Higher dimensional algebraic geometry

1 The minimal program for surfaces (27.10)

- birational transformations for surfaces
- Castelnuovo's Theorem
- every surface admits a relatively minimal model

We follow [3].

2 Curves and divisors on algebraic varieties (03.11)

- the cone of curves
- criteria for ampleness

3 Rational curves (10.11)

- exceptional locus of a morphism
- rational curves on exceptional loci
- parametrizing rational curves
[27-38] from [2].

4 Parametrizing morphisms(17.11)

- parametrizing morphisms
- parametrizing morphisms with extra structures
- producing rational curves
[39-59] from [2].

5 Bend and break I (24.11)

- rational curves on Fano's
- a stronger bend-and-break
- rational curves on varieties whose canonical divisor is not nef
- a relative bend-and break
[60-73] from [2].

6 Bend and break II (1.12)

- images of varieties with nef or ample canonical divisor
- the albanese map of varieties with nef anticanonical divisor
- another relative bend-and-break
[73-83] from [2].

7 Uniruled and Rationally connected varieties (08.12)

8 Quotients by algebraic relations(15.12)

- quotients by flat algebraic relations
- quotients by proper algebraic relations
- construction of a rational quotient
[113-129] from [2].

9 Fano varieties (05.01)

- rational connectedness
- bounds on the degree
- singular Fano's
[130-141] from [2].

10 The cone of curves (12.01)

- the cone theorem
- examples
[143-164] from [2].

11 Canonical models(18.01)

- canonical models
- singularities
- Kawamata-Vieweg vanishing
[179-184] from [2].

12 The base-point-free Theorem (26.01)

- singularities of pairs
- multiplier ideal of an effective \mathbb{Q} divisor
- non vanishing theorem
- the base-point-free theorem
[184-197] from [2].

13 The cone theorem and the contraction theorem

 (02.02)- the rationality theorem
- the cone theorem
- the contraction theorem
- flips

14 Examples of flips by toric deformations (09.02)
an overview of [1].

References

[1] K. Altmann, One parameter families containing three dimensonal toric Gorenstien singularities, Explicit birational geometry of 3-folds, 2150, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000.
[2] O. Debarre, Higher Dimensional Algebraic Geometry, Universitext. Springer-Verlag, New York, 2001.
[3] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.

