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Since their introduction by Gromov [4] in the mid-1980’s J-holomorphic curves
have been one of the most widely used tools in symplectic geometry, leading
to the formulation of various theories (Gromov-Witten invariants, quantum co-
homology, various Floer homologies, symplectic field theory, Fukaya category),
answers to old questions in symplectic geometry (various Arnold conjectures)
and the discovery of new phenomena (e.g. non-squeezing). It was the modest
aim of these lectures to explain some of the very basic underlying principles and
techniques and illustrate their use in the study of Lagrange embeddings.

The first lecture started with a brief introduction to symplectic geometry. I
mentioned some of the typical (very general) questions, such as the

Existence problem: Given an compact almost complex manifold (M, J) with
a class a € H*(M;R) such that aU---Ua # 0 € H>"(M;R), does M admit a
symplectic form representing this class (and which tames some almost complex
structure homotopic to J)?

and the

Mapping problem: How special are symplectomorphisms as opposed to just
volume-preserving diffeomorphisms? Can one give lower bounds on the number
of fixed points of Hamiltonian diffeomorphisms in terms of the topology of M?

The second half of the lecture consisted of a discussion of Lagrangian immersions
and embeddings of compact manifolds into standard (R*" = C*, w = > dzp A
dyi) and what one can say without the use of holomorphic curves. I stated
the Gromov-Lees theorem asserting that Lagrangian immersions into C" satisfy
the h-principle, so that regular homotopy classes of Lagrange immersions are in
bijective correspondence with homotopy classes of U-parallelizations of L. T also
mentioned the Whitney immersions of spheres with a single double point. This
was followed by a brief illustration of Givental’s construction of immersions of
surfaces. I also sketched the proof of the fact that the product of a Lagrangian
immersion f : V" — C" with a Lagrangian embedding g : W™ — C™ (m > 1) is
homotopic in the class of Lagrangian immersions to a Lagrangian embedding of
V x W into C"*™. I next discussed how one can remove transverse double points
by Lagrange surgery. Using Whitney’s algebraic count of the number of double
points of an immersion in terms of the Euler class of the normal bundle and the



isomorphism T'L = N L for immersed Lagrangian submanifolds, we saw that the
Lagrangian embeddability question can be decided completely for all surfaces
except the Klein bottle. Similarly, for all spheres except S® one can decide this
question purely in terms of algebraic topology, with the result the only sphere
(with the possible exception of S3) that admits a Lagrangian embedding into
C™ is the circle S'. On the other hand, whereas all oriented closed 3-manifolds
are parallelizable and so admit Lagrangian immersions into C3?, there are no
”classical” obstructions to the existence of Lagrangian embeddings.

At the end I stated Gromov’s result that there are no exact Lagrangian embed-
dings into C", as well as the non-squeezing theorem and the C°-closedness of
the symplectomorphism group to give some of the motivations for the study of
holomorphic curves. Good references for the material covered in this lecture are
the books [5] and [1] (here especially chapter X).

The second lecture started with the basics on almost complex structures on
symplectic manifolds and J-holomorphic curves, in particular with a proof that
the energy of a J-holomorphic curve for some tamed J is given by the pull-back
of the symplectic form. I also mentioned that for compatible J, the symplectic
form is a calibration, so that J-curves are conformal parametrizations of abso-
lutely area-minimizing surfaces. After a very sketchy discussion of how one sets
up the proof that for generic J the space of simple J-holomorphic spheres in a
given class A € Ho(M;R) is a manifold whose oriented cobordism class is inde-
pendent of the specific regular J, I stated the basic compactness result under
the assumption of L,-bounds. This was followed by a description of the process
of bubbling, which I illustrated with the standard example of a family of smooth
quadrics in CP? ”converging to” a pair of lines. Next I discussed the important
special case of homology classes with minimal positive symplectic area, for which
one gets compactness of the moduli spaces of maps up to reparametrization. I
used this absence of bubbling for the class [S? x pt] € Ha(S? x C"~1) to discuss
the proof of Gromov’s

Non-squeezing Theorem.[4] If B> (0, R) embeds symplectically into B%(0,r)x
C* ! then R<r.

An excellent reference for the material of the second lecture is the book [6] (in
particular chapters 2-4).

The third lecture was dedicated to a discussion of Lagrangian embeddings into
C™ using J-holomorphic curves. I started by proving Gromov’s

Theorem.[4] Suppose L C C™ is an embedded compact Lagrangian submanifold.
Then there exists a nonconstant holomorphic map (for the standard complex
structure on C") u : (D?,8D?) — (C", L™).

Here the basic line of argument is that compactness for a suitable 1-parameter
family of perturbed Cauchy-Riemann equations

Ou = a(t)



has to fail for topological reasons, resulting in the existence of a bubble. As the
limiting map is obtained via rescaling, it satisfies the homogeneous equation,
i.e. it is holomorphic. Moreover, this bubble must be a disc, since in an exact
symplectic manifold such as C™ there are no non-constant holomorphic spheres.
Of course, the theorem implies that H;(L;R) # 0, proving that S® does not
admit a Lagrangian embedding into C3.

Up to this point the proofs involved only the very crude dichotomy “compactness
or bubbling”. Next I gave a pictorial description of what the general limit
of a sequence of holomorphic discs in a fixed homology class looks like, with
the assertion that interior bubbling adds 2 to the codimension and boundary
bubbling adds 1, so that the boundary (in the sense of algebraic topology) of a
moduli space of discs can be described by pairs of discs meeting at a boundary
point. After a brief discussion of the Maslov index and the statement of the
Audin conjecture, I formulated Fukaya’s

Theorem.[3] Suppose L™ is an embedded Lagrangian submanifold in C™ which
is spin and aspherical. Then there exists a map u : (D? dD?) — (C", L) with
the following properties:

(i) the symplectic area satisfies E(u) > 0,
(ii) the Maslov index of the boundary loop satisfies p(ujop) = 2, and

(iii) the loop v = wop has centralizer Z, = {a € (L) : ay = ya} of finite
indez in w1 (L).

and its

Corollary.[3] An oriented closed prime 3-manifold L* admits a Lagrangian em-
bedding into C3 if and only if L is diffeomorphic to S' x ¥ for some closed
oriented surface .

To give an idea of the proof of the theorem, I next introduced the relevant parts
of string topology in the sense of Chas and Sullivan [2]. T gave the definition
of the string bracket on the transversal chain level and illustrated it with the
example of two orthogonal families of closed loops on a two-dimensional torus.
Then I asserted that given a Lagrangian submanifold L C (M, w) of a symplectic
manifold, one can view the moduli space M(A; J) of holomorphic discs in a given
relative homology class A € Hy(M, L) as a chain in the closed string space XL
by assigning to (an equivalence class of) discs its (arc-length parametrized)
boundary data. The formal sum

ci= Z caz € C.(BL)

A€H,(M,L)

of these chains then satisfies Fukaya’s first equation

1
dc + 5[070] =0,



where [., .] denotes the string bracket. Again I gave a quick illustration of this
phenomenon for the class A = (1,1) € H;(T?) = Hy(C?,T?) for the standard
torus T2 = S' x S! € C x C. I ended by indicating that to prove Fukaya’s the-
orem, one now again looks at the Gromov trick of using the perturbed Cauchy-
Riemann equation

ou = a(t)

for a suitable family of perturbations a : [0,1] — C™ starting at a(0) = 0
and ending at some a(1) whose norm is so large that there are no solutions.
Assuming sufficient regularity, for all but a finite number of ¢ € [0, 1] the moduli
space of solutions for right hand side a(t) will be essentially a manifold, giving
rise to a chain o, € C.(XL) as before. We also denote by o0 € C.(XL) the
chain of one higher dimension which is obtained from the whole family. Then
o satisfies Fukaya’s second equation

do = 09 + [¢, 0],

where as before ¢ is the formal series describing the holomorphic discs with
boundary on L and the bracket is the string bracket. Restricting to the class
A = 0 in this equation yields

(00) a=0 = (00) A=0 — Z [c, (0)-B].

BEeH,(C™,L)
It follows from the dimension formulas

dimecy =n—3+ u(A)
dimo_gp =n+1— pu(B)

that if c4 = 0 for all classes with pu(A) = 2, then in all appearing bracket
expressions at least one of the chains c¢p,o_p has dimension < 0 (i.e. it is
empty) or > n. In the theorem we assume that L is aspherical, so Hx(XL) =0
for k > n. The idea is now that one can inductively eliminate all the bracket
terms (even though the appearing terms are not all cycles!!), finally showing
that (0¢) =0 was a boundary for the ordinary boundary operator @ on C,(XL).
This is the desired contradiction since the inclusion of constant strings into the
component of null-homotopic strings is a homotopy equivalence in the case at
hand. Thus the assumption that ¢4 = 0 for all classes with u(A) = 2 was wrong.

It might be interesting to note that the inductive procedure can be interpreted
as a sequence of ”gauge transformations” for the ”flat connection” c.
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