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Topological dimension

Definition 1
The covering dimension dimcov X of a metric space X is the
minimal integer n such that for every ε > 0 there is an open
covering U of X with multiplicity ≤ n + 1 and
supU∈U diam U ≤ ε.

Definition 2
The coloured dimension dimcol X of a metric space X is the
minimal integer n such that for every ε > 0 there is a covering U
of X consisting of n + 1 open subsets Uj, j = 0,. . . ,n, such that:

◮ Uj =
⋃

α∈Ij
Ujα ∀j;

◮ Ujα ∩ Ujα′ = ∅ ∀α 6= α′;

◮ diam Ujα ≤ ε ∀j,α.

Definition 3
The polyhedral dimension dimpol X via simplicial complexes.



Topological dimension

Proposition

Let X be a metric space.Then

dimcov X = dimcol X = dimpol X.

The common value is called topological dimension, dim X.

Idea of the proof

◮ It is clear that dimcov X ≤ dimcol X.

◮ Then, dimcol X ≤ dimpol X is proven with the help of the
barycentric subdivision.

◮ Finally, a simplicial complex, the nerve of a covering, can be
constructed, which leads to dimpol X ≤ dimcov X.



Asymptotic dimension [Gromov, 1993]

Definition
The asymptotic dimension asdim X of a metric space X is the
minimal integer n such that for every d > 0 there is a covering U
of X consisting of n + 1 subsets Uj , j = 0,. . . ,n, such that

◮ Uj =
⋃

α∈Ij
Ujα ∀j;

◮ ∃D ≥ 0 such that diam Ujα ≤ D ∀j,α
(D-bounded or uniformly bounded);

◮ dist(Ujα, Ujα′) ≥ d ∀α 6= α′ (d-disjoint).



Asymptotic dimension [Gromov, 1993]

Proposition

Let X be a metric space.Then the following are equivalent:

◮ asdim X = n.

◮ There is a minimal integer n such that for every d > 0 there
exists a uniformly bounded covering of X so that no ball of
radius d in X meets more than n + 1 elements of the cover
(d-multiplicity).

Furthermore there are:

◮ A similar statement using multiplicity and Lebesgue number.

◮ A characterisation via simplicial complexes.



Hyperbolic dimension [Buyalo/Schroeder, 2004]

Definition
A metric space X is called large-scale doubling if there exist
N ∈ N and R ∈ R

+ such that every ball of radius r ≥ R in X can
be covered by N balls of radius r

2
.

Results

◮ The property to be large-scale doubling can be iterated.

◮ It is a quasi-isometry invariant.

◮ A space that is large-scale doubling has polynomial growth
rate.



Hyperbolic dimension [Buyalo/Schroeder, 2004]

Definition
The hyperbolic dimension of a metric space X, hypdimX, is the
minimal integer n such that for every d > 0 there are an N ∈ N

and a covering of X so that:

◮ no ball of radius d in X meets more than n + 1 elements of
the cover;

◮ there is R ∈ R
+ such that any set of the covering is

large-scale doubling with parameters N and R;

◮ any finite union of elements of the covering is large-scale
doubling with parameter N .

Remark
As before, there are equivalent formulations based on multiplicity
and Lebesgue number, d-multiplicity, and simplicial complexes,
respectively.



Hyperbolic dimension [Buyalo/Schroeder, 2004]

Observations

◮ If a metric space X is large-scale doubling, then
hypdimX = 0.

◮ A metric space X is large-scale doubling with parameters
N = 1 and R ⇐⇒ diam X = R

2
.

◮ We get asdim if we ask for the fixed value N = 1 in the
definition of hypdim.

◮ Therefore we have hypdimX ≤ asdim X for any metric
space X.



Hyperbolic dimension [Buyalo/Schroeder, 2004]

Further results

◮ The hyperbolic dimension is a quasi-isometry invariant.

◮ Monotonicity: If f : X → X ′ is a quasi-isometric map
between metric spaces X, X ′, then

hypdimX ≤ hypdimX ′.

◮ Product theorem: For any metric spaces X1 and X2, one has

hypdim(X1 × X2) ≤ hypdimX1 + hypdimX2.

◮ For the n-dimensional hyperbolic space H
n one has

hypdimH
n = n.

◮ And finally, one can show that H
n cannot be embedded

quasi-isometrically into a (n − 1)-fold product of trees and
some euclidean factor R

N .



Large-scale structures [Dydak/Hoffland, 2006]

Preliminary definitions

◮ St(A,B) :=
⋃

B∈B,B∩A 6=∅ B ∈ P(X);

◮ St(A,B) := {St(A,B) | A ∈ A} ∈ P(P(X));

◮ e(B) := B ∪ {{x} | x ∈ X} ∈ P(P(X));

◮ Let A, B ∈ P(P(X)) such that ∀B ∈ B ∃A ∈ A with
B ⊂ A. Then B is called refinement of A.

Definition
An element A ∈ P3(X) is a large-scale structure on X if the
following conditions hold:

◮ B ∈ A, A ∈ P(P(X)) with A refinement of e(B)
=⇒ A ∈ A;

◮ A, B ∈ A =⇒ St(A,B) ∈ A.



Large-scale structures [Dydak/Hoffland, 2006]

Example

A large-scale structure A for a metric space X is given by:

B ∈ A ⇐⇒ ∃M > 0 such that diam B ≤ M ∀B ∈ B.

Definition
Let X be a space and A a large-scale structure on X. The
large-scale dimension dim(X,A) is the minimal n so that A is
generated by a set of families B such that the multiplicity of each
B is at most n + 1.

Thereby we say that A is generated by a set of families B if A

contains all refinements of trivial extensions of all families B.


