical embedding Z(I) = Max(𝔄) → 𝓜(𝔄), mapping x ∈ Z(I) to the seminorm p_x(f) := |f(x)|.

Theorem

 $\mathcal{M}(\mathscr{A})$ is a compactification of $Max(\mathscr{A})$.

The *reduction* of the Berkovich spectrum $X := \mathcal{M}(\mathcal{A})$ is $\widetilde{X} := \operatorname{Spec}(\widetilde{\mathcal{A}})$.

The reduction map $\pi: Z(I) \to \operatorname{Max}(\widetilde{\mathscr{A}})$ extends to a map $\pi: X \to \widetilde{X}, p \mapsto \{f \in \mathscr{A}^{\circ} \mid p(f) < 1\}/\mathscr{A}^{\circ \circ}.$

Proposition

• $\pi: X \to \widetilde{X}$ is surjective.

For every irreducible component Y of X, there is a unique ξ_Y ∈ X with π(ξ_Y) dense in Y.

In fact, $\{\xi_Y \mid Y \text{ irred. comp. of } \widetilde{X}\}$ is the *Shilov boundary* of X, i.e. the minimal subset S of X such that $|f|_{\sup} = \sup_{p \in S} p(f)$ for all $f \in \mathscr{A}$.

Examples

Example

- We redefine the closed unit ball by Bⁿ := M(C_K⟨x₁,...,x_n⟩). Then ^{mn} = Spec(κ[x₁,...,x_n]) is the affine *n*-space over the residue field κ and hence it is irreducible.
- The generic point of the reduction corresponds to {0}. If p ∈ Bⁿ satisfies π(p) = {0}, then {f ∈ A^o | p(f) < 1} = A^{oo} and hence p = | |_{sup}. Obviously, the Gauss-norm is the Shilov-boundary of Bⁿ.

Example

Let $U_{\Delta} := \mathscr{M}(\mathbb{C}_{K} \langle U_{\Delta} \rangle)$ and $u \in \Delta$. We get a multiplicative norm

$$|f|_u := \sup_{m \in \mathbb{Z}^n} |a_m| e^{-u \cdot m}, \quad f = \sum_{m \in \mathbb{Z}^n} a_m x^m \in \mathbb{C}_K \langle U_\Delta \rangle.$$

Obviously, $\{| |_u | u \text{ vertex of } \Delta\}$ is the Shilov boundary of U_{Δ} .

- The category of Berkovich spectra is antiequivalent to the category of affinoid spaces.
- An *analytic space* X is given by an atlas of Berkovich spectra (see [Ber2], §1, for the precise definition). Technical difficulties arise as the charts are not open in X but compact. We look only at the relevant examples:

Example

The analytic space $(\mathbb{A}^n)^{\mathrm{an}}$ associated to the affine space \mathbb{A}^n is

 $\{p: \mathbb{C}_{\mathcal{K}}[x_1, \ldots, x_n] \to \mathbb{R}^n \mid p \text{ multiplicative seminorm}\}$

endowed with the coarsest topology such that $p \mapsto p(f)$ is continuous for all $f \in K[x_1, \ldots, x_n]$. The cuboids $\mathbb{B}_r^n := \{p \in (\mathbb{A}^n)^{\mathrm{an}} \mid p(x_i) \leq r_i \ \forall i\}$ with $r \in \Gamma^n$ form an atlas.

GAGA principle [Ber1,Ch.3]

Let X = Spec(A) be a scheme of finite type over K, i.e. $A = K[x_1, \dots, x_n]/I$ for an ideal I.

Definition

The analytic space X^{an} associated to X is

 $\{p: A \otimes K^{\circ} \mathbb{C}_{K}^{\circ} \to \mathbb{R}^{n} \mid p \text{ multiplicative seminorm}\}$

endowed with the coarsest topology such that $p \mapsto p(f)$ is continuous for all $f \in A$. The charts are given by $\mathbb{B}_r^n \cap X^{\mathrm{an}}$, $r \in \Gamma^n$.

- By a glueing process, we get an analytic space X^{an} associated to every scheme X of finite type over K.
- The complex GAGA theorems hold here as well (e.g. X is separated/proper over K ↔ X^{an} is hausdorff/compact).

Of major importance for the course is the following:

Example

Let \mathbb{G}_m^n be the multiplicative torus $\operatorname{Spec}(\mathcal{K}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}])$. In simpler terms, it is $(\mathcal{K}^{\times})^n$. Note that

$$\operatorname{val}: (\mathbb{C}_K^{\times})^n \to \mathbb{R}^n, x \mapsto (v(x_1), \ldots, v(x_n))$$

extends to a continuous map

$$\operatorname{val}: (\mathbb{G}_m^n)^{\operatorname{an}} \to \mathbb{R}^n, p \mapsto (-\log p(x_1), \ldots, -\log p(x_n)).$$

If X is a closed subscheme of \mathbb{G}_m^n , then $\operatorname{val}(X^{\operatorname{an}})$ is called the *tropical* variety associated to X. If $X_{\overline{K}}$ is connected, then X^{an} is connected by GAGA and hence $\operatorname{val}(X^{\operatorname{an}})$ is connected.

An admissible formal scheme \mathscr{X} over \mathbb{C}°_{K} is a locally finite union of admissible formal affine schemes over \mathbb{C}°_{K} of the form $\operatorname{Spf}(A)$ for $A \cong \mathbb{C}^{\circ}_{K}\langle x_{1}, \ldots, x_{n} \rangle / I$ without \mathbb{C}°_{K} -torsion (i.e. A is flat over \mathbb{C}°_{K}).

- X has a generic fibre X^{an} which is an analytic space over C_K locally given by the Berkovich spectrum of A ⊗_{C^o_K} C_K.
- \mathscr{X} has a *special fibre* $\widetilde{\mathscr{X}}$ which is a scheme over κ locally given by $\operatorname{Spec}(A \otimes_{\mathbb{C}^{\circ}_{\kappa}} \kappa)$.

Example

The formal completion of the affine space \mathbb{A}^n over $\mathbb{C}^{\circ}_{\mathcal{K}}$ along the special fibre is $\mathscr{X} := \operatorname{Spf}(\mathbb{C}^{\circ}_{\mathcal{K}}\langle x_1, \ldots, x_n \rangle)$. Then $\mathscr{X}^{\operatorname{an}} = \mathbb{B}^n$ and $\mathscr{X}^{\operatorname{an}}(\mathbb{C}_{\mathcal{K}}) = \mathbb{A}^n(\mathbb{C}^{\circ}_{\mathcal{K}})$.

- This generalizes to any flat scheme X of finite type over C^o_K. Then the formal completion X of X along the special fibre is an admissible formal scheme and X^{an}(C_K) is the set of C^o_K-integral points of X_K.
- If \mathfrak{X} is proper over $\mathbb{C}^{\circ}_{\mathcal{K}}$ (e.g. projective), then $\mathscr{X}^{\mathrm{an}} = (\mathfrak{X}_{\mathcal{K}})^{\mathrm{an}}$.

A \mathbb{C}°_{K} -model \mathscr{X} for the scheme X of finite type over K is an admissible formal scheme over \mathbb{C}°_{K} with $X^{\mathrm{an}} = \mathscr{X}^{\mathrm{an}}$ and similarly for line bundles.

As a working definition, you may think about algebraic models which is okay as we deal with projective varieties (formal GAGA-principle).

A \mathbb{C}°_{K} -model \mathscr{X} is called *strictly semistable* if \mathscr{X} is covered by formal open subsets \mathscr{U} with an étale morphism

$$\psi: \mathscr{U} \longrightarrow \operatorname{Spf} \left(\mathbb{C}_{K}^{\circ} \langle x_{0}, \ldots, x_{n} \rangle / \langle x_{0} \cdots x_{r} - \pi \rangle \right)$$

for some $r \leq n$ and $\pi \in \mathbb{C}_{K}^{\circ \circ}$.

i.e. the special fibre of \mathscr{X} is a divisor with normal crossings in \mathscr{X} . The importance of strictly semistable models comes from the *semistable alteration theorem*:

Theorem (de Jong)

If K° is a complete discrete valuation ring, then every variety X over K has a generically finite covering by a variety X' with a strictly semistable \mathbb{C}_{K}° -model.

Example

Let $\Delta := \{u \in \mathbb{R}^n_+ \mid u_1 + \dots + u_n \leq v(\pi)\}$ (standard simplex). Then $\operatorname{Spf}((\mathbb{C}_K \langle \Delta \rangle)^\circ) \cong \operatorname{Spf}(\mathbb{C}^\circ_K \langle x_0, \dots, x_n \rangle / \langle x_0 \cdots x_r - \pi \rangle)$ is a strictly semistable \mathbb{C}°_K -model for U_Δ with special fibre $x_0 \cdots x_r = 0$ in $(\mathbb{G}^n_m)_{\kappa}$. Up to étale coverings, these are the building blocks in the definition.

Skeleton

Let (Y_i)_{i∈I} be the irreducible components of the special fibre X̂ of a strictly semistable C[°]_K-model X̂. By definition, they are smooth.

• For
$$p \ge 1$$
, let $Y^{(p)} := \bigcup_{J \subset I, |J|=p} \bigcap_{j \in J} Y_j$.

- Then Y^(p) \ Y^(p+1) is smooth and the irreducible components are called *strata* of *X*.
- The strata form a partition of $\widetilde{\mathscr{X}}$.

Definition

The skeleton $S(\mathscr{X})$ is an abstract simplicial set given as the union of canonical simplices Δ_S which are in bijective correspondence to the strata S of \mathscr{X} subject to the following rules:

- $\overline{S} \subset \overline{T}$ if and only if Δ_T is a closed face of Δ_S . Moreover, every closed face of Δ_S is of this form.
- $\Delta_R \cap \Delta_S$ is the union of all Δ_T with $\overline{R} \cup \overline{S} \subset \overline{T}$.

Realization of the skeleton [Ber3], [Ber4]

We may realize the skeleton as an abstact metrized simplicial set:

- There is a formal affine open covering \mathscr{U} of \mathscr{X} such that we have an étale map ψ from \mathscr{U} to $\operatorname{Spf}(\mathbb{C}_{K}^{\circ}\langle x_{0}, \ldots, x_{n} \rangle / \langle x_{0} \ldots x_{r} \pi \rangle).$
- By passing to a subcovering, we may assume that $\bigcap_{Y_i \cap \widetilde{\mathscr{U}} \neq \emptyset} Y_i \cap \widetilde{\mathscr{U}}$ is a stratum S. Then $\Delta_S := \{ u \in \mathbb{R}^{r+1}_+ \mid u_0 + \cdots + u_r = v(\pi) \}.$
- The coordinates u_j correspond to Y_i with $Y_i \cap \mathscr{U} \neq \emptyset$ and hence $S(\mathscr{X})$ may be glued according to the rules.
- There is a canonical Val : $\mathscr{X}^{\mathrm{an}} \to S(\mathscr{X})$, given on $\mathscr{U}^{\mathrm{an}}$ by $\operatorname{Val}(p) := (-\log p(\psi^* x_0), \dots, -\log p(\psi^* x_r)) \in \Delta_S.$
- Berkovich has shown that the skeleton $S(\mathscr{X})$ may be identified with a subset of \mathscr{X}^{an} given by certain maximal points.

Theorem (Berkovich)

There is a continuous deformation retraction $d : \mathscr{X}^{\mathrm{an}} \times [0,1] \to \mathscr{X}^{\mathrm{an}}$ with d(x,0) = x, d(x,1) = Val(x) and d(u,t) = u for all $u \in S(\mathscr{X})$, $t \in [0,1]$.

Abelian varieties

- Abelian varieties are projective group varieties.
- An abelian variety of dimension 1 is called an *elliptic curve*.

Definition

An abelian variety A over K is called of *potentially good reduction* with respect to v if A^{an} is the generic fibre of an admissible formal group scheme \mathscr{B} over \mathbb{C}_{K}^{an} such that $\widetilde{\mathscr{B}}$ is an abelian variety over κ .

- Algebraically, this is equivalent to the existence of an abelian scheme over C^o_K with generic fibre A_{C_K}.
- For an elliptic curve E, this is equivalent to $|j(E)| \le 1$.

Definition

An abelian variety A has totally degenerate reduction with respect to v if A^{an} is isomorphic as an analytic group to $(\mathbb{G}_m^n)^{\mathrm{an}}/M$ for a discrete subgroup M of \mathbb{C}_K^{\times} such that $\mathrm{val}(M)$ is a lattice in \mathbb{R}^n .

Tate elliptic curve [BG,§9.5]

Theorem (Tate)

For an elliptic curve E the following properties are equivalent:

(i) |j(E)| > 1.

(ii)
$$E^{\mathrm{an}}\cong \mathbb{C}_K^ imes/q^\mathbb{Z}$$
 for some $q\in K^{\circ\circ}$.

(iii) E is totally degenerate with respect to v.

Remark

For q in (ii), the elliptic curve E can be defined by the Weierstrass equation $y^2 + xy = x^3 + a_4x + a_6$ where a_4 and a_6 are convergent power series given by

$$a_4(q) = \sum_{n=1}^{\infty} \frac{n^3 q^n}{1-q^n}, \quad a_6(q) = -\frac{1}{12} \sum_{n=1}^{\infty} \frac{(7n^5 + 5n^3)q^n}{1-q^n}$$

Remark

• The isomorphism $\mathbb{C}_K^{\times}/q^{\mathbb{Z}} \to E$ in (ii) is given by the convergent power series

$$\begin{aligned} x(\zeta, q) &= \sum_{n=-\infty}^{\infty} \frac{q^n \zeta}{(1-q^n \zeta)^2} - 2 \sum_{n=1}^{\infty} \frac{nq^n}{1-q^n} \\ y(\zeta, q) &= \sum_{n=-\infty}^{\infty} \frac{q^{2n} \zeta^2}{(1-q^n \zeta)^3} + \sum_{n=1}^{\infty} \frac{nq^n}{1-q^n}. \end{aligned}$$

- Furthermore $j(E) = \frac{1}{q} + 744 + 196884q + \dots$
- The reduction of *E* is given by $y^2 + xy = x^3$.

Raynaud extension [BL1]

For higher dimensional abelian varieties A, a mixture of good reduction and total degeneration is possible. It is given by the *Raynaud extension*

$$1 \to (\mathbb{G}_m^n)^{\mathrm{an}} \to E \to B^{\mathrm{an}} \to 0.$$

- This is a short exact sequence of analytic groups with B an abelian variety of good reduction. We omit the construction which is canonical. E is locally trivial over B^{an} such that the |x_j| are well-defined on E for the coordinates x_j on (Gⁿ_m)^{an}.
- This leads to a continuous map val : $E \to \mathbb{R}^n$, $p \mapsto (-\log p(x_j))$.
- We have a *uniformization* of A, i.e. A^{an} ≅ E/M for a discrete subgroup M of E(C_K) such that val(M) is a lattice in ℝⁿ.
- If A has potentially good reduction, then A = B.
- If A has totally degenerate reduction, then B = 0.

2) Berkovich analytic spaces

Tropical analytic geometry

4 Canonical measures

Equidistribution and the Bogomolov conjecture

Notation

- Let K be a field with a non-trivial non-archimedean absolute value | |.
- $v() := -\log | |$ is the associated valuation.
- The valuation ring $K^{\circ} := \{ \alpha \in K \mid v(\alpha) \ge 0 \}$ has the unique maximal ideal $K^{\circ \circ} := \{ \alpha \in K \mid v(\alpha) > 0 \}$ and residue field $\widetilde{K} := K^{\circ}/K^{\circ \circ}$.
- We have the completion K_v and algebraic closure \overline{K} of K.
- C_K := (K_v)_v is the smallest algebraically closed field extension of K which is complete with respect to an extension of | | to a complete absolute value.
- By abuse of notation, we use also v and | | on \mathbb{C}_{K} .
- Let κ be the residue field of $\mathbb{C}_{\mathcal{K}}$.
- Let $\Gamma := v(\mathbb{C}_{K}^{\times})$ be the value group of \mathbb{C}_{K} .

Tropical algebraic geometry

We consider the multiplicative torus \mathbb{G}_m^n with $\mathbb{G}_m^n(\mathbb{C}_K) = (\mathbb{C}_K^{\times})^n$ and

$$\operatorname{val}: (\mathbb{C}_K^{\times})^n \to \mathbb{R}^n, \quad \operatorname{val}(x_1, \ldots, x_n) = (v(x_1), \ldots, v(x_n)) \;.$$

Let X be a closed algebraic subvariety of \mathbb{G}_m^n and $d := \dim(X)$.

Definition

The closure of val(X) in \mathbb{R}^n is denoted by trop(X) and is called the *tropical variety* associated to X.

Theorem (Einsiedler, Kapranov, Lind)

 $\operatorname{trop}(X)$ is a finite connected union of d-dimensional Γ -rational polyhedrons.

Indeed, we have seen that $\operatorname{trop}(X) = \operatorname{val}(X^{\operatorname{an}})$ which is the set of valuations on K[X] extending v. It was shown by Bieri and Groves that this set has the required properties.

Examples [RST]

Figure: Plane conics

Figure: Plane biquadratic curves

Figure: Plane cubics

A \mathbb{G}_m^n -toric variety over the arbitrary field F is a normal variety Y with an algebraic \mathbb{G}_m^n -action containing a dense *n*-dimensional orbit.

Proposition

There are bijective correspondences between

- (a) rational polyhedral cones σ in \mathbb{R}^n which do not contain a linear subspace $\neq \{0\}$,
- (b) finitely generated saturated semigroups S in \mathbb{Z}^n which generate \mathbb{Z}^n as a group,

(c) affine \mathbb{G}_m^n -toric varieties Y over F (up to equivariant isomorphisms).

They are given by $S = \check{\sigma} \cap \mathbb{Z}^n$ and $Y = \text{Spec}(F[x^S])$, where $\check{\sigma}$ is the dual cone $\{u' \in \mathbb{R}^n \mid u \cdot u' \ge 0 \ \forall u \in \sigma\}$ and $x^S := \{x^m \mid m \in S\}$.

Fans and toric varieties, [KKMS,Ch.I]

Definition

A rational polyhedral fan ${\mathscr C}$ in ${\mathbb R}^n$ is a set of rational polyhedral cones such that

- (a) $\sigma \in \mathscr{C} \Rightarrow$ all closed faces of σ are in \mathscr{C} ;
- (b) $\sigma, \rho \in \mathscr{C} \Rightarrow \sigma \cap \rho$ is either empty or a closed face of ρ and σ .

(c) No $\sigma \in \mathscr{C}$ contains a linear subspace $\neq \{0\}$.

Remark

- If ρ is a closed face of σ ∈ C, then ŏ ⊂ Ď induced a canonical open immersion Spec(F[x^{Ď∩Zⁿ}]) → Spec(F[x^{ŏ∩Zⁿ}]).
- Hence one can glue the affine toric varieties corresponding to the elements of *C* and we get a Cⁿ_m-toric variety.
- Every \mathbb{G}_m^n -toric variety is of this form.
- The toric variety is proper over F if and only if $\bigcup_{\sigma \in \mathscr{C}} \sigma = \mathbb{R}^n$.

Reduction of a polytopal domain [Gu1,§4]

- Let Δ be a Γ -rational polytope in \mathbb{R}^n . Then we have seen the polytopal domain $U_{\Delta} := \operatorname{val}^{-1}(\Delta)$ in $(\mathbb{G}_m^n)^{\operatorname{an}}$.
- The affinoid torus $\mathbb{T}_1^{\mathrm{an}}$ acts on U_{Δ} . It is defined by $\mathbb{T}_1^{\mathrm{an}} := \{ p \in (\mathbb{G}_m^n)_{\mathbb{K}}^{\mathrm{an}} \mid p(x_j) = 1 \text{ for } j = 1, \dots, n \} = val^{-1}(0).$
- Passing to reductions, we get a torus action of $(\mathbb{G}_m^n)_{\kappa}$ on U_{Δ} .

Proposition

- (a) There is a bijective order reversing correspondence between torus orbits Z of \widetilde{U}_{Δ} and open faces τ of Δ , given by $Z_{\tau} = \pi(\operatorname{val}^{-1}(\tau))$ and $\tau_{Z} = \operatorname{val}(\pi^{-1}(Z))$.
- (b) $\dim(\tau) + \dim(Z_{\tau}) = n$.
- (c) If Y_u is the irreducible component of U_{Δ} corresponding to the vertex u of Δ by (a), then the natural $(\mathbb{G}_m^n)_{\kappa}$ -action of $\widetilde{U_{\Delta}}$ makes Y_u into an affine toric variety with polyhedral cone generated by Δu .

Polytopal decompositions [Gu1, $\S4$]

Definition

A polytopal decomposition of \mathbb{R}^n is a locally finite set \mathscr{C} of polytopes with

- (a) $\Delta \in \mathscr{C} \Rightarrow$ all closed faces of Δ are in \mathscr{C} ;
- (b) $\Delta, \sigma \in \mathscr{C} \Rightarrow \Delta \cap \sigma$ is either empty or a closed face of Δ and σ .
- (c) $\bigcup_{\Delta \in \mathscr{C}} \Delta = \mathbb{R}^n$.

Remark

- If Δ' is a closed face of $\Delta \in \mathscr{C}$, then the canonical morphism $U_{\Delta'} \to U_{\Delta}$ induces an open immersion of the reductions.
- Hence one can glue the formal affine schemes $\operatorname{Spf}(\mathbb{C}_K \langle U_\Delta \rangle)$ to get a \mathbb{C}_K° -model \mathscr{X} of \mathbb{G}_m^n .
- Clearly, $(\mathbb{G}_m^n)_{\kappa}$ acts on the special fibre \mathscr{X} .

Properties of these models \mathscr{X} of \mathbb{G}_m^n [Gu1,§4]

Proposition

- (a) There is a bijective correspondence between torus orbits of $\mathscr X$ and open faces of $\mathscr C$.
- (b) The irreducible components of $\widetilde{\mathscr{X}}$ match with the vertices of \mathscr{C} .
- (c) If Y_u is the irreducible component of \mathscr{X} corresponding to the vertex u, then Y_u is a toric variety with fan given by the cones σ in \mathbb{R}^n which are generated by Δu for $\Delta \in \mathscr{C}$ with vertex u.

Example

We pave \mathbb{R}^2 by squares of length $v(\pi)$ for a fixed $\pi \in \mathbb{C}_K^{\circ\circ}$ and then we choose in every square a diagonal. This gives a simplex decomposition \mathscr{C} of \mathbb{R}^2 . The associated \mathbb{C}_K° -model \mathscr{X} of \mathbb{G}_m^n is strictly semistable since the local pieces are $\operatorname{Spf}(\mathbb{C}_K \langle U_\Delta \rangle^{\circ}) \cong \operatorname{Spf}(\mathbb{C}_K^{\circ} \langle x_0, x_1, x_2 \rangle / \langle x_0 x_1 x_2 - \pi \rangle)$. The torus orbits are equal to the strata and hence the skeleton is \mathbb{R}^n .
It will be important in the sequel to generalize the tropicalization to analytic subvarieties of \mathbb{G}_m^n . We start locally:

- Let U_{Δ} be a Γ -rational polytopal domain in \mathbb{R}^n .
- A closed analytic subvariety X of U_{Δ} is given by a unique ideal I in $\mathscr{A} := \mathbb{C}_{K} \langle U_{\Delta} \rangle$ such that $X = \mathscr{M}(\mathscr{A}/I)$.
- Note that I is not assumed to be reduced or prime.
- trop(X) := val(X) is called the *tropical variety* associated to X.

Theorem (Gu1)

 $\operatorname{trop}(X)$ is a finite union of Γ -rational polytopes of dimension $\leq \dim(X)$.

This can be deduced from de Jong's alteration theorem.

Theorem (Gu1)

Suppose that Δ is n-dimensional and that X is an analytic subvariety of U_{Δ} of pure dimension d. If val(X) contains an interior point of Δ , then $trop(X) \cap int(\Delta)$ is of pure dimension d.

Remark

This proves also the dimension theorem for the tropical variety of a closed subscheme of \mathbb{G}_m^n . Indeed, we may use a polytopal decomposition of \mathbb{R}^n to deduce it from the local dimension theorem above.

For the proof, we need the following result for affinoid algebras.

Proposition

Let $\varphi : \mathscr{A} \to \mathscr{B}$ be a homomorphism of affinoid algebras. Then φ is finite (i.e. \mathscr{B} is a finite \mathscr{A} -algebra) if and only if $\widetilde{\varphi} : \widetilde{\mathscr{A}} \to \widetilde{\mathscr{B}}$ is finite.

- It is enough to prove $d \leq N := \dim(\operatorname{trop}(X))$.
- We may assume X irreducible and therefore val(X) is connected.
- We handle N = 0 on this slide, hence val(X) is a point in Γ^n .
- Since the embedding $i: X \hookrightarrow U_{\Delta}$ of Berkovich spectra is finite, the reduction $\tilde{i}: \tilde{X} \to \tilde{U_{\Delta}}$ is also finite.
- Since val(X) ⊂ int(Δ), we deduce that X̃ is mapped to the closed orbit of U_Δ.
- The latter is a point and hence \widetilde{X} is finite.
- We conclude $\dim(X) = \dim(\widetilde{X}) = 0$.

- By shrinking Δ , we may assume that val(X) is pure dimensional.
- There is $x \in X(\mathbb{C}_{\mathcal{K}})$ with $u := \operatorname{val}(x) \in \operatorname{int}(\Delta)$.
- Using x for a change of coordinates, we may assume u = 0.
- There is $m \in \mathbb{Z}^n$ such that the hyperplane $\{u \cdot m = 0\}$ intersects val(X) transversally.
- We apply the induction hypothesis to $X' := X \cap \{x^m = 1\}$.
- Hence we get $d 1 = \dim(X') \le \dim(\operatorname{val}(X'))$.
- Using $\operatorname{val}(X') \subset \operatorname{val}(X) \cap \{u \cdot m = 0\}$, we deduce $d 1 \leq N 1$.

Periodical tropical geometry I [Gu1,§6]

Let X be a d-dim. algebraic subvariety of a totally degenerate abelian variety A wrt. v, i.e. $A^{an} = T/M$ and $\Lambda = val(M)$ is a lattice in \mathbb{R}^n .

Definition

 $\overline{\mathrm{val}}(X^{\mathrm{an}})$ is called the *tropical variety* and is denoted by $\mathrm{Trop}(X)$.

Applying the dimension theorem to the analytic subvariety $p^{-1}(X)$, we get:

Theorem (Gu1)

 $\operatorname{Trop}(X)$ is a finite union of d dimensional Γ -rational polytopes in \mathbb{R}^n/Λ .

Periodical tropical geometry II [Gu3,§3]

Let A be an abelian variety with uniformization E from the Raynaud extension $1 \to (\mathbb{G}_m^n)^{\mathrm{an}} \to E \to B^{\mathrm{an}} \to 0$ such that $A^{\mathrm{an}} = E/M$.

Definition

 $\overline{\text{val}}(X^{\text{an}})$ is called the *tropical variety* associated to the algebraic subvariety X of A and is denoted by $\operatorname{Trop}(X)$.

Theorem (Gu3)

There is $e \in \{0, 1, ..., \min\{\dim(X), \dim(B)\}\}$ such that $\operatorname{Trop}(X)$ is a finite union of Γ -rational polytopes of dimension $\dim(X) - e$ in \mathbb{R}^n / Λ .

Example

- Assume $A = B_1 \times B_2$ with B_1 of potentially good reduction and B_2 totally degenerate.
- Then $(B_2)^{\operatorname{an}} = (\mathbb{G}_m^n)^{\operatorname{an}} / M$ and the Raynaud extension is given by $1 \to (\mathbb{G}_m^n)^{\operatorname{an}} \to B_1^{\operatorname{an}} \times (\mathbb{G}_m^n)^{\operatorname{an}} \to B_1^{\operatorname{an}} \to 0.$
- If X is a d-dimensional algebraic subvariety of A, then $\operatorname{Trop}(X) = \overline{\operatorname{val}}(p_2(X^{\operatorname{an}}))$ and hence $\dim(\operatorname{Trop}(X)) = \dim(p_2(X))$.
- This dimension is *d* − *e*, where any *e* ∈ {0, 1, ..., min{*d*, dim(*B*)}} can be achieved.

By using the local triviality of the Raynaud extension, essentially the same argument proves the previous theorem in general.

Mumford's construction [Gu1,§6]

Let A be a totally degenerate abelian variety with respect to v, i.e. $A^{an} = T/M$ and $\Lambda = val(M)$ is a lattice in \mathbb{R}^n .

Definition

- A polytope Δ in ℝⁿ/Λ is given by a polytope Δ in ℝⁿ such that Δ maps bijectively onto Δ.
- A polytopal decomposition of ℝⁿ/Λ is a finite family *C* of polytopes in ℝⁿ/Λ induced by a Λ-periodic polytopal decomposition *C* of ℝⁿ.
- Glueing the polytopal domains, we get a \mathbb{C}°_{K} -model \mathscr{U} of \mathbb{G}^{n}_{m} .
- By Λ-periodicity, 𝒞 has a canonical action of M. We get a C[◦]_K-model
 𝒜 := 𝒜 / M of A.
- \mathscr{A} is obtained by glueing the formal affine $\mathscr{U}_{\Delta} := \operatorname{Spf}(\mathbb{C}_{\mathcal{K}} \langle U_{\Delta} \rangle)$ along commen faces and by identifying \mathscr{U}_{Δ} and $\mathscr{U}_{\Delta+\lambda}$ for all $\lambda \in \Lambda$.

Definition

We call \mathscr{A} the *Mumford model* associated to A.

Proposition

- There is a bijective order reversing correspondence between torus orbits Z of *A* and open faces *τ* of *C*.
- The irreducible components Y of \mathscr{A} are toric varieties and correspond to the vertices of $\overline{\mathscr{C}}$.
- The Mumford model is strictly semistable if there is π ∈ C[∞]_K such that every maximal Δ ∈ 𝒞 is GL(n, ℤ)-isomorphic to the standard simplex {u ∈ ℝⁿ₊ | u₁ + ... + u_n ≤ v(π)}.
- Then the associated skeleton is the fundamental domain ℝⁿ/Λ and the canonicial simplices are the elements of *C*.

2 Berkovich analytic spaces

3 Tropical analytic geometry

5 Equidistribution and the Bogomolov conjecture

Notation

- Let K be a field with a non-trivial non-archimedean absolute value | |.
- $v() := -\log | |$ is the associated valuation.
- The valuation ring $K^{\circ} := \{ \alpha \in K \mid v(\alpha) \ge 0 \}$ has the unique maximal ideal $K^{\circ \circ} := \{ \alpha \in K \mid v(\alpha) > 0 \}$ and residue field $\widetilde{K} := K^{\circ}/K^{\circ \circ}$.
- We have the completion K_v and algebraic closure \overline{K} of K.
- C_K := (K_v)_v is the smallest algebraically closed field extension of K which is complete with respect to an extension of | | to a complete absolute value.
- By abuse of notation, we use also v and | | on \mathbb{C}_{K} .
- Let κ be the residue field of $\mathbb{C}_{\mathcal{K}}$.
- Let $\Gamma := \nu(\mathbb{C}_K^{\times})$ be the value group of \mathbb{C}_K .

Metrics

- Let X be a projective variety over \mathbb{C}_K . By GAGA, X^{an} is compact.
- We consider a line bundle L on X, i.e. a family of 1-dimensional vector spaces (L_x)_{x∈X} with a continuity condition.
- A metric $\| \|$ on L^{an} is a norm on each fibre $L_x^{an} \cong \mathbb{C}_K$.
- A section of L on the open subset U of X is a family $s(x) \in L_x$, $x \in U$, which gives a morphism $s : U \to L$.
- We consider only continuous metrics, i.e. x → ||s(x)|| is continuous with respect to the analytic topology for every local section.
- For continuous metrics || ||, || ||' on *L*, we have the *distance of uniform convergence*

$$d(\| \|, \| \|') := \sup_{x \in X^{\mathrm{an}}} \left| \log \left(\|s(x)\| / \|s(x)\|' \right) \right|.$$

• Clearly, the definition is independent of the choice of $s(x) \in L_x \setminus \{0\}$.

Formal metrics [Gu4,§2]

- Let \mathscr{L} be a formal \mathbb{C}_{K}° -model of L, i.e. \mathscr{L} is a line bundle on the \mathbb{C}_{K}° -model \mathscr{X} with $L = \mathscr{L}|_{X^{\mathrm{an}}}$.
- The associated metric || ||_L on L is defined as follows: Every x ∈ X^{an} is contained in U^{an} for a trivialization U of L. The latter means that there is a section s of L without zeros.
- We set ||s(x)|| := 1. This is well-defined as s(x) is determined up to units in C[◦] and determines the metric completely.
- On *U*^{an}, every section t of L corresponds to an analytic function f with respect to the trivialization and ||t(x)|| = |f(x)|, therefore the metric is continuous.

Definition

- Metrics of the form $\| \|_{\mathscr{L}}$ are called *formal*.
- A root of a formal metric is a metric || || on L such that || ||^{⊗m} is a formal metric for some non-zero m ∈ N.

Theorem (Gu, 1998)

The roots of formal metrics are dense in the space of continuous metrics on L^{an} . In particular, the set of roots of formal metrics on $O_{X^{\mathrm{an}}}$ is embedded onto a dense subset of $C(X^{\mathrm{an}})$ by the map $\| \| \mapsto -\log \|1\|$.

- A line bundle F on a projective variety Y is called *nef* if deg_F(C) ≥ 0 for all closed curves C in Y.
- Then one can show that the degree of any closed subvariety with respect to *F* is non-negative.

Definition

- A metric || || induced by the line bundle 𝔅 on the ℂ^o_K-model 𝔅 is called *semipositive* if the reduction 𝔅 is a nef line bundle on the special fibre 𝔅.
- A *semipositive admissible metric* || || on *L* is a uniform limit of roots of semipositive formal metrics || ||_n on *L*.

Canonical metrics [BG,§9.5]

- Now let (L, ρ) be a rigidified line bundle on the abelian variety A over K, i.e. ρ ∈ L₀(K) \ {0}.
- Then there is a *canonical metric* $\| \|_{\rho}$ for (L, ρ) which behaves well with respect to tensor product and homomorphic pull-back.
- We restrict to the case that L is ample and symmetric, then $\| \|_{\rho}$ is given by the following variant of Tate's limit argument.
- The rigidification and the theorem of the cube yield an identification $[m]^*L = L^{\otimes m^2}$ for $m \in \mathbb{Z}$.
- The canonical metric is characterized by $[m]^* \parallel \parallel_{\operatorname{can}} = \parallel \parallel_{\operatorname{can}}^{\otimes m^2}$ and it is given by

$$\| \|_{\operatorname{can}} = \lim_{m \to \infty} \left([m]^* \| \| \right)^{1/m^2},$$

where $\| \|$ is any continuous metric on L^{an} .

• In particular, we may choose $\| \|$ as a root of a semipositive formal metric and hence $\| \|_{\rho}$ is a semipositive admissible metric.

Example

If A is an abelian variety with potentially good reduction, then $L^{\otimes 2}$ has an ample symmetric $\mathbb{C}_{\mathcal{K}}^{\circ}$ -model \mathscr{L} and hence $\| \|_{\operatorname{can}} = \| \|_{\mathscr{L}}^{1/2}$ is a root of a semipositive formal metric.

If A has bad reduction, then $\| \|_{can}$ is no longer a root of a formal metric.

Example

- Let E be a Tate elliptic curve, i.e. E^{an} = C[×]_K/q^ℤ and let L = O([P]) be the line bundle for the 2-torsion point P given by q̃ := q^{1/2}.
- Then P is the divisor of the global section of L corresponding to the theta function $\theta(\zeta, q) := \sum_{n=-\infty}^{\infty} \tilde{q}^{n^2} \zeta^n$.
- The pull-back of the even ample line bundle L to \mathbb{C}_{K}^{\times} is trivial and we can easily compute $-\log(\|1\|_{\operatorname{can},\zeta}) = \frac{\nu(\zeta)^{2}}{2\nu(q)}$.

Theorem (Chambert-Loir)

For a d-dimensional projective variety X and $\overline{L} = (L, \| \|)$ an ample line bundle endowed with a semipositive admissible metric, there is a unique positive regular Borel measure $c_1(\overline{L})^{\wedge d}$ on X^{an} with the properties:

- (a) $c_1(\overline{L}^{\otimes m})^{\wedge d} = m^d c_1(\overline{L})^d$ and $c_1(\overline{L})^{\wedge d}$ is continuous in $\| \|$.
- (b) If $\varphi : Y \to X$ is a morphism of d-dimensional projective varieties, then the projection formula $\varphi_*\left(c_1(\varphi^*\overline{L})^{\wedge d}\right) = \deg(\varphi)c_1(\overline{L})^{\wedge d}$ holds.

(c)
$$c_1(\overline{L})^{\wedge d}$$
 has total measure deg_L(X).

(d) If \mathscr{X} is a formal \mathbb{C}_{K}° -model of X with reduced special fibre and if the metric of \overline{L} is induced by a formal \mathbb{C}_{K}° -model \mathscr{L} of L on \mathscr{X} , then $c_{1}(\overline{L})^{\wedge d} = \sum_{Y} \deg_{\mathscr{L}}(Y) \delta_{\xi_{Y}}$, where Y ranges over the irreducible components of $\widetilde{\mathscr{X}}$ and $\delta_{\xi_{Y}}$ is the Dirac measure in the unique point ξ_{Y} of X^{an} which reduces to the generic point of Y.

Now we consider an ample symmetric line bundle L on an abelian variety A and a d-dimensional subvariety X of A.

Definition

We call $\mu := c_1(L|_X, \| \|_{\operatorname{can}})^{\wedge d}$ the *canonical measure* on X associated to L.

Example

If X = A and if A has potentially good reduction, then (d) from the above theorem shows that $\mu = \deg_L(A)\delta_{\xi}$, where ξ is the unique point of A^{an} which reduces to the generic point of the Néron-model \mathscr{A} .

- We assume that v is a discrete valuation of K and hence $\Gamma = \mathbb{Q}$.
- Let X be a closed d-dimensional variety of the abelian variety A.
- The tropical excess e was defined by $\dim(\operatorname{Trop}(X)) = d e$.
- We assume for simplicity that X has a strictly semistable C^o_K-model X, otherwise we have to use a strictly semistable alteration.
- Recall that the skeleton S(X) of X is a subset of X^{an} given as the union of canonical simplices Δ_S corresponding to the strata S of X.
- Let $b := \dim(B)$ for the abelian variety B of good reduction in the Raynaud extension $1 \to (\mathbb{G}_m^n)^{\mathrm{an}} \to E \to B^{\mathrm{an}} \to 0$ of A.

Theorem (Gu3)

There is a list of canonical simplices $(\Delta_S)_{S \in I}$ with the properties:

- The maximal simplices $(\Delta_S)_{S \in J}$ from this list are (d e)-dimensional.
- val is one-to-one on every Δ_S , $S \in I$, and $\bigcup_{S \in J} \overline{\mathrm{val}}(\Delta_S) = \mathrm{Trop}(X)$.
- For any ample line bundle \overline{L} on A, the canonical measure $\mu := c_1(L|_X, \| \|_{\operatorname{can}})^{\wedge d}$ is supported in $\bigcup_{S \in J} \Delta_S$.
- The restriction of μ to the relative interior of Δ_S is a positive multiple of the relative Lebesgue measure which may be explicitly computed in terms of convex geometry.

Remark

- If A is totally degenerate, then $\dim(\Delta_S) = d$ for all $S \in I$.
- In general, there are examples where simplices of all dimensions in $\{d-b,\ldots,d-e\}$ may occur for a single canonical measure.

Sketch of proof I

- We sketch the proof in the special case X = A totally degenerate.
- Hence A^{an} = (𝔅ⁿ_m)^{an}/M for a discrete subgroup M of (𝔅[×]_K)ⁿ such that Λ := val(M) is a lattice in ℝⁿ.
- Since Λ is a subgroup of \mathbb{Q}^n of rank n, there is a basis b_1, \ldots, b_n of \mathbb{Z}^n , $k \in \mathbb{N}$ and $k_1 | k_2 | \cdots | k_n \in \mathbb{Z}$ such that $\frac{k_1}{k} b_1, \ldots, \frac{k_n}{k} b_n$ is a basis of Λ .
- The fundamental domain of Λ is a cuboid with respect to the basis b_1, \ldots, b_n and hence we can easily pave \mathbb{R}^n by translates of $\frac{1}{m}Q$, where Q is the unit cube and $m \in \mathbb{N}$ is fixed.
- We deduce that there is a rational Λ -periodic simplex decomposition \mathscr{C} of \mathbb{R}^n such that every *n*-dimensional $\Delta \in \mathscr{C}$ is $\operatorname{GL}(n, \mathbb{Z})$ isomorphic to a translate of $\frac{1}{m}\Delta_1$ for the standard simplex

$$\Delta_1:=\{u\in\mathbb{R}^n_+\mid u_1+\cdots+u_n\leq 1\}.$$

Sketch of proof II

- We conclude that the Mumford model \mathscr{A} of A associated to \mathscr{C} is strictly semistable.
- Note that the skeleton S(𝔄) of 𝔄 is ℝⁿ/Λ with canonical simplices given by 𝔅 := 𝔅/Λ. Moreover, S(𝔄) is a subset of A^{an}.
- By a result of Künnemann, we may assume that *L* has a C^o_K-model *L* on *A* such that the formal affine open subsets

 *W*_Δ := Spf(C_K⟨U_Δ⟩^o) form a trivialization of *L*.
- We identify the pull-back p^*L to $(\mathbb{G}_m^n)^{\mathrm{an}}$ with $(\mathbb{G}_m^n)^{\mathrm{an}} \times \mathbb{C}_K$. Then the section 1 corresponds to a $\gamma \in K \langle U_\Delta \rangle^{\times}$ with respect to the trivialization \mathscr{U}_Δ .
- It is easy to show that γ is equal to $a_{\Delta}x^{m_{\Delta}}$ up to smaller terms.
- We conclude that f_L := -log p^{*} ||1||_L is a continuous function on ℝⁿ with f_L(u) = m_Δ · u + v(a_Δ) on Δ.

Dual complex

- $f_{\mathscr{L}}$ induces a canonical *dual complex* $\mathscr{C}^{f_{\mathscr{L}}}$ on \mathbb{R}^{n} .
- The vertices of $\mathscr{C}^{f_{\mathscr{L}}}$ are given by $m_{\Delta}, \ \Delta \in \mathscr{C}$.
- Every k-dimensional polytope σ of C induces an (n − k)-dimensional polytope σ^f given by the vertices m_Δ, Δ ⊃ σ.
- By results of Mac Mullen, $\mathscr{C}^{f_{\mathscr{L}}}$ is a polytopal decomposition of $(\mathbb{R}^n)^* = \mathbb{R}^n$ for a suitable lattice Λ^L not depending on \mathscr{L} .

Figure: simplex decomposition \mathscr{C}

Figure: dual complex

- We know that every vertex \overline{u} of $\overline{\mathscr{C}}$ corresponds to an irreducible component $Y_{\overline{u}}$ of $\widetilde{\mathscr{A}}$.
- We have seen that $Y_{\overline{u}}$ is a $(\mathbb{G}_m^n)_{\kappa}$ -toric variety.
- ℒ is ample on 𝔄 if and only if f_𝔅 is strictly convex with respect to 𝔅, i.e. a convex function such that the maximal domains of "linearity" are the *n*-dimensional polytopes in 𝔅.
- $\deg_{\mathscr{L}}(Y_{\overline{u}}) = n! \operatorname{vol}(\{u\}^{f_{\mathscr{L}}})$

Sketch of proof III

• Chambert-Loir's measure with respect to the formal metric $\| \|_{\mathscr{L}}$ is given by

$$c_1(L, \| \|_{\mathscr{L}})^{\wedge n} = \sum_{\overline{u}} \deg_{\mathscr{L}}(Y_{\overline{u}}) \delta_{\xi_{\overline{u}}} \; ,$$

where \overline{u} ranges over the vertices of $\overline{\mathscr{C}}$ in $\overline{\Omega}$ and $\xi_{\overline{u}}$ is the unique point of A^{an} with reduction equal to the generic point of the irreducible component $Y_{\overline{u}}$.

• For $\overline{\Omega}$ measurable in \mathbb{R}^n/Λ , we have

$$\mu_1(\overline{\Omega}) := \int_{\overline{\Omega}} c_1(L, \| \|_{\mathscr{L}})^{\wedge n} = \sum_{\overline{u} \in \overline{\Omega}} \deg_{\mathscr{L}}(Y_{\overline{u}}) = n! \sum_{\overline{u} \in \overline{\Omega}} \operatorname{vol}(\{\overline{u}\}^{f_{\mathscr{L}}})$$

where \overline{u} is always supposed to be a vertex in $\overline{\mathcal{C}}$.

Sketch of proof IV

Figure: Ω

• By Tate's limit argument, we have

$$\| \|_{\operatorname{can}} = \lim_{m \to \infty} ([m]^* \| \|_{\mathscr{L}})^{1/m^2}$$

Sketch of proof V

• Let \mathscr{A}_m be the Mumford model of A associated to $\mathscr{C}_m := \frac{1}{m}\mathscr{C}$. [m] extends to a morphism $\mathscr{A}_m \to \mathscr{A}_1$ and hence $[m]^*\mathscr{L}$ is a \mathbb{C}°_K -model of $[m]^*L = L^{\oplus m^2}$ an A.

$$\Rightarrow \| \|_{\operatorname{can}} = \lim_{m \to \infty} (\| \|_{[m]^* \mathscr{L}})^{1/m^2}.$$

• The canonical measure $\mu:=c_1(L,\|\hspace{0.1cm}\|_{\operatorname{can}})^{\wedge n}$ is given by

$$\mu = \lim_{m \to \infty} m^{-2n} c_1(L, \| \|_{[m]^* \mathscr{L}}) = \lim_{m \to \infty} m^{-2n} \mu_m$$

with

$$\mu_m(\overline{\Omega}) = n! \sum_{\overline{u_m} \in \overline{\Omega}} \operatorname{vol}(\{u_m\}^{mf_{\mathscr{L}}}) = n! \ m^n \sum_{\overline{u_m} \in \overline{\Omega}} \operatorname{vol}(\{u_m\}^{f_{\mathscr{L}}})$$

where $\overline{u_m}$ is supposed to be a vertex of \mathcal{C}_m .

Sketch of proof VI

Figure: Ω and \mathscr{C}_2

Figure: $\mu_2(\overline{\Omega})$

• For $m \gg 0$, an easy calculation shows

$$\sum_{\overline{u_m}\in\overline{\Omega}}\operatorname{vol}(\{u_m\}^{f_{\mathscr{L}}})\sim m^n\,\operatorname{vol}(\overline{\Omega})\frac{\operatorname{vol}(\Lambda^L)}{\operatorname{vol}(\Lambda)}$$

$$\mu(\overline{\Omega}) = n! \operatorname{vol}(\overline{\Omega}) \frac{\operatorname{vol}(\Lambda^L)}{\operatorname{vol}(\Lambda)} .$$

• By construction, we have $\operatorname{supp}(\mu) = S(\mathscr{A})$.

Corollary [Gu3]

If X = A is a *d*-dimensional abelian variety, then the canonical measure $c_1(L, \| \|_{\operatorname{can}})^{\wedge d}$ for an ample line bundle *L* is equal to the Haar measure μ on the skeleton \mathbb{R}^n / Λ of *A* determined by $\mu(\overline{\Omega}) = \deg_L(A)$.

Proof.

If A is totally degenerate, then the claim follows from the above proof and the fact that Chambert-Loir's measures have total measure equal to the degree. We skip the general case.

5 Equidistribution and the Bogomolov conjecture

Example

The diophantine equation $x^4 - y^4 = 5$ has only finitely many rational solutions, e.g. $(\frac{3}{2}, \frac{1}{2})$.

In general, we have for any number field K the Mordell-conjecture.

Theorem (Faltings 1983)

An algebraic curve of genus g > 1 has only finitely many points with coordinates in K.

- A central tool is the *height* of a point.
- The height measures the arithmetic complexity of the point.
- e.g. $h(\frac{3}{2}, \frac{1}{2}) = \log(3)$, as we have the projective solution (2:3:1).

Product formula [BG,Ch.1]

- Let M_K be the set of absolute values on the number field K which extend the usual absolute value or the p-adic absolute values on Q.
- For $v \in M_K$ extending $q \in M_Q$, let K_v, Q_q be the completions and let $\mu(v) := \frac{[K_v:Q_q]}{[K:Q]}$.
- For non-zero $\alpha \in K$, we have the *product formula*

$$\prod_{\boldsymbol{\nu}\in M_{\mathcal{K}}}|\alpha|_{\boldsymbol{\nu}}^{\mu(\boldsymbol{\nu})}=1.$$

Remark

- If K = k(B) is the function field of a smooth curve B over an algebraically closed field, then every point v ∈ B induces the discrete absolute value |f|_v := e^{-ord(f,v)} and we set M_K := B.
- The product formula holds here as in the number field case.

In the following, the field K is either a number field or a function field.

Semipositive admissible metrics [Gu4,§3]

- Let L be an ample line bundle on the projective variety X over K.
- If v is non-archimedean, then we are going to apply the theory of semipositive admissible metrics on the Berkovich analytic space X_v^{an}.
- If v|∞, then X_v^{an} is a complex space and there is also a notion of semipositive admissible metric || ||_v on L_v^{an}. For X smooth, this means that || ||_v is a smooth hermitian metric with semipositive curvature.

Example

If \mathscr{L} is an ample $O_{\mathcal{K}}$ -model for $L^{\otimes m}$, then we have seen that $\| \|_{\mathscr{L},v}^{1/m}$ defines a semipositive formal metric on L_v^{an} for $v \not \mid \infty$.

Definition

A semipositive admissible metric $\| \|$ on L is a family of semipositive admissible metrics $\| \|_{v}$ on L_{v}^{an} , $v \in M_{K}$, which are as in the above example up to finitely many $v \in M_{K}$.

Heights [BG,Ch.2]

Let \overline{L} be the ample line bundle L endowed with a semipositive admissible metric $\| \|$.

Definition

The *height* of $P \in X(\overline{K})$ is given by

$$h_{\overline{L}}(P) := -\sum_{w \in M_F} \mu(w) \log \|s(x)\|_w,$$

where F/K is a finite extension with $P \in X(F)$ and $s(x) \in L_x \setminus \{0\}$.

- $\mu(w)$ ensures that the height does not depend on *F*.
- The product formula shows that the height does not depend on s(x).

Theorem (Weil)

The height does not depend on $\| \|$ up to bounded functions.

Néron-Tate-heights [BG,Ch.9]

- Let A be an abelian variety over K with an ample even line bundle L.
- For v ∈ M_K, let || ||_{can,v} be the canoncial metric of L^{an}_v with respect to a fixed rigidification of L.
- This induces a semipositive admissible metric $\| \|_{can}$ on L.

Definition

We call
$$\hat{h}_L := h_{(L,\parallel \parallel_{\operatorname{can}})}$$
 the *Néron–Tate–height* with respect to *L*.

- By Weil's theorem, h
 L(P) = lim{m→∞} m⁻²h_(L,|| ||)(mP) for any semipositive admissible metric || || on L (Tate's limit formula).
- \hat{h}_L is a positive semidefinite quadratic form.
- The kernel of the associated bilinear form is the torsion group.
- We get canonical semidistance $d_L(P,Q) := \hat{h}_L(P-Q)$ on A.
Definition

A torsion subvariety of A has the form B + t for an abelian subvariety B and a torsion point t of A.

For a closed subvariety X of A, we have the Bogomolov conjecture:

Theorem (Ullmo 1998 for curves, Zhang 1998 in general)

There are only finitely many maximal torsion subvarieties in X.

• \hat{h}_L has a positive lower bound on their complement in X.

- This is a statement for points with coordinates in \overline{K} .
- The torsion points are dense in every torsion subvariety.
- The statement is independent of the choice of *L*.

Bogomolov conjecture over the function field K = k(B)

Many proofs are easier for function fields:

- Fermat's conjecture: Tschebyscheff, Liouville, Korkine, 19th century
- Mordell conjecture: Manin, Grauert, Samuel, 1963-1966

Theorem (Gu2)

The Bogomolov conjecture holds if A is totally degenerate with respect to some $v \in M_K$.

- The Bogomolov conjecture is wrong if X and A are defined over k.
- It is conjectured only if $Tr_{L/k}(A) = 0$ for all finite L/K.
- The Bogomolov conjecture was known only for some curves (e.g. g = 2) due to Moriwaki, Yamaki.
- Recent work of Zhang and Faber give all curves g ≤ 4 and more examples.

The proof of the Bogomolov conjecture relies on the following equidistribution result:

- If X is a closed subvariety of the abelian variety A and L is an even ample line bundle on A.
- We fix a place $v \in M_K$ and an embedding $\overline{K} \hookrightarrow \mathbb{C}_{K_v}$ over K to identify $X(\overline{K})$ with a subset of X_v^{an} .
- Note that the absolute Galois group $G := \operatorname{Gal}(\overline{K}/K)$ acts on $X(\overline{K})$.
- Suppose that (P_n) is a small generic sequence in $X(\overline{K})$:
 - generic means $\{n \in \mathbb{N} \mid P_n \in Y\}$ is finite for every closed $Y \subsetneq X$.
 - small means that $\lim_{n\to\infty} \hat{h}_L(P_n) = 0$.
- We consider the discrete probability measure μ_n on X_v^{an} which has support GP_n and is equidistributed on this Galois orbit.

Theorem

We have the weak convergence $\mu_n \to (\deg_L(X)^{-1}c_1(L|_X, || ||_{can,v})^{\wedge d}$ of regular probability measures on X_v^{an} .

Remark

There is a generalization to arbitrary projective varieties X and any semipositive admissible metric || || on L, where now small means that $h_{(L,|| ||)}(P_n)$ converges to the height $h_{(L,|| ||)}(X)$ of X.

If K is a number field, the equidistribution theorem was proved by:

- Szpiro, Ullmo and Zhang for $v \mid \infty$ and positive curvature at v.
- Chambert-Loir for $v \not\mid \infty$ if $\| \cdot \|_{v}$ is induced by an ample model.
- Yuan in general.

Methods of proof [Yu], [Gu4]

• If the curvature is positive (or the metric is induced by an ample model), then the arithmetic Hilbert-Samuel formula is used to prove the fundamental inequality

$$h_{(L,\parallel\parallel\parallel)}(X) \leq \liminf_{n\to\infty} h_{(L,\parallel\parallel\parallel)}(P_n).$$

- A variational principle for metrics on *L* is used to deduce the equidistribution theorem from the fundamental inequality.
- This is possible as the variational metrics remain semipositive.
- For semipositive admissible metrics, this is no longer true.
- Yuan's idea is to prove a variational form of the fundamental inequality based on Siu's theorem in the theory of big line bundles.
- This is good enough to prove the equidistribution theorem as above.

Yuan's proof may be adapted to function fields. This was done by Faber in the special case $h_{(L,\| \|)}(X) = 0$ and independently by [Gu4] in general.

Tropical equidistribution theorem [Gu2, $\S5$]

- Let A be an abelian variety which is totally degenerate with respect to a fixed v ∈ M_K and let X be a d-dimensional closed subvariety.
- Let $(P_n)_{n \in \mathbb{N}}$ be a small generic sequence in X as before.
- Let us consider the following discrete probability measure on Trop(X):

$$\mu_n = \frac{1}{|GP_n|} \sum_{Q \in GP_n} \delta_{\overline{\operatorname{val}}(Q)}.$$

Theorem (Gu2)

Then μ_n converges weakly to a strictly positive volume form μ on $\operatorname{Trop}(X)$, i.e. $\operatorname{Trop}(X)$ is a finite union of d-dimensional polytopes Δ such that $\mu|_{\Delta}$ is a positive multiple of the Lebesgue measure.

This follows by taking \overline{val}_* in the previous equidistribution theorem and then using the explicit description of the canonical measures.

Proof of the Bogomolov conjecture I [Gu2,§6]

It is easy to see that the Bogomolov conjecture is equivalent to:

Theorem (Gu2)

Let X be a closed subvariety of the abelian variety A over K. We assume that A is totally degenerate with respect to $v \in M_K$. If X is no torsion subvariety of A, then there is no small generic sequence in $X(\overline{K})$.

• Similarly as in Zhang's proof, we can assume that the morphism

$$\alpha: X^{N} \longrightarrow A^{N-1}, \quad \mathbf{x} \mapsto (x_{2} - x_{1}, \dots, x_{N} - x_{N-1})$$

is generically finite for N sufficiently large.

- If the Bogomolov conjecture is wrong, then there is a small generic sequence in X(K).
- Then there is also a small generic sequence $(\mathbf{x}_n)_{n \in \mathbb{N}}$ in X^N .
- We conclude that $\alpha(\mathbf{x}_n)$ is a small generic sequence in $Y = \alpha(X^N)$.

Proof of the Bogomolov conjecture II [Gu2,§6]

- We get equidistribution measures μ on $\operatorname{Trop}(X^N)$ and ν on $\operatorname{Trop}(Y)$.
- By construction, we have $\nu = \alpha_{aff}(\mu)$ for the canonical α_{aff} :

- The diagonal X in X^N satisfies $\alpha(X) = 0$.
- The same holds for the diagonal $\operatorname{Trop}(X)$ in $\operatorname{Trop}(X^N) = \operatorname{Trop}(X)^N$.
- There is an Nd-dimensional simplex Δ in Trop(X^N) with d-dimensional face in Trop(X).
- dim $(\alpha_{\mathrm{aff}}(\Delta)) < \dim(\Delta)$ and hence $\nu(\alpha_{\mathrm{aff}}(\Delta)) = 0$.
- This proves $\mu(\Delta) = 0$ which contradicts the strict positivity of μ .

References I

- [Ber1] V.G. Berkovich: Spectral theory and analytic geometry over non-archimedean fields. AMS (1990).
- [Ber2] V.G. Berkovich: Étale cohomology for non-archimedean analytic spaces. Publ. Math. IHES 78, 5–161 (1993).
- [Ber3] V.G. Berkovich: Smooth *p*-adic analytic spaces are locally contractible. Invent. Math. 137, No.1, 1–84 (1999).
- [Ber4] V.G. Berkovich: Smooth *p*-adic analytic spaces are locally contractible. II. Adolphson, Alan (ed.) et al., Geometric aspects of Dwork theory. Vol. I. Berlin: de Gruyter. 293–370 (2004).
- [BGR] S. Bosch, U. Güntzer, R. Remmert: Non-Archimedean analysis. A systematic approach to rigid analytic geometry. Springer (1984).
- [BL1] S. Bosch, W. Lütkebohmert: Degenerating abelian varieties. Topology 30, No.4, 653–698 (1991).
- [BL2] S. Bosch, W. Lütkebohmert: Formal and rigid geometry. I: Rigid spaces. Math. Ann. 295, No.2, 291–317 (1993).
- [BG] E. Bombieri, W. Gubler: Heights in diophantine geometry. Cambridge University Press, xvi+652 pp. (2006)

References II

- [Gu1] W. Gubler: Tropical varieties for non-archimedean analytic spaces. Invent. Math. 169, 321–376 (2007)
- [Gu2] W. Gubler: The Bogomolov conjecture for totally degenerate abelian varieties. Invent. Math. 169, 377–400 (2007)
- [Gu3] W. Gubler: Non-archimedean canonical measures on abelian varieties. ArXiv(2008)
- [Gu4] W. Gubler: Equidistribution over function fields. ArXiv (2008)
- [dJ] A. J. de Jong: Smoothness, semi-stability and alterations. Publ. Math. IHES 83, 51–93 (1996).
- [KKMS] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat: Toroidal embeddings. I. LNM 339. Berlin etc.: Springer-Verlag (1973).
- [RST] J. Richter-Gebert, B. Sturmfels, T. Theobald: First steps in tropical geometry. Contemporary Mathematics 377, 289–317 (2005).
- [Yu] X. Yuan: Positive line bundles over arithmetic varieties. ArXiv (2006)
- [Zh] S. Zhang: Equidistribution of small points on abelian varieties. Ann. Math. (2) 147, No.1, 159–165 (1998).