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Topological dimension

Definition 1

The covering dimension dim_,, X of a metric space X is the
minimal integer n such that for every € > 0 there is an open
covering U of X with multiplicity < n + 1 and

supyey diamU < e.

Definition 2
The coloured dimension dim.,; X of a metric space X is the
minimal integer n such that for every € > 0 there is a covering U
of X consisting of n + 1 open subsets U;, j =0,...,n, such that:
> Uj = Uaer, Uja Vi
> Ui NUjor =0 Va # o;
» diamUj, <e Vj,a.

Definition 3
The polyhedral dimension dim,, X via simplicial complexes.



Topological dimension

Proposition
Let X be a metric space.Then

dimeyy X = dimey X = dimyy X.
The common value is called topological dimension, dim X .

Idea of the proof

» It is clear that dim.,, X < dim.y X.
» Then, dim.y; X < dim,, X is proven with the help of the
barycentric subdivision.

» Finally, a simplicial complex, the nerve of a covering, can be
constructed, which leads to dimp, X < dimgy, X.



Asymptotic dimension [Gromov, 1993]

Definition
The asymptotic dimension asdim X of a metric space X is the
minimal integer n such that for every d > 0 there is a covering U
of X consisting of n + 1 subsets Uj;, j = 0,...,n, such that
> Uj = Uaer, Uja 5
» 3D > 0 such that diamUj;o, < D Vj, «
(D-bounded or uniformly bounded);

> dist(Ujn, Ujar) > d  Va # o (d-disjoint).



Asymptotic dimension [Gromov, 1993]

Proposition
Let X be a metric space.Then the following are equivalent:

» asdim X =n.

» There is a minimal integer n such that for every d > 0 there
exists a uniformly bounded covering of X so that no ball of
radius d in X meets more than n + 1 elements of the cover
(d-multiplicity).

Furthermore there are:
» A similar statement using multiplicity and Lebesgue number.

» A characterisation via simplicial complexes.



Hyperbolic dimension [Buyalo/Schroeder, 2004]

Definition

A metric space X is called /arge-scale doubling if there exist

N € N and R € R™ such that every ball of radius » > R in X can
be covered by N balls of radius 5.

Results

» The property to be large-scale doubling can be iterated.
» It is a quasi-isometry invariant.

» A space that is large-scale doubling has polynomial growth
rate.



Hyperbolic dimension [Buyalo/Schroeder, 2004]

Definition

The hyperbolic dimension of a metric space X, hypdim X, is the
minimal integer n such that for every d > 0 there are an N € N
and a covering of X so that:

» no ball of radius d in X meets more than n + 1 elements of
the cover;

» there is R € RT such that any set of the covering is
large-scale doubling with parameters N and R;

» any finite union of elements of the covering is large-scale
doubling with parameter V.

Remark

As before, there are equivalent formulations based on multiplicity
and Lebesgue number, d-multiplicity, and simplicial complexes,
respectively.



Hyperbolic dimension [Buyalo/Schroeder, 2004]

Observations
» If a metric space X is large-scale doubling, then
hypdim X = 0.
» A metric space X is large-scale doubling with parameters
N=1and R < diamX = £.
> We get asdim if we ask for the fixed value N =1 in the
definition of hypdim.

» Therefore we have hypdim X < asdim X for any metric
space X.



Hyperbolic dimension [Buyalo/Schroeder, 2004]

Further results

» The hyperbolic dimension is a quasi-isometry invariant.

» Monotonicity: If f: X — X' is a quasi-isometric map
between metric spaces X, X', then

hypdim X < hypdim X'.
» Product theorem: For any metric spaces X; and X5, one has
hypdim(X; x X3) < hypdim X; + hypdim X5.

» For the n-dimensional hyperbolic space H" one has
hypdim H"” = n.

» And finally, one can show that H" cannot be embedded
quasi-isometrically into a (n — 1)-fold product of trees and
some euclidean factor RV,



Large-scale structures [Dydak/Hoffland, 2006]

Preliminary definitions

> St(A,B) := UBE&BOA#@B € P(X);

» St(A,B) :={St(A,B)| Ac A} € P(P(X)),

» e(B):=BU{{z}|ze X} €PPX))

> Let A, B€ P(P(X)) such that VB € B 3A € A with
B C A. Then B is called refinement of A.

Definition
An element 2 € P3(X) is a large-scale structure on X if the
following conditions hold:
» BeA AeP(P(X)) with A refinement of e(B)
= Ae,

» A Bed = St(A,B) e .



Large-scale structures [Dydak/Hoffland, 2006]

Example
A large-scale structure 2 for a metric space X is given by:

Be < IM >0 such that diamB < M VB € B.

Definition

Let X be a space and 2 a large-scale structure on X. The
large-scale dimension dim (X, %) is the minimal n so that A is
generated by a set of families B such that the multiplicity of each
B is at most n + 1.

Thereby we say that 2l is generated by a set of families B if 2
contains all refinements of trivial extensions of all families B.



