Embeddings of local fields in simple algebras and simplicial structures on the Bruhat-Tits building

Daniel Skodlerack

20. Juni 2008

Notation
Notation
The outlook
Embeddings
The euclidean
building of
$G L_{m}(D)$
The affine map j_{E}
Barycentric
coordinates
The theorem

Notation

Notation

Notation

Notation

The outlook
Embeddings
The euclidean
building of
$G L_{m}(D)$
The affine map j_{E}
Barycentric coordinates

The theorem
$\square \mathbb{N}=\{1,2, \ldots\} \mathbb{N}_{r}:=\{1, \ldots, r\}$.
■ (F, ν) non-archimedean local field, $D \mid F$ a central skewfield, $d:=\sqrt{[D: F]}<\infty . L \mid F$ max. unramified field in D, $[L: F]=d$

$$
D \supseteq L \supseteq F
$$

■ Assume that π_{D} normalizes L.

$$
D=L \oplus L \pi_{D} \oplus L \pi_{D}^{2} \ldots \oplus L \pi_{D}^{d-1}
$$

■ $A:=M_{m}(D)$ the and $V:=D^{m}$, right D vector space, $m \in \mathbb{N}$ fixed.
The outlook
The outlook
Embeddings

The euclidean
building of
$G L_{m}(D)$
The affine map j_{E}
Barycentric
coordinates
The theorem

The outlook

The outlook

Martin Grabitz and Paul Broussous have classified embeddings

$$
E^{\times} \subseteq \text { compact modulo center group } \subseteq M_{m}(D)
$$

and introduced invariants. The question of E.W. Zink was: Is there a geometric way to find the invariants using euclidean Bruhat Tits buildngs as geometrical object together with an affine map.

Notation
The outlook
Embeddings
hereditary order
Embedding
Pearl embedding
Equivalent vectors
Grabitzs' theorems
The euclidean
building of
$G L_{m}(D)$
The affine map j_{E}
Barycentric
coordinates
The theorem

Embeddings

hereditary order

Embeddings

```
hereditary order
```

Embedding
Pearl embedding
Equivalent vectors
Grabitzs' theorems
The euclidean building of $G L_{m}(D)$

The affine map j_{E}
Barycentric
coordinates
The theorem

Definition 1 A hereditary order $\mathfrak{a} \subseteq M_{m}(D)$ is a subring of $M_{m}(D)$, s.t. there is a $g \in G L_{m}(D)$ s.t. $g \mathfrak{a} g^{-1}$ is of the form

\[

\]

Embedding

Notation
The outlook
Embeddings
hereditary order
Embedding
Pearl embedding Equivalent vectors Grabitzs' theorems

The euclidean building of $G L_{m}(D)$

The affine map j_{E} Barycentric coordinates

Definition 4 An embedding is a pair (E, \mathfrak{a}) satisfying

1. E is a field extension of F in A,
2. $\mathfrak{a} \in \operatorname{Her}(A)$ is normalised by E^{\times}.
$(E, \mathfrak{a}) \backsim\left(E^{\prime}, \mathfrak{a}^{\prime}\right)$ if there is a $g \in A^{\times}$, such that $g E_{D} g^{-1}=E_{D}^{\prime}$ and $g \mathfrak{a} g^{-1}=\mathfrak{a}^{\prime}$.

An example for embeddings are pearl embeddings. (soon)

Pearl embedding

Definition 6 Let $f \mid d$ and $r \leq m$. An embedding datum is a $f \times r$-matrix λ of non-negative integer entries s.t. in every column is non-zero, and the sum of all entries is m. The pearl embedding of λ is the embedding (E, a), s.t.

1. $[E: F]=f$ and E is in the image of

$$
\begin{gathered}
x \in L \mapsto \operatorname{diag}\left(M_{1}(x), M_{2}(x), \ldots, M_{r}(x)\right) \text { where } \\
M_{j}(x)=\operatorname{diag}\left(\left.\sigma^{0}(x)\right|_{\lambda_{1, j}},\left.\sigma^{1}(x)\right|_{\lambda_{2, j}}, \ldots,\left.\sigma^{f-1}(x)\right|_{\lambda_{f, j}}\right)
\end{gathered}
$$

2. $\mathfrak{a} \in \operatorname{Her}(A)$ in standard form according to $m=n_{1}+\ldots+n_{r}$ where $n_{j}:=\sum_{i=1}^{f} \lambda_{i, j}$.

Equivalent vectors

hereditary order
Embedding
Pearl embedding
Equivalent vectors
Grabitzs' theorems
The euclidean building of
$G L_{m}(D)$
The affine map j_{E}
Barycentric
coordinates

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 1 & 1 & 0
\end{array}\right)^{T}
$$

Definition 7

1. $w=\left(w_{1}, \ldots, w_{t}\right) \sim w^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{t}^{\prime}\right)$ (real entries) if there is a k, s.t.

$$
w=\left(w_{k}^{\prime}, \ldots, w_{t}^{\prime}, w_{1}^{\prime}, \ldots, w_{k-1}^{\prime}\right)
$$

We write $<w>$ for the equivalence class.
2. For a $t \times s$-matrix M we put $\operatorname{row}(M):=\left(m_{1,1}, \ldots, m_{1, s}, m_{2,1}, \ldots, m_{2, s}, \ldots, m_{t, s}\right)$.
3. $M \sim N$ if $\operatorname{row}(M) \sim \operatorname{row}(N)$.

Grabitzs' theorems

Notation
The outlook
Embeddings
hereditary order
Embedding
Pearl embedding
Equivalent vectors
Grabitzs' theorems
The euclidean building of $G L_{m}(D)$

The affine map j_{E}
Barycentric
coordinates
The theorem

Theorem 1 [BG00, 2.3.3 and 2.3.10]

1. Two pearl embeddings are equivalent if and only if the embedding datas are.
2. In any class of embeddings lies a pearl embedding.

Definition 8 By the theorem to an embedding corresponds one class of embedding datas, called embedding type (notion from V . Secherre).

Notation
The outlook
Embeddings
The euclidean
building of
$G L_{m}(D)$
building
Euclidean building
Lattice functions
Affine Structure
The description of
the building with
lattice function
Simplicial structure
The affine map j_{E}
Barycentric
coordinates
The theorem

The euclidean building of $G L_{m}(D)$

the building with lattice function
Simplicial structure

The affine map j_{E}
Barycentric
coordinates
The theorem

building

The outlook
Embeddings
The euclidean
building of
$G L_{m}(D)$
building
Euclidean building Lattice functions
Affine Structure
The description of the building with lattice function
Simplicial structure

The affine map j_{E}
Barycentric coordinates

A building of rank $m-1$ is a poset (Ω, \leq) s.t.
■ $\bar{S}:=\left\{S^{\prime} \in \Omega \mid S^{\prime} \leq S\right\}$ is poset isom. to a simplex, $S \in \Omega$ (faces).

- Every face has not more then $m-1$ vertices ($=$ minimal elements).

■ Every face lies in a face with $m-1$ vertices (= maximal elements =chambers).

■ $\Omega=\bigcup \mathcal{A}$, where \mathcal{A} is a set of chamber subcomplexes of rank $m-1$, apartments.

■ There are poset isomorphisms between $\Sigma, \Sigma^{\prime} \in{ }^{\prime} \mathcal{A}$.

Euclidean building

Notation
The outlook
Embeddings
The euclidean
building of $G L_{m}(D)$
building
Euclidean building
Lattice functions
Affine Structure The description of the building with lattice function
Simplicial structure

The affine map j_{E}
Barycentric
coordinates
The theorem

A building is called euclidean if every apartment is a isomorphic to a cell decomposition of an f.d. euclidean space with an infinite affine reflection group.
$|S|:=\left\{\sum_{v \text { vertex of } S} \lambda_{v} v \mid \sum \lambda_{v}=1 \lambda_{v}>0\right\}$ geometric realisation g.r. of S

$$
|\Omega|:=\cup\{|S| \mid S \in \Omega\} .
$$

Lattice functions

Notation
The outlook
Embeddings
The euclidean
building of $G L_{m}(D)$
building
Euclidean building
Lattice functions
Affine Structure
The description of the building with lattice function
Simplicial structure

The affine map j_{E}
Barycentric
coordinates
The theorem

With Latt ${ }_{D^{\circ}}^{m, V}$ we denote the set of full D° - lattices in V. The word full will be omitted. Definitions:

■ A left continuous monoton decreasing (all w.r.t. \subseteq) function $r \in \mathbb{R} \rightarrow \Lambda(r) \in \operatorname{Latt}_{D^{\circ}}^{m, V}$ is called D°-lattice function of V, if $\forall r \in \mathbb{R}: \Lambda(r) \pi_{D}=\Lambda\left(r+\frac{1}{d}\right)$.

■ The set of D° lattice functions is denoted by $\operatorname{Latt}_{D^{\circ}}^{1} V$.
■ $\Lambda_{1} \backsim \Lambda_{2}$ iff $\exists s \in \mathbb{R}: \forall r \in \mathbb{R}: \Lambda_{1}(r)=\Lambda_{2}(r+s)$.
■ $\operatorname{Latt}_{D^{\circ}} V:=\operatorname{Latt}_{D^{\circ}}^{1} V / \backsim$

Affine Structure

Embeddings
The euclidean building of $G L_{m}(D)$
building
Euclidean building
Lattice functions

Affine Structure

The description of the building with lattice function
Simplicial structure

The affine map j_{E}
Barycentric coordinates

Definition 10 A D-basis $\left(v_{i}\right)$ of V is called splitting basis of a lattice function $[\Lambda]$, if

$$
\forall r \in \mathbb{R}: \Lambda(r)=\oplus_{i=1}^{m}\left(\Lambda(r) \cap R_{i}\right) .
$$

Affine structure: For $[\Lambda]$ and $\left[\Lambda^{\prime}\right]$ we can find a splitting basis $\left(v_{i}\right)$, thus

$$
\Lambda(r)=\oplus_{i=1}^{m} v_{i} D^{\circ \circ\left[r-\alpha_{i}\right]+} \text { and } \Lambda^{\prime}(r)=\oplus_{i=1}^{m} v_{i} D^{\circ \circ\left[r-\alpha_{i}^{\prime}\right]+}
$$

For $\lambda \in[0,1]$ one defines

$$
\lambda[\Lambda]+(1-\lambda)\left[\Lambda^{\prime}\right]:=\left[\Lambda^{\prime \prime}\right] \text { with }
$$

$$
\Lambda^{\prime \prime}(r):=\oplus_{i=1}^{m} v_{i} D^{\circ \circ\left[r-\lambda \alpha_{i}-(1-\lambda) \alpha_{i}^{\prime}\right]+} .
$$

The description of the building with lattice function

Notation
The outlook
Embeddings
The euclidean
building of $G L_{m}(D)$
building
Euclidean building
Lattice functions
Affine Structure
The description of
the building with
lattice function
Simplicial structure

The affine map j_{E}
Barycentric coordinates

The g.r. of the eucl. building of $G L_{m}(D)$ we denote by \mathcal{I}.
Theorem 5 ([BLO2] section I (2.5)) $\mathcal{I} \cong \operatorname{Latt}_{D^{\circ}} V$ $G L(D)^{\times}$-equivariant, affine.

Apartments: A frame $R=\left\{R_{i} \mid 1 \leq i \leq m\right\}$ is a set of m linearely independent 1-dim. D-subspaces of V.

$$
\begin{aligned}
& \operatorname{Latt}_{R} V:=\{[\Lambda] \mid \Lambda \text { is splitt by } R\} . \\
& \text { Apartments }=\left\{\operatorname{Latt}_{R} V \mid R \text { frame }\right\} .
\end{aligned}
$$

Faces: They are given by the hereditary orders of A,

$$
\begin{gathered}
\operatorname{Her}(A):=\{\mathfrak{a} \mid \mathfrak{a} \text { is a hereditary order }\} \\
\text { Def.: } \mathfrak{a} \leq \mathfrak{a}^{\prime} \text { if } \mathfrak{a} \supseteq \mathfrak{a}^{\prime}
\end{gathered}
$$

Simplicial structure

The outlook
Embeddings
The euclidean
building of $G L_{m}(D)$
building
Euclidean building
Lattice functions
Affine Structure
The description of the building with lattice function
Simplicial structure

The affine map j_{E}
Barycentric
coordinates
The theorem

- A lattice function $[\Lambda]$ lies on the face $\mathfrak{a}_{\Lambda}=\{a \in A \mid a \Lambda(r) \subseteq \Lambda(r) \forall r \in \mathbb{R}\}$.

■ The range of a lattice function is a lattices chain. This lattice chain represents the face \tilde{F} of the simplicial building s.t. $p \in|\tilde{F}|$.

■ Lattice chains are in 1-1 correspondence to hereditary orders.

Notation
The outlook
Embeddings
The euclidean
building of $G L_{m}(D)$
building
Euclidean building Lattice functions
Affine Structure The description of the building with lattice function
Simplicial structure

The affine map j_{E}
Barycentric coordinates

Theorem 6 (P.Broussous, B.Lemaire)

1. The simplicial complex of \mathcal{I} is isomorphic to $(\operatorname{Her}(A), \supseteq)$.
2. The hereditary order of rank k correspond to the faces of rank k, i.e. of dimension $k-1$.
3. Maximal her. orders, correspond to the vertices and minimal her. orders to the chambers.

Notation
The outlook
Embeddings
The euclidean
building of
$G L_{m}(D)$
The affine map j_{E}
Notation
Existence and
Uniqueness of j_{E}
j_{E} in terms of
lattice functions 1
j_{E} in terms of
lattice functions 2
Barycentric
coordinates
The theorem

The affine map j_{E}

Notation

Notation
The outlook
Embeddings
The euclidean
building of
$G L_{m}(D)$
The affine map j_{E}
Notation
Existence and
Uniqueness of j_{E}
j_{E} in terms of
lattice functions 1
j_{E} in terms of
lattice functions 2
Barycentric
coordinates

$$
A=M_{m}(D) \supseteq B=C_{A}(E) \supseteq E \supseteq F
$$

■ $E \mid F$ is a unram. field extension of degree $[E: F] \mid d$ in A.

- B is the centraliser of E in A.

■ It is \mathcal{I}_{E} the g.r. of the eucl. building of B.

Existence and Uniqueness of j_{E}

Notation
The outlook
Embeddings
The euclidean
building of $G L_{m}(D)$

The affine map j_{E}
Notation
Existence and
Uniqueness of j_{E}
j_{E} in terms of lattice functions 1 j_{E} in terms of lattice functions 2

Barycentric
coordinates
The theorem

Theorem 8 [BL02, part of Thm 1.1.] There exists a unique application $j_{E}: \mathcal{I}^{E^{\times}} \rightarrow \mathcal{I}_{E}$ such that

1. j_{E} is B^{\times}-equivariant.
2. j_{E} is affine.

Moreover j_{E}^{-1} can be caracterised as the unique B^{\times}-equivariant affine $\operatorname{map} \mathcal{I}_{E} \rightarrow \mathcal{I}$.

j_{E} in terms of lattice functions 1

Embeddings
The euclidean
building of
$G L_{m}(D)$
The affine map j_{E}

Notation

Existence and
Uniqueness of j_{E}
j_{E} in terms of lattice functions 1
j_{E} in terms of lattice functions 2

Barycentric coordinates

The theorem

This is due to Broussous and Lemaire [BL02] II 3.1.
We have $E \cong i(E) \subseteq L$ (F-Algebrahomomorphism).
$E \otimes_{F} i(E) \cong \bigoplus_{k=0}^{[E: F]-1} i(E)$ with the decomposition
$1=\sum_{k=0}^{[E: F]-1} 1^{k}$
So we get $V=\bigoplus_{k} V^{k}, V^{k}:=1^{k} V$, w.l.o.g. s.t. $V^{k+1}=V^{k} \pi_{D}$ and $V^{[E: F]-1} \pi_{D}=V^{0}$.

Remark 3 The skewfield $\Delta:=C_{D}(i(E))$ is central over $i(E)$ of index $\frac{d}{[E: F]}$.

1. $B \cong \operatorname{End}_{\Delta}\left(V^{0}\right)$.
2. $B \cong M_{m}(\Delta)$.

j_{E} in terms of lattice functions 2

The outlook
Embeddings
The euclidean
building of
$G L_{m}(D)$
The affine map j_{E}
Notation
Existence and
Uniqueness of j_{E} j_{E} in terms of lattice functions 1
j_{E} in terms of
lattice functions 2
Barycentric
coordinates

Theorem 9 [BL02, II 3.1.] In terms of lattice functions j_{E} has the form

$$
j_{E}^{-1}([\Theta])=[\Lambda],
$$

with

$$
\Lambda(s):=\bigoplus_{k=0}^{f-1} \Theta\left(s-\frac{k}{d}\right) \pi_{D}^{k}, s \in \mathbb{R}
$$

Notation
The outlook
Embeddings
The euclidean building of $G L_{m}(D)$ The affine map j_{E} Barycentric coordinates Orientation Oriented barycentric coordinates type The theorem

Barycentric coordinates

Oriented barycentric coordinates type

The theorem

Orientation

The outlook
Embeddings
The euclidean
building of
$G L_{m}(D)$
The affine map j_{E}
Barycentric
coordinates

Orientation

Oriented barycentric coordinates type

The theorem

For the simplicial complexes of $\mathcal{I}, \mathcal{I}_{E}$ we write $(\Omega, \leq),\left(\Omega_{E}, \leq\right)$. For the lattices corresponding to a face H or point x we write lattices (H), lattices (x). We define an orientation on Ω_{E}.

Definition 11 An edge $H=\left\{e, e^{\prime}\right\} \in \Omega_{E}$ is said to be oriented towards e^{\prime} if there are $\Gamma \in \operatorname{lattices}(e)$ and $\Gamma^{\prime} \in \operatorname{lattices}\left(e^{\prime}\right)$, such that $\operatorname{dim}_{\kappa_{D}}\left(\Gamma / \Gamma^{\prime}\right)=1$. (write $e_{1} \rightarrow e_{2}$) An oriented chamber is a tupel $\left(e_{1}, \ldots, e_{m}\right)$ of m different vertices which lie in a common chamber s.t. $e_{i} \rightarrow e_{i+1}$ and $e_{m} \rightarrow e_{1}$.

Oriented barycentric coordinates type

Embeddings
The euclidean building of $G L_{m}(D)$

The affine map j_{E}
Barycentric coordinates

Orientation

Definition 12 Assume $x \in \mathcal{I}_{E}$. An equivalence class of a tuple $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m}$ is called the local type of x, if there is an oriented chamber $\left(e_{1}, \ldots, e_{m}\right)$ of Ω_{E} such that $x=\sum_{i=1}^{m} \mu_{i} e_{i}$.

Proposition 1 For $x \in \mathcal{I}_{E}$ there is only one local type.

Notation
The outlook
Embeddings
The euclidean building of $G L_{m}(D)$ The affine map j_{E} Barycentric coordinates The theorem Vector of pairs Duality and the theorem Example Bibliography

The theorem

Vector of pairs

The euclidean building of $G L_{m}(D)$

The affine map j_{E}
Barycentric coordinates

The theorem
Vector of pairs
Duality and the theorem
Example
Bibliography

Definition $13 m^{\prime}, t \in \mathbb{N}$. Take

$$
\begin{gathered}
w \in \operatorname{Row}\left(m^{\prime}, t\right):=\left\{w \in \mathbb{N}_{0}^{m^{\prime}} \mid \sum_{i} w_{i}=t\right\}, \text { i.e. } \\
w=\left(0, \ldots, 0, w_{i_{0}}, 0, \ldots, 0, w_{i_{1}}, 0, \ldots, 0, w_{i_{k}}, 0, \ldots, 0\right)
\end{gathered}
$$

with $w_{i_{j}}>0$, and we can represent $\langle w>$ by a $(k+1)$-tupel of pairs
$\left(\left(w_{i_{0}}, i_{1}-i_{0}\right),\left(w_{i_{1}}, i_{2}-i_{1}\right), \ldots,\left(w_{i_{k-1}}, i_{k}-i_{k-1}\right),\left(w_{i_{k}}, i_{0}+m^{\prime}-1-i_{k}\right)\right)$
In this way we can map $<w>$ to a class of a vector of pairs, which we denote:
$\operatorname{pairs}(<w>):=<\left(w_{i_{0}}, i_{1}-i_{0}\right),\left(w_{i_{1}}, i_{2}-i_{1}\right), \ldots,\left(w_{i_{k}}, i_{0}+m^{\prime}-1-i_{k}\right)$

Duality and the theorem

The euclidean building of $G L_{m}(D)$

The affine map j_{E}
Barycentric coordinates

The theorem
Vector of pairs

Duality and the

theorem

Example
Bibliography

There is a duality map $<>^{c}: \operatorname{Row}\left(m^{\prime}, t\right) \rightarrow \operatorname{Row}\left(t, m^{\prime}\right)$.
Definition 14 Given w as above and pairs $(\langle w\rangle)=<\left(a_{0}, b_{0}\right), \ldots,\left(a_{k}, b_{k}\right)>$ we define the complement of $\langle w\rangle$, denoted by $\langle w\rangle^{c}$ to be the class $\left\langle w^{\prime}\right\rangle$, such that
$\operatorname{pairs}\left(<w^{\prime}>\right)=<\left(b_{0}, a_{1}\right),\left(b_{1}, a_{2}\right),\left(b_{2}, a_{3}\right), \ldots,\left(b_{k}, a_{0}\right)>$.

Theorem 10 (S.) Given $\mathfrak{a} \in \operatorname{Her}(A)^{E^{\times}}$and a matrix λ s.t. $\langle\lambda\rangle$ is the embedding type of (\mathfrak{a}, E) and assume $\langle\mu\rangle$ to be the local type of $j_{E}\left(M_{\mathfrak{a}}\right)$, where $M_{\mathfrak{a}}$ is the barycentre of the face corresponding to \mathfrak{a}. $<\operatorname{row}(\lambda)>$ is obtained as follows

1. $r f \mu \in \mathbb{N}_{0}^{m}$ and
2. $\langle\operatorname{row}(\lambda)\rangle=\langle f r \mu\rangle^{c}$.

Example

Notation
The outlook
Embeddings
The euclidean
building of $G L_{m}(D)$

The affine map j_{E}
Barycentric coordinates

The theorem
Vector of pairs Duality and the
theorem

Example
Bibliography

For example take $r=2,[E: F]=6, \operatorname{dim}_{D} V=7$,
$j_{E}\left(M_{\mathfrak{a}}\right)=\frac{3}{12} b_{0}+\frac{2}{12} b_{1}+\frac{1}{12} b_{2}+\frac{0}{12} b_{3}+\frac{0}{12} b_{4}+\frac{4}{12} b_{5}+\frac{2}{12} b_{6}$.
$<12 \mu>=<3,2,1,0,0,4,2>$
$\equiv<(3,1),(2,1),(1,3),(4,1),(2,1)>$
$<12 \mu>^{c} \equiv<(1,2),(1,1),(3,4),(1,2),(1,3)>$
$\equiv<1,0,1,3,0,0,0,1,0,1,0,0>$.Applying theorem 10 we get the embedding data

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 3 \\
0 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Bibliography

[BG00] P. Broussous and M. Grabitz. Pure elements and intertwining classes of simple strata in local central simple algebras. COMMUNICATION IN ALGEBRA, 28(11):5405-5442, 2000.
[BL02] P. Broussous and B. Lemaire. Buildings of $G L(m, D)$ and centralizers. Transformation Groups, 7(1):15-50, 2002.

