
Cycles, Regulators and L2–cohomology
Alpbach June 2008

S. Müller-Stach

Disclaimer: These notes contain a very special selection of the
literature and represent my own viewpoint only.



Part I

Algebraic K–theory, Higher Chow Groups and
Motivic Cohomology



Literature/History

Milnor (Princeton UP), Weibel (homepage), Srinivas (Birkhäuser),
Rosenberg (Springer), K-theory handbook (Springer), Bloch
(homepage), Fulton (Springer), Levine Motives (AMS), Voevodsky
Orange Book (Princeton UP), Mazza/Weibel (AMS), many
articles by Bloch, Suslin, Friedlander, Voevodsky and Levine.

Class groups, Kummer-Vandiver conjecture, Picard group,
Legendre/Jacobi/Hilbert Symbols, Dirichlets Unit Theorem,
Brauer group, Whitehead group, Brauer group, Grothendieck
group K0 and K top

n (1950’s), Quillens K alg
n (1970), Higher Chow

groups, motivic cohomology, new Grothendieck topologies.

ζ(12) = 691
6825·93555π

12 (Euler, Bernoulli) and K22(Z) = Z/691Z
(Soulé).



K0(R)

A finitely generated projective module P is an R-module such that
P ⊕ Q ∼= RN .

Definition
R commutative integral domain with 1. Then

K0(R) =
Z[Iso classes of f.g. projective modules P]

〈[P ⊕ P ′] = [P] + [P ′]〉
.

K0(R)→ Z Rank. K0(R) = Z iff every P is stably trivial, i.e.,
P ⊕ RM ∼= RN .



Examples

I (R,m) local or PID, then K0(R) = Z and every P is actually
free.

I R = OK ring of integers (Dedekind domain), then
K0(R) = C`(OK )⊕ Z. Every projective module of rank n can
be written as I ⊕ Rn−1 with I ⊂ OK an ideal.

I Projective modules are locally free hence correspond to vector
bundles. K0(X ) can be defined for schemes in the same way.



GL(R)

Definition

GL(R) =
⋃

GLn(R) = lim GLn(R).

E (R) = {eij(a) = 1 + δij · a | a ∈ R, i 6= j}

elementary matrices.

Any upper triangular matrix

(
1 ∗
0 1

)
∈ GL2n(R) is elementary.

Same for lower triangular matrices.

Lemma (Properties=Axioms for Steinberg group)

I eij(a)eij(b) = eij(a + b).

I [eij(a), ek`(b)] = 1 if j 6= k und i 6= `.

I [eij(a), ejk(b)] = eik(ab) if i , j , k pairwise distinct.

I [eij(a), eki (b)] = −ekj(−ba) if i , j , k pairwise distinct.



Whitehead trick

Lemma (Whitehead)

E (R) = [GL(R),GL(R)] = [E (R),E (R)]

is a perfect normal subgroup of GL(R).

Definition (Bass)

Abelian group

K1(R) = GL(R)/E (R) = H1(GL(R),Z).

Measures properties of GL(R) somehow.



Proof of Whitehead Lemma

Proof.
(a) If A ∈ GLn(R) then (

A 0
0 A−1

)
=

(
1 A
0 1

)(
1 0
−A−1 1

)(
1 A
0 1

)(
1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
∈ E (R).

(b) (
[A,B] 0

0 1

)
=

(
AB 0
0 B−1A−1

)(
A−1 0

0 A

)(
B−1 0

0 B

)
.

(c) eij(a) = [eik(a), ekj(1)] if i , j , k pairwise distinct.



Relative K0 and K1

I ⊂ R ideal. For ∗ = 0, 1 define

K∗(R, I ) = Ker(p1∗ : K∗(D(R, I ))→ K∗(R)),

where D(R, I ) = {(x , y) ∈ R × R | x − y ∈ I} (double ring). It
induces long exact sequence

K1(R, I )→ K1(R)→ K1(R/I )→ K0(R, I )→ K0(R)→ K0(R/I )

(not in general surjective)



Examples

I (R,m) local or euclidean, then K1(R) = R×ab.

I In general SK1(R) := Ker(det : K1(R)→ R×).

I R = OK ring of integers, then SK1(R) = 1 trivial.

I There are PID with SK1(R) 6= 1 (Bass).

I SK1(R[x , y ]/x2 + y 2 − 1) = Z/2Z.



Dirichlet’s Unit Theorem

O×K/Torsion ↪→
∏
σ

R, r 7→ log |σ(r)|

is a lattice in the hyperplane H = {yσ = yσ̄,
∑

yσ = 0}.

Class number formula:

ζ∗K (0) = − h

w
· RK .

Order of vanishing = r1 + r2 − 1.

Example: K = Q, ζ(0) = −1
2 , h = 1, w = 2, R = 1.



Milnor’s K2

Definition

K2(R) := Ker(St(R)→ E (R)),

where St(R) is freely generated by xij(a) with Whitehead’s four
relations imposed.

Theorem

0→ K2(R)→ St(R)→ E (R)→ 0

universal central extension of perfect group E (R), i.e., St(R) and
Stn(R), n ≥ 3 are perfect and any central extension of St(R) splits.



Examples and Computations

I K2(R) = H2(E (R),Z).

I (Matsumoto, van der Kallen, Kolster) F field or local ring
with residue field with ≥ 4 elements, then

K2(F ) = F× ⊗Z F×/〈a⊗ (1− a), a⊗−a, a 6= 0, 1〉.

I F finite field, then K2(F ) = 0.

I K2(Z) = Z/2Z, K2(R) = Z/2Z⊕ uniquely divisible,
K2(C) = uniquely divisible.

I K2(Q) = Z/2Z⊕
⊕

p F×p .

I K2(OK ) is finite (Garland).



Milnor K-theory

Definition
R field or local ring with sufficiently large residue field,

KM
n (R) = R×⊗Z· · ·⊗ZR×/〈a⊗(1−a)⊗a3⊗· · · , a⊗−a⊗a3⊗· · · , a 6= 0, 1〉.

Bloch-Kato Conjecture: (` 6= char(R))

KM
n (R)/` = Hn

et(R, µ⊗n
` )

for R a field or a smooth, local k-algebra (Rost, Voevodsky).

KM
n (OK ) = (Z/2Z)r1 for n ≥ 3 (Bass/Tate).



Singular Topological Homology

X ∈ Top.

∆n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0
∑

xi = 1} ∈ Top.

Cn(X ,Z) = Z[f : ∆n → X continuous].

Hsing
n (X ,Z) =

Ker(Cn(X ,Z)
∂→Cn−1(X ,Z))

Im(Cn+1(X ,Z)
∂→Cn(X ,Z))

.

Similar for cubes �n = [0, 1]n.



CW complexes

X =
∞⋃

n=0

Xk ∈ Top

Hausdorff, compactly generated. Each Xn is obtained from Xn−1

by successively adjoining n–cells ∆n (colimit=pushout):

Xn = Xn−1

∐
∂∆n

∆n.

X has weak topology: A ⊂ X closed iff A ∩ Xn closed for all n.



Homotopy groups

(X , ∗) ∈ Top∗. Abelian group (for n ≥ 2)

πn(X , ∗) = Homotopy classes of f : (Sn = ∆n

∐
equator

∆n, ∗)→ (X , ∗).

Hurewicz Map:
πn(X , ∗) −→ Hsing

n (X ,Z).



Classifying Space BG and EG

G =group (discrete topology). There are CW complexes BG and
EG together with a topological fibration π : EG → BG with fiber
G and a cellular (and nice) G -action on EG with quotient BG .
BG =Eilenberg-MacLane space for G , i.e. π1(BG , ∗) = G and
πi (BG , ∗) = 0 for i ≥ 2.

Construction of BG : X0 = G , Xn = Xn−1 ∗ G (join by lines),
EG = lim Xn, BG = EG/G .



+-Construction of Quillen

Theorem (Quillen)

(X , ∗) connected CW complex. N ⊂ π1(X , ∗) perfect, normal
subgroup. Then there is a map of CW complexes f : X → X +

such that

(1) f∗ is quotient map π1(X , ∗)→ π1(X , ∗)/N.

(2) For all local systems L on X + one has
Hi (X , f ∗L) = Hi (X +, L).

Proof.
Attach 2-cells to kill N, hence (1). Then attach 3-cells to correct
homology in (2).

Theorem (Kan/Thurston)

X connected CW-complex. Then there is a group T = T (X ) and
a perfect subgroup N ⊂ T such that X is homotopy equivalent to
BT +.



Higher K -groups of Quillen

Definition

Kn(R) = πn(K0(R)× BGL(R)+, ∗) for n ≥ 0.

Theorem
This is old definition for n = 1, 2.

Proof.
n = 0 clear by definition. n = 1 by property (1). For n = 2 note
that K2(R) = H2(E (R),Z) and BE (R)+ is simply connected.
Hence BE (R)+ is a universal covering of BGL(R)+. Since
BE (R)+ is 1–connected we have π2(BGL(R)+) = π2(BE (R)+) =
H2(BE (R)+) = H2(BE (R),Z) = H2(E (R),Z) = K2(R).



Other models and properties

Other models for K -theory spaces:

I (Volodin) BGL(R)+ = BGL(R)/X (R), where X (R) is acyclic
subcomplex with π1(X (R), ∗) = St(R). Concretely
X (R) =

⋃
n,σ BT σ

n (R), σ ∈ Σn.

I (Karoubi-Villamayor) R regular ring, BGL+(R) = BGL(R[∆•])
topological realization of simplicial ring
R[∆•] : · · · → R[t0, t1]→ R[t0]→ R → 0.

I (Quillen) ΩBQA, A = category of projective R-modules.

Further properties: BGL(R)+ is a commutative H–group and
K∗(R) is a graded commutative K0(R)-algebra (Loday). Hurewicz
map Kn(R)⊗Q ↪→ Hn(GL(R),Q) has as image the primitive
elements (Milnor/Moore theorem). GL(R) can be replaced by GLm

for m large (Suslin stability).



A Filtration

K∗(R)⊗Q is a special λ–ring. This induces Adams operations and
a γ-filtration with graded pieces

Kn(R)⊗Q =
⊕

p

GrpγKn(R)⊗Q.

Jouanolou’s trick: For every X =smooth algebraic variety/k there is
an affine An–torsor Spec(R)→ X . We can thus define
Kn(X ) := Kn(R). Example: P1 × P1 \∆→ Pn (picture). Then

Kn(X )⊗Q =
⊕

p

GrpγKn(X )⊗Q.

Motivic cohomology is a way to define graded pieces integrally.



Examples and computations

Theorem (Quillen)

F = Fq finite field. Then K2n(F ) = 0 for n ≥ 1 and
K2n−1(F ) = Z/(qn − 1)Z for n ≥ 1.

Theorem (Borel)

K a number field. Let dn be the vanishing order of ζK (1− n). The
rank of K2n(OK ) is 0 for n ≥ 1 and the rank of K2n−1(OK ) is
equal to dn for n ≥ 1. d1 = r1 + r2 − 1 for n = 1 and d2k = r2 or
d2k+1 = r1 + r2 for k ≥ 1. Furthermore ζ∗K (1− n) = qn · RB

n (K ),
qn ∈ Q×, RB

n =Borel regulator (covolume of lattice in Rdn).

Examples: K3(Z) = Z/48Z, K4(Z) = 0, K5(Z) = Z, K6(Z) = 0,
K7(Z) = Z/240Z, K8(Z) = 0, ..., K22(Z) = Z/691Z, etc.



Optimistic Finiteness Conjectures

Conjecture (Bass)

R regular, finitely generated Z-algebra. Then Kn(R) is finitely
generated. If R is not regular, one may take G = K ′-theory
instead.

Theorem (Quillen/Grayson)

True for Dedekind rings R = OK and Kn for curves over finite
fields (dim(X ) ≤ 1 regular).

Conjecture (Lichtenbaum)

ζ∗K (1− n) = ±2? |K2n−2(OK )|
|K2n−1(OK )tors|

· RB
n .

Evidence: For totally real fields K and n = 2 (Birch-Tate
conjecture) this follows from a result of Mazur and Wiles (Iwasawa
main conjecture). Abelian case by Fleckinger/Kolster/Nguyen
Quang-Do and Huber/Kings.



Chow Groups

X equidimensional, quasi-projective/F .

CHp(X ) =
Z[W irreducible codim p subvariety]

〈div(f ) | f ∈ k(W )× codim(W ) = p − 1〉

Goal: Extend localization sequence for U = X \ A, A closed:

CHp(X , 1)→ CHp(U, 1)→ CHp−r (A)→ CHp(X )→ CHp(U)→ 0.

CHp(−, n) Bloch’s higher Chow groups (Borel–Moore theory).



Examples

I X smooth, quasi-projective, CH1(X ) = Pic(X ).

I X compact Riemann surface, Abel-Jacobi map
(X , ∗)→ Jac(X ), P 7→ (

∫ P
∗ ω1, . . . ,

∫ P
∗ ωg ) where ωi runs

through a basis of 1-forms. Induces an isomorphism
CH1(X )→ Jac(X ).

I X smooth, projective (Kähler) manifold, Albanese map

(X , ∗)→ Alb(X ), P 7→ (
∫ P
∗ ω1, . . . ,

∫ P
∗ ωg ) as above.

CHn
0 (X )→ Alb(X ) is surjective but not injective in general

(Mumford n = dim(X ) = 2).



Gersten Resolution

Sheafify Quillen K–theory in Zariski topology:

0→ Kn →
⊕

x∈X (0)

i∗Kn(k(x))→
⊕

x∈X (1)

i∗Kn−1(k(x))→ . . .

. . .→
⊕

x∈X (n−1)

i∗k(x)×
div→

⊕
x∈X (n)

i∗Z→ 0.

Flasque resolution of Kn in Zariski topology (Bloch/Ogus).

Theorem (Quillen, Bloch’s formula)

X smooth, quasi-projective/F , then CHn(X ) = Hn(X ,Kn).

Same for Milnor K-theory sheaf (Moritz Kerz, thesis 06/2008).



Bloch’s Higher Chow Groups

∆n
F = Spec(F [t0, . . . , tn]/

∑
ti − 1) algebraic simplex with n + 1

codimension 1 faces {ti = 0}. X quasi-projective, equidimensional
variety/F .

Zp(X , n) = Z[W ⊂ X×∆n irred. subvariety of codim p, admissible].

∂ : Zp(X , n)→ Zp(X , n − 1),W 7→
n∑

i=0

(−1)iW ∩ {ti = 0}.

CHp(X , n) = Hn(Zp(X , •), ∂).

Cubical version Hn(Cp(X , •), ∂) with
W ⊂ X ×�n

F = X × (P1 \ {1})n up to degenerate cycles.

∂W :=
n∑

i=1

(−1)i−1 (W ∩ {zi = 0} −W ∩ {zi =∞}) .



Properties (proved by Bloch)

I Covariant for proper maps and contravariant for flat maps.

I CH∗(X , ∗) has product structure (add p and n) for smooth X .

I Homotopy invariance CHp(X × Am, n) = CHp(X , n).

I Localization sequence as above for U = X \ A.

I KM
n (R) = CHn(R, n) for R is a field (Nesterenko/Suslin,

Totaro) or local and smooth with sufficiently large or infinite
residue fields (Elbaz-Vincent/SMS, Kerz).

I Beilinson/Soulé Vanishing: CHp(F , n)⊗Q = 0 for
n ≥ 2p ≥ 1. True for p = 0 and p = 1.

I There are HCG over Dedekind domains (Levine).

I Bloch’s formula generalized: CHp(X , 1) = Hp−1(X ,Kp).



BLLFS Spectral Sequence

There exists a spectral sequence for X smooth

CH−q(X ,−p − q)⇒ K−p−q(X ).

(Bloch/Lichtenbaum, Levine Friedlander/Suslin).

It degenerates over Q and we get a Riemann-Roch statement
(Bloch, Levine)

grpγKn(X )⊗Q = CHp(X , n)⊗Q,



Computations/Exercises

Theorem (Bloch)

X smooth, quasi-projective. Then CH1(X , n) = 0 for n ≥ 2 and
CH1(X , 1) = H0

Zar(X ,O×X ).

Exercise (1): Prove this!
Hint: Use cubical coordinates and localization to reduce to a field
F . Then, if W = div(F (x1, . . . , xn)) ∈ C 1(F , n) satisfies
∂(W ) = 0, you may assume that the intersection of W with every
codim 1 face is empty. Now construct a function G (x1, . . . , xn+1)
such that div(G ) has boundary W .

Exercise (2): Use CH∗(Pn
F ) = Z[h]/(hn+1), h = c1(O(1)),

localization and homotopy invariance to compute CH∗(Pn
F , ∗) as

an algebra over CH∗(F , ∗).

Exercise (3): Look at the cubical “Totaro” cycles

Ca ∈ C 2(F , 3) : x 7→ [1− a

x
, 1− x , x ] ∈ �3

and compute ∂Ca for a ∈ F .



Part II

Cohomology, Motives and Regulators



Literature

Voisin I/II (Cambridge), Carlson/SMS/Peters (Cambridge),
Crashkurs (SMS), K-theory Handbook (Springer), various papers
of Bloch/Kato, Deninger/Scholl, Goncharov, Levine (Mixed
Motives, AMS), Kerr/Lewis/SMS (Compositio 2006), Nori’s
unpublished work.



De Rham Cohomology

Definition (De Rham)

X/F smooth algebraic variety. Ωi
X/F sheaf of algebraic i–forms.

H i
dR(X/F ) is the F –vector space

H i
dR(X/F ) = Hi

Zar(X ,Ω•X/F ).

Hodge filtration:

F pH i
dR(X/F ) = Hi

Zar(X ,Ω≥p
X/F ).



Periods

X/F smooth, projective variety, σ : F ↪→ C an embedding, X (C)
associated compact complex manifold. Let H i (X ,Z) and Hi (X ,Z)
be singular (co)homology with piecewise differentiable chains Γ.

Theorem (Period Isomorphism)

Hn
dR(X/F )⊗F C = Hom(Hn(X (C),Q),Q)⊗Q C,

ω 7→
(

Γ 7→
∫

Γ
ω

)
.

There is a also version for pairs (X ,D), D NCD in X . Integrating
closed algebraic n–forms ω ∈ Ωn

X/F (dim(X ) = n) over n–chains,

we get Kontsevich/Zagier type periods
∫

Γ ω, if everything is
defined over F ⊂ Q.



MZV

Multiple zeta values (nm ≥ 2)

Lin1,...,nm(z1, . . . , zm) :=
∑

k1<k2<···<km

zk1
1 · · · zkm

m

kn1
1 · · · k

nm
m

ζ(n1, . . . , nm) := Lin1,...,nm(1, . . . , 1) =

∫ 1

0

dt

1− t
◦ dt

t
◦ · · · dt

t
◦ · · ·

Iterated integral. Take geometric series and integrate (Kontsevich).

Example:

ζ(3) =

∫
0<x<y<z<1

dxdydz

(1− x)yz
/∈ Q.



Complex Forms

Let F = C. Then there is an inclusion of (double) complexes

C ↪→ (Ω•X/C, d) ↪→ (E•,•, ∂, ∂̄)

Ep,q is the sheaf of C–valued differentiable (p, q)–forms

α =
∑

|I |=p,|J|=q

αI ,JdzI ∧ dz̄J .

Total complex: En =
⊕
Ep,q with differential d = ∂ + ∂̄.

The resolution induces an isomorphism

Hn
dR(X/C) =

Ker
(
H0(X , En)→ H0(X , En+1)

)
Im (H0(X , En−1)→ H0(X , En))

.



Hodge decomposition

Theorem (Hodge decomposition)

X (C) compact Kähler manifold, e.g. projective. Then every class
α ∈ Hm(X (C),C) has a harmonic representative α0 with ∆α0 = 0.
If α =

∑
αr ,s then every αr ,s has a harmonic representative.

Corollary

Hm(X (C),C) =
⊕

r+s=m

H r ,s(X ),

where Hp,q(X ) = Hq(X (C),Ωp
X/C), a complex vector space of

harmonic (p, q)–forms.

F pHm(X (C),C) =
⊕
r≥p

H r ,m−r (X ).



Pure Hodge Structures

A Pure Hodge structure of weight m is a free Z–module H = HZ
together with a descending filtration

HC = H ⊗ C = F 0 ⊃ F 1 ⊃ F 2 ⊃ · · · ⊃

such that HC = F p ⊕ F m−p+1. Denote Hp,q = F p/F p+1. Then
HC =

⊕
p+q=m Hp,q.



Mixed Hodge Structures

A Mixed Hodge structure is a free Z–module H = HZ together
with two filtrations:

I Increasing Weight Filtration W• of HQ.

I Decreasing Hodge Filtration F • of HC.

These are compatible: F • induces on GrWm a pure Hodge structure
of weight m.



Example

X (C) compact Kähler manifold, D smooth divisor in X . Gysin
sequence

→ Hk−2(D,Z)→ Hk(X ,Z)→ Hk(U,Z)→ Hk−1(D,Z)→ Hk+1(X ,Z)→ . . .

The cohomology groups of X and D have pure Hodge structures,
but the cohomology of U has a mixed Hodge structure with
W0H∗(U,Z) = ImH∗(X ,Z) and W1H∗(U,Z) = H∗(U,Z).



Logarithmic De Rham Complex

(X ,D) as above. Then we have exact sequence of complexes of
sheaves

0→ Ω•X → Ω•X (log D)
Res→Ω•−1

D → 0,

where Ω•X (log D) is generated by dz1
z1

and dzi for i ≥ 2 if
D = {z1 = 0} locally. The filtration W0Ω•X (log D) = Ω•X induces
the weight filtration on hypercohomology.



More Boundary Divisors

Let D be a NCD in X . Define Ω•X (log D) by generators dzi
zi

for
i ≤ m and dzj for j ≥ m + 1 if locally D = {z1 · · · zm = 0}. Then
there is again a weight filtration W• by order of poles on
Ω•X (log D) with W0Ω•X (log D) = Ω•X and

GrWk Ω•X (log D) = j∗Ω
•−k
Dk

,

with j : Dk =
⋂

k−fold Di ↪→ X .



Deligne’s Mixed Hodge Structures

Deligne has defined mixed Hodge structures on the cohomology of
varieties (possibly singular and not compact), even on simplicial
varieties (Hodge III).

This extends to locally constant coefficients Hn(X ,V) by the work
of M. Saito and S. Zucker.



Motive of a cycle

Assume W ∈ Ker
(
CHp(X , n)→ H2p−n(X ,Q)

)
. This defines an

extension of mixed Hodge structures (Bloch):

0→ H2p−n−1(X )→ E→ Z(−p)→ 0.

where Z(−p) is the Tate–Hodge structure of weight 2p. Extension
class:

[E] ∈ Ext1
MHS(Z(−p),H2p−n−1) = Jp,n(X )

by Carlson’ theory. It is known that this extension class coincides
up to a constant with Bloch’s Abel–Jacobi map.



Examples

Example I: 2 points [P]− [Q] ∈ CH1(X ), compact curve X :

0→ H1(X )→ H1(X\{P,Q})→ Z(−1) = Ker
(
H0({P,Q})→ H2(X )

)
→ 0

Extension class: α 7→
∫ Q
P α for all 1–forms α.

More generally Abel–Jacobi map CHp(X )→ Jp(X ):

0→ H2p−1(X )→ H2p−1(X \ |W |)→ Z(−p)→ 0,

Z(−p) ⊂ Ker
(

H2p
|W |(X )→ H2p(X )

)
.

Example II: [a]− [1] ∈ CH1(F , 1):

Coker
(
H0(P1 \ {0,∞})→ H0({1, a})

)
= Z(0)→

H1(P1 \ {0,∞}, {1, a})→ H1(P1 \ {0,∞}) = Z(−1)→ 0.

Extension class: log(a) =
∫ a

1
dz
z .



General Case

Assume W as above, U = ∆n
X \ |W |.

∂U = ∂∆n
X \ |∂W |, hence by weak purity

H2p−2(X )→ H2p−2(∂∆n
X )→ H2p−1(U, ∂U)→ H2p−1(U)→ H2p−1(∂U)

We need: H i (∂∆n
X ) = H i (X )⊕ H i−n+1(X ), i.e., ∂∆n is like a real

(n − 1)-sphere. But by a diagram chase

Ker
(
H2p−1(U)→ H2p−1(∂U)

)
⊆ Ker

(
H2p
|W |(∆n

X )o β→H2p
|∂W |(∂∆n

X )o
)
,

(◦=forgetting supports) hence

0→ H2p−n−1(X )→ E→ Z(−p)→ 0.



Graph Hypersurfaces
A graph Γ

defines a polynomial equation

ΨΓ =
∑
T

∏
e /∈T

xe = 0.

T runs through all spanning trees (no loops).



Examples

Ψ = x1 + x2 + x3 + x4 + x5 + x6, Ψ = x1x2x3x4

(
1

x1
+

1

x2
+

1

x3
+

1

x4

)
.



Motive of a Feynman graph

Log–divergent case: 2n edges, n loops: Motive is

H2n−1(P2n−1\{ΨΓ = 0},
2n−1⋃
i=0

{xi = 0})

This defines a period:

P(Γ) :=

∫
σ2n−1

Ω

Ψ2
Γ

.

σ2n−1=topological simplex.



Log-Divergent Feynman Motives

Periods (Broadhurst-Kreimer, Bloch-Esnault-Kreimer):

P(Γ) :=

∫
σ2n−1

Ω

Ψ2
Γ

= const · ζ(2n − 3)!

Mixed Tate-Motives ? Hopf-Algebra !



Nori’s Abelian Category of Mixed Motives

Abelian category NMM(k) = Rep(Gmot) (k ⊂ C) with objects
(X ,Y , i) and morphisms of triples. ”Good objects” are such that
Hj(X (C),Y (C)) = 0 for j 6= i . Z(1) = H1(Gm) inverted.

Lemma (Basic Lemma)

X (C) affine, dim(X ) = n, Z ⊂ X closed, dim(Z ) ≤ n − 1. Then
there is a closed subset Y ⊃ Z such that

I dim(Y ) ≤ n − 1.

I Hi (X (C),Y (C)) = 0 for i 6= n.

I Hn(X (C),Y (C)) finitely generated.

Lemma gives rise to a filtration ∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xn = X
with Hj(Xj ,Xj−1) finitely generated.



Deligne Cohomology

X compact Kähler manifold (e.g. projective). Deligne cohomology:

H i
D(X ,Z(p)) = Hi (Xan, (2πi)pZ→ OX → · · · → Ωp−1

X ).

For X smooth, quasi-projective/C define:

H i
D(X ,Z(p)) = Hi (X an,Cone(Rj∗Z(p)⊕ F p ↪→ Ω•

X̄
(log D)[−1])).

Examples:

H2
D(X ,Z(1)) = H1(O∗X ,alg) = Pic(X ), H1

D(X ,Z(1)) = H0(O∗X ,alg).



Intermediate Jacobians

Albanese: (d = dimC(X ))

0→ Alb(X ) =
H0(X ,Ω1

X )∗

H1(X ,Z)
→ H2d

D (X ,Z(d))→ Hd ,d(X ,Z) = Z→ 0.

Intermediate Jacobian of Griffiths:

0→ Jp(X ) =
H2p−1(X ,C)

F p + H2p−1(X ,Z)
→ H2p

D (X ,Z(p))→ F pH2p(X ,Z)→ 0.

Generalized Intermediate Jacobian:

0→ Jp,n(X ) =
H2p−n−1(X ,C)

F p + H2p−n−1(X ,Z(p))
→ H2p−n

D (X ,Z(p))→ F pH2p−n(X ,Z(p))→ 0.



Deligne Class

We want to construct a map

clp,n : CHp(X , n)→ H2p−n
D (X ,Z(p)),

which restricts to CHp
hom(X , n)→ Jp,n(X ).

Examples:

CHd(X )→ H2d
D (X ,Z(d)), CH1(X , 1)

id→H1
D(X ,Z(1)),

CH2(X )→ H4
D(X ,Z(2)).

(generalization of: Albanese map, algebraic invertible functions
(GAGA), Griffiths Abel–Jacobi map)



Behaviour

Theorem (Green/Voisin)

X ⊂ P4 very general hypersurface of degree ≥ 6, then

cl2 : CH2(X )hom → J2(X )

has torsion image.

Theorem (SMS,JAG1997)

X ⊂ P3 hypersurface of degree d ≥ 1, then

cl2,1 : CH2(X , 1)hom → J2,1(X ) =
H2(X ,C)

F 2 + H2(X ,Z(2))

has countable image modulo NS(X )⊗ C∗. If d ≥ 5 and X very
general, then image is equal to NS(X )⊗ C∗ modulo torsion.

Quartic K3 surfaces have in general large image (SMS,
Voisin-Oliva). Cycles in families give rise to inhomogenous
Picard-Fuchs equations (del Angel/SMS).



KLM formula

X smooth, projective/C. Then

Theorem
If Z =

∑
aiWi ∈ CHp(X , n) is a cycle homologous to zero, such

that each irreducible components intersects all real faces properly,
then the Abel–Jacobi image of Z is given by the following current:

α 7→
1

(2πi)d−p+n

»X
ai

Z
Wi\π

−1
2

[−∞,0]×�n−1
π
∗
2

`
log z1d log z2 ∧ . . . ∧ d log zn

´
∧ π∗1 α

− (2πi)
X

ai

Z
Wi∩π

−1
2

[−∞,0]×�n−1\π−1
2

[−∞,0]2×�n−2
π
∗
2

`
log z2d log z3 ∧ . . .

´
∧ π∗1 α

+ · · · + (−2πi)n−1
X

ai

Z
Wi∩π

−1
2

([−∞,0]n−1×�1)\Wi∩π
−1
2

[−∞,0]n
π
∗
2 (log zn) ∧ π∗1 α

+ (−1)n(2πi)n
Z

Γ
π
∗
1 α

–
,

where ∂Γ = Z ∩ π−1
2 [−∞, 0]n.

The existence of Γ follows from Z being homologous to zero.



Bloch-Beilinson Type Conjectures

Conjecture

X smooth, projective/C. Then there is a finite filtration

CHp(X , n)⊗Q = F 0 ⊃ F 1 ⊃ F 2 ⊃ · · · ⊃ 0

which is compatible with products and satisfies CHp
hom(X , n) = F 1.

If X is defined over a number field, then F 2 = 0 and

CHp(X , n)⊗Q ↪→ H2p−n
D (X ,R(p)).

Beilinson’s conjectures (refined by Bloch/Kato) give a precise
description of the image in terms of special values of L–series
L(H i (X )).



Beilinson’s formula

GrνF CHp(X , n)⊗Q = ExtνNMM(k)(Q(−p),H2p−n−ν(X )).

Controls structure of higher Chow groups and computes extension
groups of abelian category of mixed motives.



Computations/Exercise
Exercise (1): Compute the graph polynomial of

Exercise (2): Prove that CH1(X , 1)→ H1
D(X ,Z(1)) is an

isomorphism and both groups are the algebraic invertible functions.

Exercise (3): Use the KLM-formula to show that cl2,3 of

C1 : x 7→ [1− 1
x , 1− x , x ] in C/Z(2) is Li2(1) =

∑∞
n=1

1
n2 = π2

6 ,
i.e., C1 is 24–torsion in CH2(Q, 3) = Z/24Z.

Hint: The KLM-formula in this case looks like

cl2,3(C1) = −
∫

C1∩{z1∈R−}
log(z2)d log(z3)− (2πi)

∑
p∈C1∩{z1,z2∈R−}

log(z3(p)).



Part III

VHS, Higgs bundles, Shimura Varieties and
L2–cohomology



Literature

Carlson/SMS/Peters (Cambridge), articles by Viehweg/Zuo
(2000-2007), Möller/Viehweg/Zuo (2007) and SMS/Viehweg/Zuo
(2008).



Local Systems

f : A→ X smooth, projective morphism between quasi-projective
varieties/C. X ⊂ X̄ smooth compactification with NCD
D = X̄ \ X .

Local system The m–the cohomology groups Hm(At ,C) form a
local system V = Rmf∗C. It corresponds to a monodromy
representation ρ : π1(X , ∗)→ GLn(C), where n = dimC Hm(A0,C).
This gives rise to a vector bundle V = V⊗OX on X . There is a
Hodge filtration V = F 0 ⊃ F 1 ⊃ · · · by vector bundles.

Gauß–Manin connection:

∇ : V → V ⊗ Ω1
X , ∇2 = 0

is C–linear. By Griffiths transversality we have OX –linear

Grp∇ : F p/F p+1 → F p−1/F p ⊗ Ω1
X .



Unipotency, Deligne extension

Theorem (Borel, Landman)

The local monodromies T around each component of D are
quasi-unipotent:

(T ν − 1)n+1 = 0.

We will always assume that ν = 1, hence monodromy is unipotent.

Theorem (Deligne)

Assume monodromy is unipotent. Then V and the Hodge bundles
F p have extensions as vector bundles to X̄ such that

Grp∇ : F p/F p+1 → F p−1/F p ⊗ Ω1
X̄

(log D).

are still maps of vector bundles.



Polarization

Cohomology groups Hm(A0,C) have a decomposition into
primitive parts:

Hm(A0,C) = Hm
pr(A0,C)⊕ LHm−2(A0,C)

L=Lefschetz operator.

Primitive cohomology comes with a polarization Q. It satisfies
Q(Hp,q,H r ,s) = 0 if (r , s) 6= (q, p) and Q(ip−qu, ū) > 0.



Modular Curves

Upper half plane H = {z ∈ C | Im(z) > 0}.

Homogenous space for G = SL2(R), z 7→ az+b
cz+d .

Stabilizer of i is K = SO(2) = U(1) (maximal compact).

G/K = H Hermitian symmetric domain.



Modular Curves
A Modular Curve is a quotient X = Γ\H, where

Γ ⊂ SL2(Z)

is an discrete, torsion–free, “arithmetic” subgroup.

X is a Riemann surface (not compact in general). Can be
compactified using “cusps“ at infinity.

Examples: Congruence subgroups

Γ0(N) = {
(
∗ ∗
0 ∗

)
mod N}

⊃ Γ1(N) = {
(

1 ∗
0 1

)
mod N}

⊃ Γ(N) = {
(

1 0
0 1

)
mod N}



Good Modular Curves, Families of Elliptic Curves

X (N) = Γ(N)\H, X1(N) = Γ1(N)\H, X0(N) = Γ0(N)\H,

parametrize elliptic curves with additional structure on N–torsion
points:

X (N) = {(E , ϕ) | ϕ : EN−tor
∼= (Z/NZ)2},

X1(N) = {(E ,P) | N · P = 0}, X0(N) = {(E ,C ) | C ∼= Z/NZ}.

For N ≥ 3 they form a good quotient and there is a universal
family of elliptic curves over X (N).



Uniformization

f : E → X family of curves Eλ for λ ∈ X , e.g. Legendre family
y 2 = x(x − 1)(x − λ).

Let ω(λ) = dx
y be ”the“ holomorphic 1–form on Eλ.

Periods are elliptic integrals
∫
γ ω over loops γ in π1(Eλ).

They form hypergeometric functions in λ.

Then the period map

X → H, λ 7→
∫
γ1
ω∫

γ2
ω

is multivalued, but locally biholomorphic.



Explicit Modular Curves

j–line: X (1) = Γ(1)\H = C (affine line, no good family).

Klein Quartic X (7) = {x0x3
1 + x1x3

2 + x2x3
0 = 0} ⊂ P2 with 24

cusps.

X 0(11) = {y 2 + y = x3 − x2 − 10x − 20} ⊂ P2, elliptic.



Connected Shimura varieties

G reductive (e.g. semisimple) algebraic group/Q such that
G ad = G/Z (G ) is of Hermitian type, i.e., X + = G ad/K Hermitian
symmetric domain.

Γ ⊂ G ad(Q) arithmetic subgroup, i.e., commensurable to GZ(Z)
for some embedding G ↪→ GLr .

Congruence subgroups Γ contain Ker (GZ(Z)→ GZ(Z/NZ)).

Essential types: SU(p, q), Sp2g , SO(2, n), SO∗(2n), E6, E7.

Locally symmetric variety M = Γ\X +.

M⊂M∗ Baily–Borel compactification using sections of ω⊗M
M

(automorphic forms).

Example: X (N) ⊂ X (N). It is a quotient of X ∪ P1(Q).



Hecke correspondences

Assume Γ arithmetic. Any q ∈ G (Q) induces Hecke
correspondence Tq

(
Γ ∩ q−1Γq

)
\X + ↪→

(
Γ\X +

)2−→
−→Γ\X +.

These operate on forms, i.e., on cohomology groups and on

Shimura subvarieties (Hecke translates).



Hilbert modular varieties

Clebsch diagonal cubic surface

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = x0 + x1 + x2 + x3 + x4 = 0

Model of a Hilbert modular surface of level N = 2 for Q(
√

5)
(Hirzebruch 1976)



Hilbert modular varieties

F totally real number field of degree d .

X = Γ\H× · · · ×H.

Γ ⊂ SL2(OF ) arithmetic subgroup.

X carries a family of d–dim. abelian varieties with extra
endomorphisms.



Siegel space

Sp(2g ,R) = {Ω | ΩT Ig Ω = Ig}, Ig =

(
0 1g

−1g 0

)
.

Hg = Sp(2g ,R)/U(g) Siegel upper half space, i.e.,

Hg = {τ ∈ Cg×g | Im(τ) > 0, τT = τ}.

(
A B
C D

)
∈ Sp(2g ,R) acts on Hg via fractional linear

transformations like in the case H1 where Sp(2,R) = SL2(R).

U(g) is embedded via

(
A B
−B A

)
, if M = A + Bi ∈ U(g).

Hg parametrizes (polarized) Hodge structures of weight m = 1.



Ag

Assume we have a family f : A→ X of g–dimensional abelian
varieties. Then V = R1f∗C has the extended Hodge bundles
F 1 = f̄∗Ω

1
Ā/X̄

(log f̄ −1D) and F 0/F 1 = R1f̄∗OX̄ where f̄ is a

compactification of f .

Period map: X → Ag = Γ\Hg , Γ ⊂ Sp(2g ,Z), where an abelian
variety At , t ∈ X , gets sent to its g × 2g (normalized) period
matrix

∫
γ ωHg (Riemann bilinear relations).

Example: Burkhardt Quartic

{x4
0 − x0(x3

1 + x3
2 + x3

3 + x3
4 ) + 3x1x2x3x4 = 0} ⊂ P4(C).



Orthogonal Shimura varieties

G = SO(2, n) orthogonal for form x2
1 + x2

2 − x2
3 − ...− x2

n+2.
K = SO(2)× SO(n).

SO(2, 1), SO(2, 2): modular curves and (Hilbert) modular surfaces.

SO(2, 3): Siegel A2, i.e., Sp(4,R).

SO(2, n), n ≤ 19: Moduli space of polarized K3 surfaces.



Ball quotients/Picard modular surfaces

O ring of integers for imaginary quadratic number field, e.g.

O = Z[−1+
√
−3

2 ] ⊂ Q(
√
−3).

Picard modular surfaces: X , a smooth, projective compactification
of X = Γ\B2, where Γ ⊂ U(2, 1;O) arithmetic subgroup.

(2–dim. Shimura subvariety in A3)



Picard curves (1880)

Cs,t : y 3 = x(x − 1)(x − s)(x − t), (s, t) ∈ C2 ⊂ P2(C).

Genus 3 curves with extra Z/3Z automorphism.

Discriminant locus ∆: 6 lines, 4 cusps:

∆ = ∪∆i ,j :

�
�
�
�
�
�
��@

@
@
@
@
@
@@�

�
�
�
�
�
��A
A
A
A
A
A
AA

s s
s
s



Uniformization

The family has 6–dimensional periods (Euler PDE), 3 of which
define a multivalued map

P2 \∆→ B2 = {|z1|2 + |z2|2 < 1} ⊂ C2 ⊂ P2(C).

B2 is a homogenous space for U(2, 1).

Picard 1880

P2 \ cusps ∼= Γ\B2, where

Γ = {γ ∈ U(2, 1)(O) | γ ≡

1 0 0
0 1 0
0 0 1

 mod (1− ω)}.

(O = Z[ω] Eisenstein numbers, ω3 = 1)



Hirzebruch–Holzapfel surfaces

Hirzebruch (Math. Annalen 1984) constructed a series of surfaces
with c2

1/c2 → 3 for n→∞ and conjectured that they are
compactified ball quotients Xn with Xn = Γn\B2, Γn ⊂ U(2, 1;O).

Later Holzapfel proved that and constructed more examples. See
his many publications on the subject.



Holzapfel’s surface Ẽ × E

Main Example: X = blow–up of E × E in 3 points (Pi ,Pi ), where
E = {y 2z = x3 − z3} CM elliptic curve with automorphism
x 7→ ωx of order 3 and fixed points P1,P2,P3.

This is a (birational) covering of P2: Blow up 4 cusps and blow
down all 3 strict transforms of lines ∆i ,4.

�
�
�
�
�
�
��@

@
@
@
@
@
@@�

�
�
�
�
�
��A
A
A
A
A
A
AA

s s
s
s ↙↘

E1 E2 E3 E4

∆12

∆13

∆23

�
�
�
�
�
�
��



Holzapfel’s surface Ẽ × E

Then take branched cover along horizontal and vertical lines.
Diagonal curve splits into 3 elliptic curves which correspond to
strict transforms of the 3 diagonals

(z ,w), (z , ωw), (z , ω2w) ⊂ E × E .

Together we get 6 elliptic cusp curves D1, . . . ,D6:

D3D2D1

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

D4

D5

D6

Z1

Z2

Z3



Holzapfel’s surface Ẽ × E

D3D2D1

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

D4

D5

D6

Z1

Z2

Z3

Z1,Z2,Z3 are rational modular curves with 4 cusps. They carry a
special family of Jacobians of type E × S2(Eλ). There are 3 more
modular elliptic curves ∆̃ij . Proof by proportionality equality below.



Log–Higgs bundles

A Higgs bundle on a compact Kähler manifold X is a pair (E , θ)
with E a vector bundle on X and a holomorphic section
θ ∈ H0(X ,End(E )⊗ Ω1

X ) with θ ∧ θ = 0 ∈ H0(X ,End(E )⊗ Ω2
X ).

A (log–)Higgs bundle: on a compactifiable (e.g. quasi–projective)
Kähler manifold X = X\D with normal crossing boundary D, same
definition, but θ ∈ H0(X ,End(E )⊗ Ω1

X
(log D)) such that

θ ∧ θ = 0 ∈ H0(X ,End(E )⊗ Ω2
X

(log D)).



Main Class: Variations of Hodge structures

Assume: V a C–VHS of weight w on X = X \ D, D=NCD,
unipotent local monodromy, V⊗OX = F 0 ⊇ F 1 ⊇ . . ..

Deligne extension: V⊗OX = F 0 ⊇ F 1 ⊇ . . . over X .

The Higgs bundle corresponding to V is E =
(
⊕a+b=w E a,b, θ

)
E a,b = F a/F a+1 and

θ : E a,b → E a−1,b+1 ⊗ Ω1
X

(log D)

the (extended) graded part of Gauß–Manin connection.



Uniformized examples in weight one

Modular curves: X = Γ\H, V = R1f∗C, Higgs bundle
E = L⊕ L−1, Ω1

X
(log D) = L2, L = f̄∗ωC̄/X̄ (log D),

θ = id : L→ L−1 ⊗ Ω1
X

(log D) tautological.

Hilbert modular surfaces: X = Γ\H×H, Higgs bundle

E = L1 ⊕ L−1
1 ⊕ L2 ⊕ L−1

2 , Ω1
X (log D) = L⊗2

1 ⊕ L⊗2
2

with θ = id : Li → L−1
i ⊗ L⊗2

i , i = 1, 2 tautological.

Picard modular surfaces: X = Γ\B2, R1f∗C = V1 ⊕V2 (see below)
Higgs bundle for V1 looks like

E1 =
(

Ω1
X

(log D)⊗ L−1
)
⊕ L−1.

Again θ tautological.



Example Holzapfel’s surface

Theorem (Holzapfel, Picard, Simpson)

(a) Holzapfel’s surface X = Ẽ × E is a compactified ball quotient
with X = B2/Γ with Γ ⊆ SU(2, 1;O).
(b) The universal family f : A→ X of Jacobians has an eigenspace
decomposition

R1f∗C = V1 ⊕ V2.

(c) Family has unipotent local monodromies and the Higgs bundle
(E , θ) associated to the Deligne extension of V1 is of type

E = E 1,0 ⊕ E 0,1, E 1,0 = Ω1
X

(log D)⊗ L−1, E 0,1 = L−1,

L⊗3 = KX + D, θ = id : E 1,0 → E 0,1 ⊗ Ω1
X

(log D).



L2–Higgs complex: Jost/Yang/Zuo 2003

E Higgs bundle of C–VHS on X . After extending to X there is an
algebraically defined subcomplex

0→ Ω0
(2)(E )→ Ω1

(2)(E )→ Ω2
(2)(E )→ . . .

of the full algebraic Higgs complex

E
θ→E ⊗ Ω1

X
(log D)→ · · ·

L2–conditions: harmonic metric on bundle = Hodge metric
〈ip−q−,−〉, background metric on X = Poincaré metric at infinity
∼ i

2
dz∧dz

|z|2 log2 |z|2 around each divisor {z = 0}. Depends essentially

only on N = Res(θ) : E → E .



L2–Higgs complex

Case of Curves (Zucker):

Ω0
(2)(E ) = W0 + tE , Ω1

(2) = W−2 ⊗ Ω1
X̄

(log D) + E ⊗ Ω1
X̄
.

where W•=monodromy weight filtration on E and D = {t = 0}.

Surface Case: if D = V (z1) is smooth and weight m = 1, then

Ω0
(2)(E ) = Ker(Res(θ)) ⊆ E ,

Ω1
(2)(E ) = dz1 ⊗ E + dz2 ⊗Ker(Res(θ)),

Ω2
(2)(E ) =

dz1

z1
∧ dz2 ⊗ z1E = Ω2

X
⊗ E .



Monodromy Weight Filtration

Let V be a complex vector space with a nilpotent endomorphism
N with Nm+1 = 0 and Nm 6= 0. One always has
m + 1 ≤ dimC(V ). N=nilpotent logarithm of monodromy near
boundary D. There is a filtration

0 ⊂W−m ⊂W−m+1 ⊂ · · · ⊂W0 ⊂W1 ⊂ · · · ⊂Wm = V .

This is defined as follows: First set

Wm−1 = Ker(Nm), W−m = Im(Nm).

Then inductively Wk is constructed in such a way that
N(Wk) = Im(N) ∩Wk−2 ⊂Wk−2 and

Nk : Grm+k(V )→ Grm−k(V )

are isomorphisms.



Cohomological correspondence

Theorem (Simpson, Jost/Yang/Zuo)

In this situation (C–VHS, NCD, unipotent)

IH∗(X ,V) = H∗L2(X ,V) = H∗L2−Higgs(X , (E , θ))

:= H∗(X ,Ω0
(2)(E )

θ→Ω1
(2)(E )→ · · · ).



Eichler–Shimura

f : E → X modular curve, X = H/Γ ”universal” family.
V := R1f∗C local system, representation of Γ (small enough).

Parabolic (=L2) cohomology

H1(X , j∗SymkV) = Sk+2(Γ)⊕ Sk+2(Γ)

Cusp forms, Hodge decomposition of L2–cohomology.



Vanishing for Hilbert modular case

Theorem (Matsushima/Shimura)

X = Γ\H × · · · × H, Γ torsion free arithmetic subgroup and ρ a
complex, irreducible, non–trivial representation of Γ. Then

H i
L2(X ,V) = 0 for i 6= dim(X ) = n,

and H
dim(X )
L2 (X ,V) is a space of automorphic forms.



Proof using Higgs bundles

Case of modular curves: V = R1f∗C, Higgs bundle E = L⊕ L−1,
Ω1

X
(log D) = L2: Eichler–Shimura

H1
L2(X , SymkV) = H1(X , L−k)⊕ H0(X , Lk+2).

Proof for k = 1: Higgs complex quasi–isomorphic to

L−1 0→L⊗ Ω1
X

(log D) = L3.

Case of Hilbert modular surfaces:

H2
L2(X ,V(m1,m2)) = H0(X , Lm1

1 ⊗Lm2
2 ⊗KX )⊕H1(X , Lm1+2

1 ⊗L−m2
2 (−D))

⊕H1(X , L−m1
1 ⊗ Lm2+2

2 (−D))⊕ H2(X , L−m1
1 ⊗ L−m2

2 ).



Some computations with Zuo

Theorem (Ragunathan, Li–Schwermer, Saper)

Let W be an irreducible representation of Γ, i.e. a local system on X .
If the highest weight of W is regular, then one has H1

L2(X ,W) = 0.

Example: Wa,b kernel of the natural maps

SaV1 ⊗ SbV2 −→ Sa−1V1 ⊗ Sb−1V2.

Wa,b has regular highest weight if a, b > 0.

Theorem (Zuo/SMS)

One has H0(X , SnΩ1
X

(log D)(−D)⊗ L−m) = 0 for all m ≥ n ≥ 3.



Proof

Consider Wa,b for a, b > 0. The corresponding Higgs bundle Ea,b

is a subbundle of SaE1 ⊗ SbE2. Ea,b contains the vector bundle
Sa+bΩ1

X
(log D)⊗ L−a−2b. If we compute H1 of the corresponding

Higgs complex, then in degree one there is a term
Sa+b+1Ω1

X
(log D)⊗ L−a−2b, i.e. a symmetric (a + b + 1)–tensor

which is neither in the kernel of θ nor killed by the differential θ
from degree zero. It therefore survives in H1(X ,Ea,b). For a, b > 0
we have however H1(X ,Ea,b) = 0 and hence we have
H0(X ,Sa+b+1Ω1

X
(log D)(−D)⊗ L−a−2b) = 0. Setting

n = a + b + 1 ≥ 3 and m = a + 2b ≥ a + b + 1 = n we obtain the
assertion.



Miyaoka’s Result

Miyaoka: If X = X compact 2–dim. ball quotient, then

H0(X ,SNΩ1
X ⊗ L−N) = 0 ∀N ≥ 1 (L = K

1/3
X ).

For N = 3 this is related to our method, since
H1(X ,End(V1)) = 0 by Ragunathan’s theorem and the Higgs
complex for End(V1) contains H0(X , S3Ω1

X ⊗ L−3). With
L2–conditions Miyaoka’s theorem is not known (our method below
gives only a cuspidal version twisted by −D).

For D smooth, using Biquard’s work, we can however use
Hermitean–Yang–Mills techniques to imitate Miyaoka without
twist (work in progress Yang/Zuo/SMS).



Some applications to algebraic cycles

Theorem (Schoen)

A multiple of the normal function AJ(Ct − C−t ) associated to the
Ceresa cycle is contained in the maximal abelian subvariety J2

ab(JCt)
of the intermediate Jacobian J2(JCt) for every t.

Zuo/SMS

Let X be a Picard modular 3–fold (g = 4). Then a general fiber
of f : A → X has non–trivial CH3

(2)(At), even modulo algebraic
equivalence.



Sketch of Proof
Only g = 3: We compute cohomology group H1

L2(X ,R3f∗Cpr).

This means we have to compute the primitive part of the Higgs
bundle Λ3E , where E is the uniformizing Higgs bundle

E = E 1,0 ⊕ E 0,1 =
(

Ω1
X

(log D)⊗ L−1
)
⊕ L−1.

One computes

E 3,0
pr = L2, E 2,1

pr = OX ⊕
(

Ω1
X

(log D)⊗ L−1
)
⊕
(

S2Ω1
X

(log D)⊗ L−2
)
,

E 1,2
pr = OX ⊕

(
Ω1

X
(log D)⊗ L−2

)
⊕
(

S2Ω1
X

(log D)⊗ L−4
)
, E 0,3

pr = L−2.

Therefore the complex of which we want to compute H1 is

E 2,1
pr → E 1,2

pr ⊗ Ω1
X

(log D)→ E 0,3
pr ⊗ Ω1

X
(log D)

is quasi-isomorphic to

OX
0→
(

S3Ω1
X

(log D)⊗ L−4
)
⊕ Ω1

X
(log D)→ 0.



Sketch of Proof

The abelian part of the intermediate Jacobian corresponds to a
saturated sub Higgs bundle which is contained in

Ker
(

E 1,2
pr → E 0,3

pr ⊗ Ω1
X

(log D)
)

, hence

Eab = E 2,1
ab ⊕ E 1,2

ab = O⊕2
X
⊂ E 3

pr =
⊕

a+b=3

E a,b.

Let the quotient bundle be F = E 3
pr/Eab. Then the complex

F 2,1 → F 1,2 ⊗ Ω1
X

(log D)→ F 0,3 ⊗ L3

is quasi–isomorphic to S3Ω1
X

(log D)⊗ L−4 in degree 1, hence has

no H0.



Cohomology of Picard modular surfaces

Let us consider the surface X of Holzapfel again. We will show a
method to prove:

Theorem [MMWYZ 2005]

The intersection cohomology IHq(X ,V1) vanishes for q 6= 2.
X general =⇒ IH1(X ,V1) ⊆ H0(X ,Ω1

X
(log D)⊗ Ω1

X
⊗ L−1).

Note: Since G = SU(2, 1) we cannot expect vanishing for
arbitrary Γ, hence this is a coincidence.



Proof

Without L2–conditions:
“

Ω1
X

(log D)⊗ L−1
”
⊕ L−1

↓∼= ↓“
Ω1

X
(log D)⊗2 ⊗ L−1

”
⊕

“
L−1 ⊗ Ω1

X
(log D)

”
0

↓“
Ω1

X
(log D)⊗2 ⊗ L−1 ⊗ Ω2

X
(log D)

”
⊕

“
L−1 ⊗ Ω2

X
(log D)

”
.

Therefore it is quasi–isomorphic to a complex

L−1 0−→S2Ω1
X

(log D)⊗ L−1 0−→Ω1
X

(log D)⊗ Ω2
X

(log D)⊗ L−1

with trivial differentials.



Proof

I As L is nef and big, we have

H0(L−1) = H1(L−1) = 0.

I Hence we get

H1(X , (E •, ϑ)) ∼= H0(X ,S2Ω1
X

(log D)⊗ L−1).

I Impose L2–conditions: Since

Ω1(E )(2) ⊆ Ω1
X
⊗ E

we conclude that

IH1(X ,V1) ⊆ H0(X ,Ω1
X

(log D)⊗ Ω1
X
⊗ L−1).



Proof

I Now restrict to union Z =
∐

P1 of 3 modular curves. We get

(Ω1
X

(log D)⊗L−1)⊕2 → Ω1
X

(log D)⊗Ω1
X
⊗L−1 → Ω1

Z⊗Ω1
X

(log D)⊗L−1.

I By Bogomolov–Sommese vanishing

H0(X ,Ω1
X

(log D)⊗ L−1) = 0,

since L is nef and big.

I In order to prove the vanishing, it is hence sufficient to show
that

H0(Z ,Ω1
X

(log D)⊗ Ω1
Z ⊗ L−1) = 0.



Proof

But Z is a disjoint union of P1’s and one easily computes that

0→ OZ (−2)→ Ω1
X

(log D)⊗ Ω1
Z ⊗ L−1 → OZ (−1)→ 0.

On global sections this proves the assertion.



Arakelov inequalities

Theorem (Faltings 83 et.al.)

f : Y → X family of abelian varieties of dim = g over a curve
X , semistable in codimension one (⇒ unipotent), E = E 1,0 ⊕ E 0,1

associated Higgs bundle, then

deg(E 1,0) ≤ g

2
deg Ω1

X
(log D) =

g

2
(2g(X )− 2 + ]D).

Corollary

X = P1, g = 1, f not isotrivial, then ]D ≥ 4.



Proof

A := F 1,0 ⊆ E 1,0 non–flat part (split off unitary local system).

May assume wlog A = E 1,0 and θ : A→ B ⊗ Ω1
X

(log D)

isomorphism, B ⊆ E 0,1.

A⊕ B ⊆ E sub Higgs bundle ⇒ deg(A⊕ B) ≤ 0.

⇒ deg(A) = deg(B) + rk(B) · deg Ω1
X

(log D)

≤ − deg(A) + g · deg Ω1
X

(log D).



Equality

Theorem (Viehweg, Zuo 2004)

Equality in the theorem holds, iff θ is an isomorphism (maximal
Higgs field). This implies up to an étale cover that f : Y → X is
a product A×X E ×X E ×X · · · ×X E , where E → X is a modular
family of elliptic curves.

Sketch of proof: Equality ⇒ local system is L⊗ U1 ⊕ U2 with Ui

unitary. L Higgs bundle rank two, is uniformizing: ϕ̃ : X → D = H
period map. θ maximal ⇒ ϕ̃ locally biholomorphic, hence
isomorphism and X = H/Γ.

Upshot: Extremal cases in Arakelov inequalities lead to special
subvarieties = (translates of) Shimura varieties.



Surface Case: Viehweg/Zuo 2005

f : X → Y semistable family of abelian varieties of dim = g over a
surface Y , smooth over U = Y \ S , and with period map
ϕ : U → Ag finite. Then:

c1(f∗ωX/Y ) · c1(ωY (S)) ≤ g

4
c2

1 (ωY (S)).

If one has equality and Griffiths–Yukawa Coupling

τ g : ∧g F 1,0 → ∧g−1F 1,0⊗F 0,1⊗Ω1
Y (log S)→ · · · → ∧g F 0,1⊗Sg Ω1

Y (log S)

does not vanish, then X is a generalized Hilbert modular surface.

If as above and g = 3 and Griffiths-Yukawa Coupling does vanish,
then

c1(f∗ωX/Y ) · c1(ωY (S)) ≤ 2

3
c2

1 (ωY (S))

and X is a generalized Picard modular surface.



Hirzebruch-Höfer

Give a non–singular, compact curve C̄ ⊂ Ȳ such that C̄ intersects
the boundary S of Ȳ transversal for simplicity. Then the relative
proportionality inequality saying that

2 · C̄ .C̄ ≥ −(KȲ + S).C̄ ,

if Y is a Hilbert modular surface,

3 · C̄ .C̄ ≥ −(KȲ + S).C̄ ,

if Y is a ball quotient. If the compactification Ȳ is a Mumford
compactification, or more generally if Ω1

Ȳ
(log SȲ ) is numerically ef-

fective (nef) and if ωȲ (SȲ ) is ample with respect to Y , then equality
implies that C̃ is a complex subball of Ỹ .



Relative Proportionality in SO(2, n), SU(n, 1) type

joint work with Kang Zuo (Mainz), Eckart Viehweg (Essen)

Theorem i) If M is Shimura of SO(n, 2)-type, Z ⊂M arbitrary
subvariety of dimension d ≥ 1, and if the Griffiths-Yukawa coupling
θ2
Z̄
6= 0 then

d · degωZ̄ (SZ̄ )(NZ̄/M̄) + (n − d) · degωZ̄ (SZ̄ )(Ω1
Z̄

(log SZ̄ )) =

n ·
(

degωZ̄ (SZ̄ )(Ω1
Z̄

(log SZ̄ ))− d · degωZ̄ (SZ̄ )(E 2,0

Z̄
)
)
≥ 0.

The equality implies that Z is a Shimura subvariety of M of
Hodge type for SO(d , 2).



Relative Proportionality in SO(2, n), SU(n, 1) type

Theorem ii) If M is Shimura of type SO(n, 2), Z ⊂M arbitrary
subvariety of dimension d ≥ 1, and if the Griffiths-Yukawa coupling
θ2
Z̄

is zero then

(d +1) ·degωZ̄ (SZ̄ )(NZ̄/M̄)+(n−d−1) ·degωZ̄ (SZ̄ )(Ω1
Z̄

(log SZ̄ )) =

n ·
(

degωZ̄ (SZ̄ )(Ω1
Z̄

(log SZ̄ ))− (d + 1) · degωZ̄ (SZ̄ )(E 2,0

Z̄
)
)
≥ 0.

The equality implies that Z is either the translate of a Shimura
curve in M or, if dim(Z ) > 1, that Z is a Shimura subvariety of
M of Hodge type for SU(d , 1).



Relative Proportionality in SO(2, n), SU(n, 1) type

Theorem iii) If M is Shimura of type SU(n, 1), Z ⊂M arbitrary
subvariety of dimension d ≥ 1,then the Griffiths-Yukawa coupling
θ2
Z̄

is zero and

(d + 1) · degωZ̄ (SZ̄ )(NZ̄/M̄) + (n − d) · degωZ̄ (SZ̄ )(Ω1
Z̄

(log SZ̄ )) =

(n + 1) ·
(

degωZ (S)(Ω1
Z̄

(log SZ̄ ))− (d + 1) · degωZ̄ (SZ̄ )(E 2,0

Z̄
)
)
≥ 0.

Again the equality implies that Z is either the translate of a
Shimura curve in M or, if dim(Z ) > 1, that Z is a Shimura
subvariety of M of Hodge type for SU(d , 1).



Sketch of Proof of i)

Look at variation of Hodge structures V on M. Associated Higgs
bundle is

E = E 2,0 ⊕ E 1,1 ⊕ E 0,2.

E 2,0 generates a saturated Higgs bundle F ⊂ E with F 2,0 = E 2,0,
F 0,2 = E 0,2 and

E 2,0 ⊗ TZ (− log S)→ F 1,1.

By Simpson one has deg(F ) ≤ deg(E ). On the other hand by
duality deg(F 2,0) + deg(F 0,2) = 0. Hence

0 ≥ deg(F 1,1) ≥ deg(E 2,0 ⊗ TZ (− log S))

whence the second inequality follows.



Sketch of Proof of i)

The first equality follows since c1(ωZ (S)) = n · deg(E 2,0).

Equality holds if and only if Z is a totally geodesic subvariety. By
the assumption on Griffiths–Yukawa coupling Z is rigid. Hence Z
is Shimura of type SO(2, d) by Mumford et al..



Inverse problem

Question: For i ∈ I Shimura varieties Wi ⊂ Z ⊂M intersecting
boundary transversal (for simplicity here) and satisfying HHP. Is
then Z Shimura ?

Theorem i) If σi : Wi →M are of type SO(d − 1, 2) for all i ∈ I
and satisfy the HHP equality

µωW̄i
(SW̄i

)(NW̄i/Z̄
) = µωW̄i

(SW̄i
)(TW̄i

(− log SW̄i
)),

and if #I ≥ ρ2 + ρ+ 1, then Z ⊂M is a Shimura subvariety of
Hodge type for SO(d , 2).



Inverse problem

Theorem ii) Assume that the Griffiths-Yukawa coupling vanishes
on Z̄ . If σi : Wi →M are Shimura varieties of type SU(d − 1, 1),
if

degωW̄i
(SW̄i

)(NW̄i/Z̄
)

rkNW̄i/Z̄

=
degωW̄i

(SW̄i
)(TW̄i

(− log SW̄i
))

d + 1
,

and if #I ≥ ρ2 + ρ+ 1, then Z ⊂M is a Shimura subvariety of
Hodge type for SU(d , 1).



Sketch of Proof

Some power of ωZ (S) has sections. We may assume that Z is a
surface. There is a linear combination D =

∑
niWi of Wi with

D2 > 0. We have a saturated sub Higgs sheaf F as above. One
checks that c1(F )2 ≥ 0, c1(F ) · D = 0. By Hodge index theorem
one has c1(F )2 = 0. Again this implies that Z is Shimura.



Exercises

Exercise (1): Prove the Eichler-Shimura isomorphism, i.e., the
Hodge decomposition of H1

L2(X , SymkV) for a family of elliptic
curves f : E → X over a modular curve X , where V = R1f∗C.
Hint: Use Higgs bundle E = Symk(L⊕ L−1) and L2 = Ω1

X̄
(log D).

Exercise (2): Let V be a complex vector space of dimension n and
N a nilpotent operator with Nm+1 = 0 and Nm 6= 0. Show by
induction that the monodromy weight filtration exists.

Exercise (3): Let f : A→ X be a family of surfaces with
(primitive) Hodge numbers h2,0 = h1,1 = h0,2 = 1 over a curve X .
Compute H1

L2(X ,V), V = R2f∗C. Hint: Classify all possibilities for
the nilpotent monodromy operator N in terms of the Jordan
normal form and compute the L2–Higgs complex Ω∗(2)(E ).
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