
The first two chapters from the book:

Elements of Asymptotic Geometry

Sergei Buyalo

Viktor Schroeder

Steklov Institute for Mathematics at St. Petersburg

E-mail address: sbuyalo@pdmi.ras.ru

Institut für Mathematik, Universität Zürich
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Chapter 1

Hyperbolic geodesic

spaces

Here we recall basic notions related to metric spaces, define hyperbolic
geodesic metric spaces and prove the fundamental theorem about the
stability of geodesics in hyperbolic spaces.

1.1. Geodesic metric spaces

A metric on a set X is a function d : X × X → R which

(1) is positive: d(x, x′) ≥ 0 for every x, x′ ∈ X and d(x, x′) = 0 if
and only if x = x′;

(2) is symmetric: d(x, x′) = d(x′, x) for every x, x′ ∈ X;

(3) satisfies the triangle inequality: d(x, x′′) ≤ d(x, x′) + d(x′, x′′)
for every x, x′, x′′ ∈ X.

Given a metric d, the value d(x, x′) is called distance between the
points x, x′. We often use the notation |xx′| for the distance between
x, x′ in a given metric space X, and λX for the metric space obtained
from X by multiplying all distances by the factor λ > 0.

A map f : X → Y between metric spaces is said to be isometric
if it preserves the distances, i.e. |f(x)f(x′)| = |xx′| for each x, x ∈ X.
Clearly, every isometric map is injective.
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A geodesic in a metric space X is any isometric map γ : I → X,
where I ⊂ R is an interval (open, closed or half-open, finite or infinite).
The image γ(I) of such a map is also called a geodesic. A metric space
X is said to be geodesic if any two points in X can be connected by a
geodesic. We use the notation xx′ for a geodesic in X between x, x′,
calling it a segment (even in the case when there are possibly several
such segments).

Remark. In many theories where the local geometry plays an essential
role as e.g. in Riemannian geometry, a geodesic means a curve γ : I → X
which is only locally isometric, while on large scales the length of a
segment might be larger than the distance between its end points.
However, we always consider geodesics in the sense of the definition
above.

1.2. Hyperbolic geodesic spaces

A triangle xyz in a geodesic space X is the union of segments xy, yz,
zx, called the sides, connecting pairwise its vertices x, y, z ∈ X. More
generally an n-gon x1 . . . xn in X is the union of segments x1x2, . . . , xnx1.

The property of a geodesic space to be hyperbolic is defined in terms
of triangles and the Gromov product, which is a useful notion in many
circumstances.

1.2.1. Gromov product. Let X be a metric space. Fix a base point
o ∈ X and for x, x′ ∈ X put (x|x′)o = 1

2(|xo| + |x′o| − |xx′|). The
number (x|x′)o is nonnegative by the triangle inequality, and it is called
the Gromov product of x, x′ w.r.t. o. Geometrically, the product can be
interpreted as follows.

Lemma 1.2.1. Let X be a geodesic space and xyz a triangle in X.
There is a unique collection of points u ∈ yz, v ∈ xz, w ∈ xy such that
|xv| = |xw|, |yu| = |yw|, |zv| = |zu|.

Proof. The equation system

a + b = |xy|
a + c = |xz|

b + c = |yz|
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Figure 1.1: Gromov product and equiradial points

has a unique solution and a, b, c are nonnegative by the triangle
inequality. Then, the points u, v, w are uniquely determined by the
conditions |xv| = a, |yw| = b, |zu| = c. �

The points u ∈ yz, v ∈ xz, w ∈ xy are called equiradial points. Note
that

a =
1

2
(|xy| + |xz| − |yz|) = (y|z)x

and similarly b = (x|z)y , c = (x|y)z.

For example, if a triangle xyz ⊂ X is a tripod, i.e. the union
wx ∪ wy ∪ wz with only one common point w ∈ X, then (y|z)x = |xw|.
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Figure 1.2: Tripod

Definition 1.2.2. A geodesic metric space is called δ-hyperbolic, δ ≥ 0,
if for any triangle xyz ⊂ X the following holds: If y′ ∈ xy, z′ ∈ xz are
points with |xy′| = |xz′| ≤ (y|z)x, then |y′z′| ≤ δ.
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Roughly speaking, in a δ-hyperbolic geodesic space X two sides xy
and xz of any triangle xyz coming out of the common vertex x run
together within the distance δ up to the moment (y|z)x and after that
they start to diverge with almost maximal possible speed. This point of
view becomes effective at distances large compared to δ.

The space is (Gromov) hyperbolic if it is δ-hyperbolic for some δ ≥ 0.
The constant δ is called a hyperbolicity constant for X. Clearly, in a δ-
hyperbolic space any side of any triangle lies in the δ-neighborhood of
the two other sides. This is the case k = 1 of the following Lemma.

Lemma 1.2.3. Let x1 . . . xn be an n-gon with n ≤ 2k + 1 for some
k ∈ N , then every side is contained in the kδ-neighborhood of the union
of the other sides.

Proof. We show that a point x ∈ xnx1 has distance ≤ kδ from x1x2 ∪
. . . ∪ xn−1xn. Choose the midpoint xm with m = [n/2] + 1 where [ ] is
the integer part and consider the triangle x1xmxn. By δ-hyperbolicity
there exists y ∈ x1xm ∪xmxn with |xy| ≤ δ. In the case y ∈ x1xm (resp.
y ∈ xmxn) the induction hypothesis for the polygon x1 . . . xm (resp.
xm . . . xn) implies that y has distance ≤ (k−1)δ from x1x2∪. . .∪xm−1xm

(resp. xmxm+1 ∪ . . . ∪ xn−1xn). The claim follows. �

Exercise 1.2.4. Show that if any side of any triangle in a geodesic space
X lies in the δ-neighborhood of the union of the two other sides for some
fixed δ ≥ 0, then X is hyperbolic (Rips’ definition of hyperbolicity).
Estimate the hyperbolicity constant for X.

Example 1.2.5. A metric tree is a geodesic space in which every
triangle is a tripod (possibly degenerate). Clearly, every metric tree
is a 0-hyperbolic space.

1.3. Stability of geodesics

In this section we show that geodesics in hyperbolic spaces are stable.
This means that if we enlarge the class of geodesics to the larger class
of quasi-geodesics, then still each quasi-geodesic stays in uniformly
bounded distance to a geodesic. To make this concept precise we need
the concept of quasi-isometric maps.
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1.3.1. Quasi-isometric maps. The notion of a quasi-isometric map
is a rough version of a bilipschitz map; recall that a map f : X → Y
between metric spaces is bilipschitz, if

1

a
|xx′| ≤ |f(x)f(x′)| ≤ a|xx′|

for some a ≥ 1 and all x, x′ ∈ X (in this definition, we do not require
that f(X) = Y ).

A subset A ⊂ Y in a metric space Y is called a net, if the distances
of all points y ∈ Y to A are uniformly bounded.

A map f : X → Y between metric spaces is said to be quasi-
isometric, if there are a ≥ 1, b ≥ 0, such that

1

a
|xx′| − b ≤ |f(x)f(x′)| ≤ a|xx′| + b

for all x, x′ ∈ X. In other words, a map is quasi-isometric if it is
bilipschitz on large scales.

If, in addition, the image f(X) is a net in Y , then f is called a quasi-
isometry, and the spaces X and Y are called quasi-isometric. We also
say that f is (a, b)-quasi-isometric, and call a, b the quasi-isometricity
constants.

A quasi-geodesic in X is a quasi-isometric map γ : I → X where
I ⊂ R is an interval.

For general metric spaces a quasi-geodesic can be far from a geodesic.
Consider for example in the Euclidean plane the spiral γ : (0,∞) → R

2,
γ(t) = t(cos(ln t), sin(ln t)).

Since |γ(t)| = t and |γ′(t)| =
√

2 for all t, we easily see

1√
2
|γ(t)γ(s)| ≤ |t − s| ≤ |γ(t)γ(s)|

which implies that γ is a quasi-geodesic. This curve is in no way close to
any geodesic. In hyperbolic geodesic spaces the situation is completely
different. We will show that in a geodesic hyperbolic space every quasi-
geodesic will stay in uniform bounded distance to a honest geodesic.

To start our argument we first show that, roughly speaking, in order
to avoid a ball in a hyperbolic space one needs to go an exponentially
long path.
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Figure 1.3: The spiral γ on logarithmic scale

We use the notation Br(x) for the open ball of radius r centered at x
in a metric space X, Br(x) = {x′ ∈ X : |xx′| < r}. Furthermore, Br(x)
is the closed ball {x′ ∈ X : |xx′| ≤ r}.

By an a-path, a > 0, in a metric space we mean a finite or infinite
sequence of points {xi} with |xixi+1| ≤ a for each i.

Lemma 1.3.1. Assume that an a-path f : {1, . . . , N} → X in a geodesic
δ-hyperbolic space, δ > 0, lies outside of the ball Br(x) centered at some
point x ∈ f(1)f(N). Then

N ≥ c · 2 r/δ

for some constant c > 0 depending only on a and δ.

Proof. Let k be the smallest integer with N ≤ 2k + 1 (then N ≥ 2k−1).
By Lemma 1.2.3 there exists a point y ∈ f(j)f(j + 1) for some j ∈
{1, . . . , N − 1} such that |xy| ≤ kδ. Note that |xy| ≥ r− a/2, and hence
k ≥ r/δ − a/(2δ). Hence N ≥ 2k−1 ≥ c · 2r/δ with c = 2−(a/2δ+1). �

We are now able to proof the stability of quasigeodesics.

Theorem 1.3.2 (Stability of geodesics). Let X be a δ-hyperbolic geo-
desic space and a ≥ 1, b ≥ 0. There exists H = H(a, b, δ) > 0 such
that for every N ∈ N the image of every (a, b)-quasi-isometric map
f : {1, . . . , N} → X, im(f), lies in the H-neighborhood of any geo-
desic c : [0, l] → X with c(0) = f(1), c(l) = f(N), and vice versa, c lies
in the H-neighborhood of im(f).
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Proof. We first show that c lies in the h-neighborhood of im(f), where
h = h(a, b, δ) > 0 depends only on a, b and δ. Note that f is an (a + b)-
path in X. Choose h maximal with the property that im(f) lies outside
the ball Bh(x) for some x ∈ c.

Take y ∈ c(0)x, y′ ∈ xc(l) with |yx| = |xy′| = 2h (if the distance
between x and one of the ends of c is less than 2h, we take as y or
y′ the corresponding end). There are i, i′ ∈ A = {1, . . . , N} with
|f(i)y|, |f(i′)y′| ≤ h and the segments yf(i), y′f(i′) lie outside the ball
Bh(x). By taking appropriate points on these segments together with
f(i), . . . , f(i′), we find an (a + b)-path between y and y′ outside Bh(x)
which contains K ≤ |i − i′| + 3 + 2h

a+b points.

By quasi-isometricity of f , we have

|i − i′| ≤ a(|f(i)f(i′)| + b) ≤ 6ah + ab.

On the other hand, K ≥ c · 2h/δ by Lemma 1.3.1 where c = c(a, b, δ).
These estimates together give an effective upper bound h(a, b, δ) for the
radius h.

To complete the proof, consider a maximal sub-interval {j, . . . , j′} ⊂
A such that f({j, . . . , j′}) lies outside the h-neighborhood of c, h =
h(a, b, δ). Since c is contained in the h-neighborhood of im(f), there are
i ∈ {1, . . . , j}, i′ ∈ {j′, . . . , N} and z ∈ c so that |zf(i)|, |zf(i′)| ≤ h.
Then |f(i)f(i′)| ≤ 2h, and |i − i′| ≤ 2ah + ab by quasi-isometricity
of f . Hence, im(f) is contained in the H-neighborhood of c, where
H = h + a(2ah + ab) + b, H = H(a, b, δ). �

Exercise 1.3.3. Derive the following consequences of Theorem 1.3.2.

Corollary 1.3.4. Let X be hyperbolic geodesic space. Then there is
no quasi-isometric map f : R

2 → X. (Hint: Assuming that such a map
exists, consider images of larger and larger equilateral triangles to obtain
a contradiction using the stability of geodesics in X).

Corollary 1.3.5. If a geodesic space X is quasi-isometric to a hyperbolic
geodesic space Y , then X is also hyperbolic. (Hint: take any triangle in
X and compare it with its image in Y to conclude using stability of
geodesics in Y that the triangle satisfies a δ-hyperbolicity condition).

1.4. Additional and historical remarks
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1.4.1. The real hyperbolic space Hn. The real hyperbolic space
Hn is a simply connected, complete Riemannian manifold of dimension
n ≥ 2 having the constant sectional curvature −1. Various models of
Hn are discussed in Appendix A. This is the basic example of Gromov
hyperbolic spaces.

Exercise 1.4.1. Using the parallelism angle formula (see Appendix A,
Lemma ??), show that the space Hn is δ-hyperbolic with δ < ln 3 =
1.0986 . . . . Actually, δ = 2 ln τ = 0.9624 . . . where τ is the golden ratio,
τ2 = τ + 1.

1.4.2. Gromov hyperbolic groups. An important class of hyper-
bolic spaces is the class of Gromov hyperbolic groups which are defined
as follows.

Let G be a finitely generated group and S ⊂ G a finite set generating
G. We assume that S does not contain the unit element of G and it is
symmetric, i.e. g ∈ S if and only if g−1 ∈ S. The Cayley graph of (G,S)
is a graph Γ = Γ(G,S) with the vertex set G, and vertices g, g′ ∈ G
are connected by an edge if and only if g−1g′ ∈ S. The Cayley graph Γ
carries the path metric dS for which every edge has length one. Such
a metric when viewed on G is called a word metric. Clearly, Γ is a
geodesic space.

A finitely generated group G is said to be word hyperbolic or Gromov
hyperbolic if its Cayley graph Γ(G,S) is a hyperbolic space for some
generating system S.

Exercise 1.4.2. Show (using Corollary 1.3.5) that the property of a
finitely generated group G to be hyperbolic is independent of the choice
of a generating system S.

1.4.3. CAT(−1)-spaces. Let xyz be a geodesic triangle in a geodesic
metric space X. A comparison triangle

x̃ ỹ z̃ ⊂ H2

is a triangle with the same side-lengths. Comparison points on the sides
are obtained by taking equal distances from the vertices.

A complete geodesic space X is a CAT(−1)-space if for each triangle
xyz ⊂ X and each u ∈ xy, v ∈ xz, it holds that |uv| ≤ |ũ ṽ|, where
ũ ∈ x̃ ỹ, ṽ ∈ x̃ z̃ are comparison points on the sides of x̃ ỹ z̃ ⊂ H2.
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That is, any triangle in X is thinner than its comparison triangle
in H2. Thus by definition, every CAT(−1)-space is δ-hyperbolic with
δ ≤ δH2 .

The class of CAT(−1)-spaces is very large. Recall that a Hadamard
manifold is a complete simply connected Riemannian manifold with
nonpositive sectional curvatures. Every Hadamard manifold with sec-
tional curvatures K ≤ −1 is a CAT(−1)-space. Furthermore, any metric
tree is a CAT(κ)-space for each κ < 0, in particular, it is CAT(−1). The
class of CAT(−1)-spaces also includes various hyperbolic buildings. One
the other hand, there are compact nonpositively curved (in Alexandrov
sense) 2-polyhedra with word hyperbolic fundamental group that admit
no metric with CAT(−1) universal covering, see e.g. [?].

Taking comparison triangles in R
2, one similarly obtains the impor-

tant class of CAT(0) or Hadamard spaces, i.e. complete geodesic spaces
with triangles thinner than the Euclidean comparison triangles. In any
Hadamard space X, all points x, x′ ∈ X are connected by a unique
geodesic segment.

1.4.4. The stability of geodesics was discovered in the twenties of the
last century by M. Morse, [?, ?]. There are several approaches to its
proof. The proof presented in sect. 1.3 is very close to the M. Gromov’s
proof, [?], see also [?].





Chapter 2

The boundary at

infinity

We start this chapter with a discussion of further properties of the
Gromov product with the aim of deriving the δ-inequality for hyperbolic
geodesic spaces. This allows us to extend the notion of hyperbolicity
to metric spaces which are not necessarily geodesic. An important
point of this discussion is the Tetrahedron Lemma, which has various
applications throughout the book.

Next, we define the boundary at infinity for any hyperbolic space
and discuss various structures attached to it: Gromov product, quasi-
metrics, visual metrics and topology. We also establish local self-
similarity of the boundary at infinity of cocompact hyperbolic spaces.

2.1. δ-inequality and hyperbolic spaces

The Gromov product is monotone in the following sense.

Lemma 2.1.1. Assume that y′ ∈ xy and z′ ∈ xz in a geodesic space X.
Then (y′|z′)x ≤ (y|z)x.

Proof. Since

|xz| = |xz′| + |z′z|,
|y′z| ≤ |y′z′| + |z′z|,

11
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we have |xz| − |y′z| ≥ |xz′| − |y′z′|. Thus (y′|z′)x ≤ (y′|z)x. Similarly
(y′|z)x ≤ (y|z)x. �

Proposition 2.1.2. If a geodesic space X is δ-hyperbolic, then

(x|y)o ≥ min{(x|z)o, (z|y)o} − δ

for any base point o ∈ X and any x, y, z ∈ X.

Proof. Put t0 = min{(x|z)o, (y|z)o} and assume that x′ ∈ ox, y′ ∈ oy
and z′ ∈ oz satisfy |ox′| = |oy′| = |oz′| = t0. Then |x′z′|, |y′z′| ≤ δ, thus
|x′y′| ≤ 2δ. On the other hand, by Lemma 2.1.1,

(x|y)o ≥ (x′|y′)o = t0 −
1

2
|x′y′| ≥ t0 − δ.

�

The inequality from Proposition 2.1.2 is called δ-inequality. This
inequality is characteristic for the property of a space to be hyperbolic.

Proposition 2.1.3. Assume that a geodesic space X satisfies the δ-
inequality for every base point o and every x, y, z ∈ X. Then X is
4δ-hyperbolic.

Proof. Assume that points x′ ∈ ox, y′ ∈ oy of a triangle oxy ⊂ X
satisfy the condition |ox′| = |oy′| = t ≤ (x|y)o. It suffices to show that
then |x′y′| ≤ 4δ. By the δ-inequality we have

(x′|y′)o ≥ min{(x′|y)o, t} − δ

≥ min{min{(x|y)o, t} − δ, t} − δ

= t − 2δ,

hence |x′y′| = 2t − 2(x′|y′)o ≤ 4δ. �

Finally, we show that the δ-inequality for some base point implies
the 2δ-inequality for any other base point. The following terminology is
useful. A δ-triple is a triple of real numbers a, b, c with the property
that the two smallest of these numbers differ by at most δ. To rephrase
the δ-inequality we can say that the numbers (x|y)o, (x|z)o, (y|z)o form
a δ-triple.

It is also convenient to write a
.
= b up to an error ≤ c or a

.
=c b

instead of |a − b| ≤ c.
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The following important result, which has many applications in the
sequel, is called Tetrahedron Lemma.

Lemma 2.1.4. Let d12, d13, d14, d23, d24, d34 be six numbers, such that
the four triples A1 = (d23, d24, d34), A2 = (d13, d14, d34), A3 = (d12, d14, d24)
and A4 = (d12, d13, d23) are δ-triples. Then

B = (d12 + d34, d13 + d24, d14 + d23)

is a 2δ-triple.

1

2

3

4

Figure 2.1: Tetrahedron Lemma

Proof. Without loss of generality, we can assume that d34 is maximal
among the listed numbers. Then d13

.
= d14 up to an error ≤ δ since A2 is

a δ-triple, and d23
.
= d24 up to an error ≤ δ since A1 is a δ-triple. Adding

these approximate equalities, we obtain that d13+d24
.
= d23+d14 up to an

error ≤ 2δ. Since d34 is maximal, this means, if we assume that B is not
a 2δ-triple, that d12 < min{d13, d14, d23, d24} − 2δ. But this contradicts
the fact that A3 and A4 are δ-triples. Thus B is a 2δ-triple. �

Lemma 2.1.5. Assume that a metric space X satisfies the δ-inequality
for a base point o. Then for any other base point x ∈ X, the 2δ-inequality
is fulfilled.

Proof. Note that the expression

A = (t|y)o + (x|z)o − min{(t|z)o + (y|x)o, (x|t)o + (y|z)o}
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does not depend on the base point o. Choosing x as the base point, we
see A = (t|y)x − min{(t|z)x, (z|y)x}. Thus, we have to prove A ≥ −2δ.
From the δ-inequality for the base point o, it follows that the six numbers
(t|x)o, (t|y)o, (t|z)o, (x|y)o, (x|z)o, (y|z)o satisfy the condition of the
Tetrahedron Lemma, which implies A ≥ −2δ. �

Now, we extend the notion of hyperbolicity to metric spaces which
are not necessarily geodesic.

Definition 2.1.6. A metric space X is (Gromov) hyperbolic if it satisfies
the δ-inequality

(x|y)o ≥ min{(x|z)o, (z|y)o} − δ

or, what is the same, the triple ((x|y)o, (x|z)o, (y|z)o) is a δ-triple for
some δ ≥ 0, every base point o ∈ X and all x, y, z ∈ X.

For geodesic spaces this notion is equivalent to our initial definition
by Propositions 2.1.2, 2.1.3. From now on, when speaking about a
δ-hyperbolic space X we mean Definition 1.2.2 if X is geodesic, and
Definition 2.1.6 otherwise. The same holds for hyperbolicity constants.
This causes no ambiguity because of Proposition 2.1.2.

Remark 2.1.7. By Lemma 2.1.5, to prove that a space X is hyperbolic,
it suffices to check that the δ-inequality holds for some δ ≥ 0, some base
point o ∈ X and all x, y, z ∈ X. We shall often use this remark.

2.2. The boundary at infinity of hyperbolic

spaces

There are several possibilities to define the boundary at infinity of
a hyperbolic space, ranging from the most geometric one, geodesic
boundary, see sect. 2.4.2, to the most analytic one, called Higson corona,
which is not discussed in this book. We choose the original Gromov
definition, since it is well adapted to the basic property of hyperbolic
geodesic spaces that quasi-isometric maps have a natural extension to
boundary maps, and the definition appeals to the geometric intuition.

Let X be a hyperbolic space and o ∈ X a base point. A sequence of
points {xi} ⊂ X converges to infinity, if

lim
i,j→∞

(xi|xj)o = ∞.
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This property is independent of the choice of o since

|(x|x′)o − (x|x′)o′ | ≤ |oo′|
for any x, x′, o, o′ ∈ X. Two sequences {xi}, {x′

i} that converge to
infinity are equivalent if

lim
i→∞

(xi|x′
i)o = ∞.

Using the δ-inequality, we easily see that this defines an equivalence
relation for sequences in X converging to infinity. The boundary at
infinity ∂∞X of X is defined to be the set of equivalence classes of
sequences converging to infinity.

Remark 2.2.1. If {xi} is a sequence converging to infinity and {x′
i} a

sequence equivalent to {xi} in the sense that lim(xi|x′
i)o = ∞, then {x′

i}
converges to infinity itself. This easily follows from the δ-inequality.

Now, we introduce natural metric structures on the boundary at
infinity of a Gromov hyperbolic space X. This is done in three steps.
In a first step, we extend the Gromov product to the boundary at
infinity. More precisely, we define for a base point o ∈ X and points
ξ, η ∈ ∂∞X the product (ξ|η)o. In a second step, we define the map

ρ : ∂∞X × ∂∞X → [0,∞) by ρ(ξ, η) = a−(ξ|η)o , where a > 1 is some
parameter. The map ρ turns out to be a quasi-metric. In a third step,
we apply a standard procedure to obtain from ρ a metric for parameters
a > 1, a small enough.

2.2.1. Gromov product on the boundary. Fix a base point o ∈ X.
For points ξ, ξ′ ∈ ∂∞X, we define their Gromov product by

(ξ|ξ′)o = inf lim inf
i→∞

(xi|x′
i)o,

where the infimum is taken over all sequences {xi} ∈ ξ, {x′
i} ∈ ξ′. Note

that (ξ|ξ′)o takes values in [0,∞], that (ξ|ξ′)o = ∞ if and only if ξ = ξ′,
and that |(ξ|ξ′)o − (ξ|ξ′)o′ | ≤ |oo′| for any o, o′ ∈ X. Furthermore, we
obtain the following properties.

Lemma 2.2.2. Let o ∈ X, let X satisfy the δ-inequality for o, and let
ξ, ξ′, ξ′′ ∈ ∂∞X.

(1) For arbitrary sequences {yi} ∈ ξ, {y′i} ∈ ξ′, we have

(ξ|ξ′)o ≤ lim inf
i→∞

(yi|y′i)o ≤ lim sup
i→∞

(yi|y′i)o ≤ (ξ|ξ′)o + 2δ
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(2) (ξ|ξ′)o, (ξ′|ξ′′)o, (ξ|ξ′′)o is a δ-triple.

Proof. (1) We only need to show that lim supi→∞ (yi|y′i)o ≤ (ξ|ξ′)o+2δ.
We can assume that ξ 6= ξ′. Applying the standard diagonal procedure,
we find sequences {xi} ∈ ξ, {x′

i} ∈ ξ′ with lim(xi|x′
i)o = (ξ|ξ′)o. Let

{yi} ∈ ξ, {y′i} ∈ ξ′ . For i sufficiently large, we have (xi|x′
i)o

.
= (yi|x′

i)o up
to an error ≤ δ since (xi|x′

i)o, (yi|x′
i)o, (xi|yi)o is a δ-triple, (xi|yi)o → ∞,

and two other members are bounded due to the assumption ξ 6= ξ′. In
the same way, we see (yi|x′

i)o
.
= (yi|y′i)o up to an error ≤ δ for i large

enough. Thus, (xi|x′
i)o

.
= (yi|y′i)o up to an error ≤ 2δ which implies the

claim.

(2) Without loss of generality, we have to show

(ξ|ξ′′)o ≥ min{(ξ|ξ′)o, (ξ′|ξ′′)o} − δ.

Choose {xi} ∈ ξ, {x′
i} ∈ ξ′, {x′′

i } ∈ ξ′′ such that lim(xi|x′′
i )o = (ξ|ξ′′)o.

Then

(ξ|ξ′′)o ≥ lim sup
i→∞

min{(xi|x′
i)o, (x

′
i|x′′

i )o} − δ ≥ min{(ξ|ξ′)o, (ξ′|ξ′′)o} − δ.

�

Similarly, the Gromov product

(x|ξ)o = inf lim inf
i→∞

(x|xi)o

is defined for any x ∈ X, ξ ∈ ∂∞X, where the infimum is taken over all
sequences {xi} ∈ ξ, and the δ-inequality holds for any three points from
X ∪ ∂∞X.

2.2.2. Quasi-metric on the boundary. A quasi-metric space is a set
Z with a function ρ : Z × Z → R which satisfies the conditions

(1) ρ(z, z′) ≥ 0 for every z, z′ ∈ Z, and ρ(z, z′) = 0 if and only if
z = z′;

(2) ρ(z, z′) = ρ(z′, z) for every z, z′ ∈ Z;

(3) ρ(z, z′′) ≤ K max{ρ(z, z′), ρ(z′, z′′)} for every z, z′, z′′ ∈ Z and
some fixed K ≥ 1.

The function ρ is then called a quasi-metric, or more specifically, a
K-quasi-metric. The property (3) is a generalized version of the ultra-
metric triangle inequality which is the case K = 1.
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Remark 2.2.3. If (Z, d) is a metric space, then d is a K-quasi-metric
for K = 2. In general the p-th power dp of the distance d is not a metric
on Z for p > 1. But dp is still a 2p-quasi-metric.

Coming back to the Gromov hyperbolic space X, we fix a > 1 and
consider the function ρ : ∂∞X × ∂∞X → R, ρ(ξ, ξ′) = a−(ξ|ξ′)o . Then,
ρ is a K-quasi-metric on ∂∞X with K = aδ: the properties (1), (2) are
obvious, and (3) immediately follows from Lemma 2.2.2(2).

Remark 2.2.4. The quasi-metric ρ defined on ∂∞X depends on the
base point o ∈ X and the chosen parameter a > 1. If we emphasize this
dependence, we write ρo,a. Let o, o′ ∈ X. Since |(ξ|ξ′)o − (ξ|ξ′)o′ | ≤ |oo′|
we compute

c−1 ≤ ρo,a(ξ, ξ
′)

ρo′,a(ξ, ξ′)
≤ c

where c = a|oo′|. If a, a′ > 1 are different parameters then we have

ρo,a′ = ρα
o,a

where α = lna′

lna .

There is a standard procedure to construct a metric from a quasi-
metric. Let (Z, ρ) be a quasi-metric space. We are interested in obtain-
ing a metric on Z. Since the only problem is the triangle inequality,
the following approach is natural. Define a map d : Z × Z → R,
d(z, z′) = inf

∑
i ρ(zi, zi+1), where the infimum is taken over all se-

quences z = z0, . . . , zk+1 = z′ in Z. By definition, d is then symmetric
and satisfies the triangle inequality. We call this construction of d the
chain construction. The problem with the chain construction is that
d(z, z′) could be 0 for different points z, z′ and the axiom (1) would no
longer be satisfied for (Z, d).

Lemma 2.2.5. Let ρ be a K-quasi-metric on a set Z with K ≤ 2. Then,
the chain construction applied to ρ yields a metric d with 1

2K ρ ≤ d ≤ ρ.

Proof. Clearly, d is nonnegative, symmetric, satisfies the triangle in-
equality and d ≤ ρ. We prove by induction over the length of sequences
σ = {z = z0, . . . , zk+1 = z′}, |σ| = k + 2, that
(2.1)

ρ(z, z′) ≤
∑

(σ) := K

(
ρ(z0, z1) + 2

k−1∑

1

ρ(zi, zi+1) + ρ(zk, zk+1)

)
.
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For |σ| = 3, this follows from the triangle inequality (3) for ρ. Assume
that (2.1) holds true for all sequences of length |σ| ≤ k +1, and suppose
that |σ| = k + 2.

Given p ∈ {1, . . . , k − 1}, we let σ′
p = {z0, . . . , zp+1}, σ′′

p =

{zp, . . . , zk+1}, and note that
∑

(σ) =
∑

(σ′
p) +

∑
(σ′′

p).

Because ρ(z, z′) ≤ K max{ρ(z, zp), ρ(zp, z
′)}, there is a maximal

p ∈ {0, . . . , k} with ρ(z, z′) ≤ Kρ(zp, z
′). Then ρ(z, z′) ≤ Kρ(z, zp+1).

Assume now that ρ(z, z′) >
∑

(σ). Then, in particular, ρ(z, z′) >
Kρ(z, z1) and ρ(z, z′) > Kρ(zk, z

′). It follows that p ∈ {1, . . . , k − 1}
and thus by the inductive assumption

ρ(z, zp+1) + ρ(zp, z
′) ≤

∑
(σ′

p) +
∑

(σ′′
p) =

∑
(σ) < ρ(z, z′).

On the other hand,

ρ(z, z′) ≤ K min{ρ(z, zp+1), ρ(zp, z
′)} ≤ ρ(z, zp+1) + ρ(zp, z

′)

because K ≤ 2. This is a contradiction. Now, it follows from (2.1) that
ρ ≤ 2Kd. Hence, d is a metric as required. �

Proposition 2.2.6. Let ρ be a K-quasi-metric on a set Z. Then, there
exists ε0 > 0 only depending on K, such that ρε is bilipschitz equivalent
to a metric for each 0 < ε ≤ ε0. More precisely, there exists a metric dε

on Z such that
1

2Kε
ρε(z, z′) ≤ dε(z, z′) ≤ ρε(z, z′)

for all z, z′ ∈ Z.

Proof. ρε is a Kε-quasi-metric for every ε > 0. If Kε ≤ 2 then
the chain construction applied to ρε yields a required metric dε by
Lemma 2.2.5. �

2.2.3. Visual metrics at infinity. We now apply this construction
to the quasi-metric ρ on ∂∞X. A metric d on the boundary at infinity
∂∞X of X is said to be visual, if there are o ∈ X, a > 1 and positive
constants c1, c2, such that

c1a
−(ξ|ξ′)o ≤ d(ξ, ξ′) ≤ c2a

−(ξ|ξ′)o

for all ξ, ξ′ ∈ ∂∞X. In this case, we say that d is a visual metric w.r.t.
the base point o and the parameter a. The inequalities above are called
the visual inequalities.
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Applying Proposition 2.2.6, we see:

Theorem 2.2.7. Let X be a hyperbolic space. Then for any o ∈ X,
there is a0 > 1 such that for every a ∈ (1, a0] there exists a metric d on
∂∞X, which is visual w.r.t. o and a. �

Now, we consider what happens if the base point is changed.

Proposition 2.2.8. Visual metrics d, d′ on ∂∞X w.r.t. the same pa-
rameter a > 1 and base points o, o′ respectively are bilipschitz equivalent,

c−1 ≤ d′

d
≤ c

for some constant c ≥ 1.

Proof. This immediately follows from the visual inequalities for d, d′

and from the fact that |(ξ|ξ′)o − (ξ|ξ′)o′ | ≤ |oo′| for all ξ, ξ′ ∈ ∂∞X (see
Remark 2.2.4). �

Next, we consider the effect of the parameter change.

Proposition 2.2.9. Visual metrics d, d′ on ∂∞X w.r.t. the same base
point o and parameters a, a′ > 1 respectively are Hölder equivalent,
namely, there is a constant c ≥ 1 such that

1

c
dα(ξ, ξ′) ≤ d′(ξ, ξ′) ≤ cdα(ξ, ξ′)

for all ξ, ξ′ ∈ ∂∞X, where α = ln a′

ln a .

Proof. This immediately follows from the visual inequalities for the
metrics d, d′ and from the fact that a′ = aα (see Remark 2.2.4). �

We define the topology on the boundary at infinity ∂∞X for a
hyperbolic space X as the metric topology for some visual metric on
∂∞X. It follows from Propositions 2.2.8 and 2.2.9 that this topology is
independent of the choice of a visual metric.

Exercise 2.2.10. Let X be a hyperbolic space. Show that ∂∞X is
bounded and complete for any visual metric on ∂∞X.
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2.3. Local self-similarity of the boundary

Hyperbolic groups and more general cobounded hyperbolic spaces have
a remarkable and useful property: their boundary at infinity are locally
self-similar.

A map f : Z → Z ′ between metric spaces is called homothetic with
coefficient R, if

|f(z)f(z′)| = R|zz′|
for all z, z′ ∈ Z. Here we need a more flexible property.

Let λ ≥ 1 and R > 0 be given. A map f : Z → Z ′ between metric
spaces is λ-quasi-homothetic with coefficient R if for all z, z′ ∈ Z, we
have

R|zz′|/λ ≤ |f(z)f(z′)| ≤ λR|zz′|.
Note that f is also λ′-quasi-homothetic with coefficient R for every
λ′ ≥ λ.

This property can be regarded as a perturbation of the property to
be homothetic, and the coefficient λ describes the perturbation. We
apply this notion usually to a family of quasi-homothetic maps with
fixed λ when the coefficients R go to infinity.

A metric space Z is locally similar to a metric space Y , if there is
λ ≥ 1 such that for every sufficiently large R > 1 and every A ⊂ Z
with diam A ≤ 1

R there is a λ-quasi-homothetic map f : A → Y with
coefficient R. If a metric space Z is locally similar to itself then we say
that Z is locally self-similar.

Example 2.3.1. The standard ternary Cantor set X is locally self-
similar. One can take λ = 3 in this case. Indeed, given R > 3 and
A ⊂ X with diam A ≤ 1/R, there is k ∈ N with 3k < R ≤ 3k+1.
Then diam A < 1/3k. Hence, A is contained in the k-th step interval
which it intersects. This interval is 3k-homothetic to [0, 1] and thus it is
λ-quasi-homothetic to [0, 1] with coefficient R.

The basic example of locally self-similar spaces is the boundary at
infinity of a hyperbolic group. We consider a more general situation. A
metric space X is cobounded if there is a bounded subset A ⊂ X such
that the orbit of A under the isometry group of X covers X.

A metric space X is proper, if every closed ball Br(x) ⊂ X is
compact.
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Theorem 2.3.2. The boundary at infinity ∂∞X of every cobounded,
hyperbolic, proper, geodesic space X is locally self-similar with respect to
any visual metric.

For the proof we need the following

Lemma 2.3.3. Let o, g, x′, x′′ be points of a metric space X such that
the Gromov products (x′|g)o, (x′′|g)o ≥ |og| − σ for some σ ≥ 0. Then

(x′|x′′)o ≤ (x′|x′′)g + |og| ≤ (x′|x′′)o + 2σ.

Proof. The left hand inequality immediately follows from the triangle
inequality: since |ox′| ≤ |og| + |gx′| and |ox′′| ≤ |og| + |gx′′|, we have
(x′|x′′)o ≤ (x′|x′′)g + |og|.

Next, we note that (x′|o)g = |og| − (x′|g)o ≤ σ. This yields
|x′o| = |og| + |gx′| − 2(x′|o)g ≥ |og| + |gx′| − 2σ and similarly |x′′o| ≥
|og| + |gx′′| − 2σ. Now, the right hand inequality follows. �

Proof of Theorem 2.3.2. We can assume that the geodesic space X
is δ-hyperbolic, δ ≥ 0, and that a visual metric d on ∂∞X satisfies

c−1a−(ξ|ξ′)o ≤ d(ξ, ξ′) ≤ ca−(ξ|ξ′)o

for some base point o ∈ X, some constants c ≥ 1, a > 1 and all ξ,
ξ′ ∈ ∂∞X. Note that then diam ∂∞X ≤ c.

There is ρ > 0 such that the orbit of the ball Bρ(o) under the

isometry group of X covers X. Now, we put λ = c2aρ+4δ. Fix R > 1
and consider A ⊂ ∂∞X with diam A ≤ 1/R. For each ξ, ξ′ ∈ A, we have

(ξ|ξ′)o ≥ loga
R

c
≥ loga R.

We fix ξ ∈ A. Since X is proper, there is a geodesic ray oξ ⊂ X
representing ξ (see Exercise 2.4.3). We take g ∈ oξ with a|og| = R. Then
using the δ-inequality, we obtain for every ξ′ ∈ A

(ξ′|g)o ≥ min{(ξ′|ξ)o, (ξ|g)o} − δ = |og| − δ

because (ξ|g)o = |og|.
For arbitrary ξ′, ξ′′ ∈ A, consider sequences {x′

i} ∈ ξ′, {x′′
i } ∈ ξ′′

such that (x′
i|x′′

i )g → (ξ′|ξ′′)g. We can assume without loss of generality
that (x′

i|g)o, (x′′
i |g)o ≥ |og|− δ because possible errors in these estimates

disappear while taking the limit, see below.
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Applying Lemma 2.3.3 to the points o, g, x′
i, x′′

i ∈ X and σ = δ, we
obtain

(x′
i|x′′

i )o − |og| ≤ (x′
i|x′′

i )g ≤ (x′
i|x′′

i )o − |og| + 2δ.

Passing to the limit, this yields

(ξ′|ξ′′)o − |og| ≤ (ξ′|ξ′′)g ≤ (ξ′|ξ′′)o − |og| + 4δ.

There is an isometry f : X → X with |of(g)| ≤ ρ. Then

(ξ′|ξ′′)g − ρ ≤ (f(ξ′)|f(ξ′′))o ≤ (ξ′|ξ′′)g + ρ

because the Gromov products with respect to different points differ one
from another at most by the distance between the points. The last two
double inequalities give

(ξ′|ξ′′)o − |og| − ρ ≤ (f(ξ′)|f(ξ′′))o ≤ (ξ′|ξ′′)o − |og| + ρ + 4δ,

and therefore,

c−2a−(ρ+4δ)Rd(ξ′, ξ′′) ≤ d(f(ξ′), f(ξ′′)) ≤ c2aρRd(ξ′, ξ′′).

This shows that f : A → ∂∞X is λ-quasi-homothetic with coefficient R
and hence ∂∞X is locally self-similar. �

We say that a metric space Z is doubling if there is a constant N ∈ N

such that for every r > 0 every ball in Z of radius 2r can be covered by
N balls of radius r.

If the property above holds for all sufficiently small r > 0 only, then
we say that Z is doubling at small scales. Clearly, if a compact space
is doubling at small scales then it is doubling.

Lemma 2.3.4. Assume that a metric space Z is locally similar to a
compact metric space Y . Then Z is doubling at small scales.

Proof. There is λ ≥ 1 such that for every sufficiently large R > 1 and
every A ⊂ Z with diam A ≤ 1/R there is a λ-quasi-homothetic map
f : A → Y with coefficient R.

We fix a positive ρ ≤ 1/(4λ). Since Y is compact, there is N ∈ N

such that any subset B ⊂ Y can be covered by at most N balls of radius
ρ centered at points of B. Take r > 0 small enough so that R = λρ/r
satisfies the assumption above. Then for any ball B2r ⊂ Z, we have

diam B2r ≤ 4r ≤ 1/R,
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and thus there is a λ-quasi-homothetic map f : B2r → Y with coefficient
R. The image f(B2r) is covered by at most N balls of radius ρ centered
at points of f(B2r). The preimage under f of every such a ball is
contained in a ball of radius ≤ λρ/R = r centered at a point in B2r.
Hence, B2r is covered by at most N balls of radius r, and Z is doubling
at small scales. �

Example 2.3.5. The space Hn, n ≥ 2, is locally similar to a compact
subspace, e.g. to any closed ball of radius 1. However, Hn is by no
means doubling.

Corollary 2.3.6. Assume that a hyperbolic space X satisfies the con-
dition of Theorem 2.3.2, e.g. X is a hyperbolic group. Then ∂∞X is
doubling w.r.t. any visual metric. �

2.4. Additional and historical remarks

2.4.1. A quadruple condition for hyperbolicity. Given a quadru-
ple Q = (x, y, z, u) of points in a metric space X with fixed base point o,
we form the triple A = A(Q) = ((x|y)o + (z|u)o, (x|z)o + (y|u)o, (x|u)o +
(y|z)o) as in the Tetrahedron Lemma and call it the cross-difference
triple of Q. We define the small cross-difference of Q, scd(Q), as the
distance between the two smaller entries of the cross-triple A(Q).

Proposition 2.4.1. The metric space X is δ-hyperbolic, δ ≥ 0, if and
only if scd(Q) ≤ δ for every quadruple Q ⊂ X.

Proof. The condition scd(Q) ≤ δ is a reformulation of the property of
A(Q) to be a δ-triple. Note that this property is independent of the
choice of o and take as o any point of Q. �

Explicitly written, the condition for A(Q) to be a δ-triple for Q =
(x, y, z, u) is the inequality

|xz| + |yu| ≤ max{|xy| + |zu|, |xu| + |yz|} + 2δ.

This formulation is more symmetric than the δ-inequality and has a geo-
metric interpretation in the spirit of the Tetrahedron Lemma. Consider
Q as an abstract tetrahedron. Adding the length of opposite edges of
Q, we obtain three numbers which we can order as a ≤ b ≤ c. Then,
the inequality says c − b ≤ 2δ.
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2.4.2. Geodesic boundary. Two geodesic rays γ, γ′ : [a,∞) → X in
a geodesic space X are called asymptotic if |γ(t)γ′(t)| ≤ C < ∞ for some
constant C and all t ≥ a. To be asymptotic is an equivalence relation
on the set of the rays in X, and the set of classes of asymptotic rays is
sometimes called the geodesic boundary of X, ∂gX.

In a geodesic hyperbolic space, asymptotic rays are at a uniformly
bounded distance from each other. Moreover, we have

Lemma 2.4.2. Let X be a geodesic δ-hyperbolic space. Assume that
for some constant C > 0, geodesic rays γ, γ′ in X with common vertex
o contain points γ(t), γ′(t′) with |γ(t)γ′(t′)| ≤ C for arbitrarily large t,
t′. Then |γ(τ)γ′(τ)| ≤ δ for all τ ≥ 0, in particular, the rays γ, γ′ are
asymptotic.

Proof. We have

(γ(t)|γ′(t′))o =
1

2
(t + t′ − |γ(t)γ′(t)|) ≥ min{t, t′} − C/2.

Thus for τ ≤ min{t, t′}−C/2 we have |γ(τ)γ′(τ)| ≤ δ by δ-hyperbolicity.
Since t, t′ can be chosen arbitrarily large, this inequality holds for all
τ ≥ 0. �

If a geodesic space X is Gromov hyperbolic, then obviously ∂gX ⊂
∂∞X. In general, there is no reason for the geodesic boundary of a
hyperbolic geodesic space to coincide with the boundary at infinity.
However, there are several important cases when ∂gX = ∂∞X.

Exercise 2.4.3. Show that if X is a proper hyperbolic geodesic space,
then ∂gX = ∂∞X.

Another important case when ∂gX = ∂∞X is described in Chap-
ter ??, see Proposition ??.

2.4.3. Meaning of the function ρo,e(ξ1, ξ2) = e−(ξ1,ξ2)o for Hn. For
the unit ball model of the hyperbolic space Hn, n ≥ 2 (see Appendix A,
sect. ?? and ??), the quasi-metric ρo,e : Sn−1 ×Sn−1 → R, ρo,e(ξ1, ξ2) =

e−(ξ1,ξ2)o , where the unit sphere Sn−1 ⊂ R
n is identified with ∂∞ Hn and

o is the center of the ball, has a clear geometric interpretation: This
function coincides with half of the chordal metric,

e−(ξ1,ξ2)o =
1

2
|ξ1 − ξ2|
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for every ξ1, ξ2 ∈ Sn−1. This immediately follows from the next lemma
which also implies that the angle metric on Sn−1 is a visual metric w.r.t.
the center o and the parameter a = e.

Lemma 2.4.4. For every ξ1, ξ2 ∈ ∂∞ Hn = Sn−1 we have

e−(ξ1,ξ2)o = sin(θ/2),

where θ = ∡o(ξ1, ξ2).

Proof. For the geodesic rays γi : [0,∞) → Hn from o to ξi, i = 1, 2, we
obviously have

e−(ξ1|ξ2)o = lim
t→∞

(ehte−2t)1/2,

where ht = d(γ1(t), γ2(t)) is the distance in Hn. From the hyperbolic
law of cosine

cosh(ht) = cosh2(t) − sinh2(t) cos θ

and the trigonometric formula 1 − cos θ = 2 sin2(θ/2), we easily obtain

eht ∼ e2t sin2(θ/2)

as t → ∞. Hence, the claim. �

2.4.4. The chain construction. Lemma 2.2.5 and the idea of its
proof is due to A.H. Frink, [?]. It provides a better constant than
contemporary simpler arguments, see e.g. [?, Ch. 14]. Moreover, the
condition of that Lemma cannot be improved according to the following
result:

Example 2.4.5 ([?]). For every ε > 0, there exists a (2+ε)-quasi-metric
space (Z, ρ) such that the chain construction applied to ρ yields only a
pseudo-metric d with d(z, z′) = 0 for some distinct z, z′ ∈ Z.

2.4.5. It is proven in [?] that the function ρo(ξ1, ξ2) = e−(ξ1|ξ2)0 is a
metric on the boundary at infinity, ξ1, ξ2 ∈ ∂∞X, of any CAT(−1)-space
X for every o ∈ X (the only nontrivial point is to prove the triangle
inequality). For further references, we call this metric the Bourdon
metric. Bourdon metrics associated with different o, o′ ∈ X are
conformal to each other, and any isometry of X induces a conformal
transformation of (∂∞X, ρo) [?].

Local self-similarity of the boundary at infinity of hyperbolic groups
and more general cocompact hyperbolic spaces is certainly well known
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to experts in the field. Explicitly, it is established in [?] from where
basic results of section 2.3 are taken.


