Hyperbolic dimension

Kathrin Haltiner

Institut für Mathematik Universität Zürich

Outline

Classical dimension theory
Topological dimension
Dimensions in large-scale geometry
Asymptotic dimension
Hyperbolic dimension
Another approach to large-scale dimensions
Large-scale structures

Topological dimension

Definition 1

The covering dimension $\dim_{cov} X$ of a metric space X is the minimal integer n such that for every $\varepsilon>0$ there is an open covering $\mathcal U$ of X with multiplicity $\le n+1$ and $\sup_{U\in\mathcal U} \operatorname{diam} U \le \varepsilon$.

Definition 2

The coloured dimension $\dim_{col} X$ of a metric space X is the minimal integer n such that for every $\varepsilon>0$ there is a covering $\mathcal U$ of X consisting of n+1 open subsets U_j , $j=0,\ldots,n$, such that:

- $U_j = \bigcup_{\alpha \in I_j} U_{j\alpha} \quad \forall j;$
- $U_{j\alpha} \cap U_{j\alpha'} = \emptyset \quad \forall \alpha \neq \alpha';$
- diam $U_{j\alpha} \leq \varepsilon \quad \forall j, \alpha$.

Definition 3

The polyhedral dimension $\dim_{pol} X$ via simplicial complexes.

Topological dimension

Proposition

Let X be a metric space. Then

$$\dim_{cov} X = \dim_{col} X = \dim_{pol} X.$$

The common value is called *topological dimension*, $\dim X$.

Idea of the proof

- ▶ It is clear that $\dim_{cov} X \leq \dim_{col} X$.
- ▶ Then, $\dim_{col} X \leq \dim_{pol} X$ is proven with the help of the barycentric subdivision.
- ▶ Finally, a simplicial complex, the nerve of a covering, can be constructed, which leads to $\dim_{pol} X \leq \dim_{cov} X$.

Asymptotic dimension [Gromov, 1993]

Definition

The asymptotic dimension $\operatorname{asdim} X$ of a metric space X is the minimal integer n such that for every d>0 there is a covering \mathcal{U} of X consisting of n+1 subsets U_i , $j=0,\ldots,n$, such that

- $U_j = \bigcup_{\alpha \in I_i} U_{j\alpha} \quad \forall j;$
- ▶ $\exists D \ge 0$ such that diam $U_{j\alpha} \le D \quad \forall j, \alpha$ (*D-bounded* or *uniformly bounded*);
- ▶ $\operatorname{dist}(U_{j\alpha}, U_{j\alpha'}) \ge d \quad \forall \alpha \ne \alpha' \ (d\text{-disjoint}).$

Asymptotic dimension [Gromov, 1993]

Proposition

Let X be a metric space. Then the following are equivalent:

- ightharpoonup asdim X = n.
- ▶ There is a minimal integer n such that for every d>0 there exists a uniformly bounded covering of X so that no ball of radius d in X meets more than n+1 elements of the cover (d-multiplicity).

Furthermore there are:

- ▶ A similar statement using multiplicity and Lebesgue number.
- A characterisation via simplicial complexes.

Definition

A metric space X is called *large-scale doubling* if there exist $N \in \mathbb{N}$ and $R \in \mathbb{R}^+$ such that every ball of radius $r \geq R$ in X can be covered by N balls of radius $\frac{r}{2}$.

Results

- ▶ The property to be large-scale doubling can be iterated.
- It is a quasi-isometry invariant.
- ➤ A space that is large-scale doubling has polynomial growth rate.

Definition

The hyperbolic dimension of a metric space X, $\operatorname{hypdim} X$, is the minimal integer n such that for every d>0 there are an $N\in\mathbb{N}$ and a covering of X so that:

- ▶ no ball of radius d in X meets more than n + 1 elements of the cover;
- ▶ there is $R \in \mathbb{R}^+$ such that any set of the covering is large-scale doubling with parameters N and R;
- ightharpoonup any finite union of elements of the covering is large-scale doubling with parameter N.

Remark

As before, there are equivalent formulations based on multiplicity and Lebesgue number, d-multiplicity, and simplicial complexes, respectively.

Observations

- If a metric space X is large-scale doubling, then $\operatorname{hypdim} X = 0$.
- ▶ A metric space X is large-scale doubling with parameters N=1 and $R\iff \operatorname{diam} X=\frac{R}{2}.$
- ▶ We get asdim if we ask for the fixed value N = 1 in the definition of hypdim.
- ▶ Therefore we have $\operatorname{hypdim} X \leq \operatorname{asdim} X$ for any metric space X.

Further results

- ▶ The hyperbolic dimension is a quasi-isometry invariant.
- ▶ Monotonicity: If $f: X \to X'$ is a quasi-isometric map between metric spaces X, X', then

$$\operatorname{hypdim} X \leq \operatorname{hypdim} X'.$$

▶ Product theorem: For any metric spaces X_1 and X_2 , one has

$$\operatorname{hypdim}(X_1 \times X_2) \leq \operatorname{hypdim} X_1 + \operatorname{hypdim} X_2.$$

- ▶ For the n-dimensional hyperbolic space \mathbb{H}^n one has hypdim $\mathbb{H}^n = n$.
- ▶ And finally, one can show that \mathbb{H}^n cannot be embedded quasi-isometrically into a (n-1)-fold product of trees and some euclidean factor \mathbb{R}^N .

Large-scale structures [Dydak/Hoffland, 2006]

Preliminary definitions

- ▶ $\operatorname{St}(A,\mathcal{B}) := \bigcup_{B \in \mathcal{B}, B \cap A \neq \emptyset} B \in \mathcal{P}(X);$
- $\bullet e(\mathcal{B}) := \mathcal{B} \cup \{ \{x\} \mid x \in X \} \quad \in \mathcal{P}(\mathcal{P}(X));$
- ▶ Let \mathcal{A} , $\mathcal{B} \in \mathcal{P}(\mathcal{P}(X))$ such that $\forall B \in \mathcal{B} \exists A \in \mathcal{A}$ with $B \subset A$. Then \mathcal{B} is called *refinement* of \mathcal{A} .

Definition

An element $\mathfrak{A} \in \mathcal{P}^3(X)$ is a *large-scale structure* on X if the following conditions hold:

- ▶ $\mathcal{B} \in \mathfrak{A}$, $\mathcal{A} \in \mathcal{P}(\mathcal{P}(X))$ with \mathcal{A} refinement of $e(\mathcal{B})$ $\Longrightarrow \mathcal{A} \in \mathfrak{A}$;
- $ightharpoonup \mathcal{A},\,\mathcal{B}\in\mathfrak{A}\implies \mathrm{St}(\mathcal{A},\mathcal{B})\in\mathfrak{A}.$

Large-scale structures [Dydak/Hoffland, 2006]

Example

A large-scale structure ${\mathfrak A}$ for a metric space X is given by:

$$\mathcal{B} \in \mathfrak{A} \iff \exists M > 0 \text{ such that } \operatorname{diam} B \leq M \ \forall B \in \mathcal{B}.$$

Definition

Let X be a space and $\mathfrak A$ a large-scale structure on X. The large-scale dimension $\dim(X,\mathfrak A)$ is the minimal n so that $\mathfrak A$ is generated by a set of families $\mathcal B$ such that the multiplicity of each $\mathcal B$ is at most n+1.

Thereby we say that $\mathfrak A$ is generated by a set of families $\mathcal B$ if $\mathfrak A$ contains all refinements of trivial extensions of all families $\mathcal B$.