Height Bounds in Diophantine Geometry

Philipp Habegger habegger@math.ethz.ch

GRK Summer School in Alpbach 2.-7. Sept. 2007

- A - B - M

The Manin-Mumford Conjecture

Conjecture

Let C be a smooth projective algebraic curve defined over \mathbb{C} of genus at least 2 embedded into its Jacobian J, then $C \cap J_{tors}$ is finite.

Generalized by Lang to

Conjecture

Let S be a semi-abelian variety defined over \mathbb{C} and let $X \subset S$ be an irreducible closed subvariety. If X is not an irreducible component of an algebraic subgroup of S, then the intersection $X \cap S_{tors}$ is not Zariski dense in X.

Now a theorem thanks to the work of Hindry, Laurent, Raynaud.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Manin-Mumford Conjecture

Conjecture

Let C be a smooth projective algebraic curve defined over \mathbb{C} of genus at least 2 embedded into its Jacobian J, then $C \cap J_{tors}$ is finite.

Generalized by Lang to

Conjecture

Let S be a semi-abelian variety defined over \mathbb{C} and let $X \subset S$ be an irreducible closed subvariety. If X is not an irreducible component of an algebraic subgroup of S, then the intersection $X \cap S_{tors}$ is not Zariski dense in X.

Now a theorem thanks to the work of Hindry, Laurent, Raynaud.

• □ ▶ • □ ▶ • □ ▶ • □

The Manin-Mumford Conjecture

Conjecture

Let C be a smooth projective algebraic curve defined over \mathbb{C} of genus at least 2 embedded into its Jacobian J, then $C \cap J_{tors}$ is finite.

Generalized by Lang to

Conjecture

Let S be a semi-abelian variety defined over \mathbb{C} and let $X \subset S$ be an irreducible closed subvariety. If X is not an irreducible component of an algebraic subgroup of S, then the intersection $X \cap S_{tors}$ is not Zariski dense in X.

Now a theorem thanks to the work of Hindry, Laurent, Raynaud.

A (1) > A (2) > A

A simple example

Example

- \mathbb{G}_m is the multiplicative group, i.e. $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$.
- Consider the curve $C \subset \mathbb{G}_m^2$ defined by

X + Y = 1.

• Then $C \cap (\mathbb{G}_m^2)_{\rm tors} = \{(\zeta, \zeta^{-1}), (\zeta^{-1}, \zeta)\}$ where ζ is a primitive 6th root of unity.

・ 一 ・ ・ ・ ・ ・ ・

A simple example

Example

- \mathbb{G}_m is the multiplicative group, i.e. $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$.
- Consider the curve $\mathcal{C} \subset \mathbb{G}_m^2$ defined by

X+Y=1.

Then $C \cap (\mathbb{G}_m^2)_{\mathrm{tors}} = \{(\zeta, \zeta^{-1}), (\zeta^{-1}, \zeta)\}$ where ζ is a primitive 6th root of unity.

A simple example

Example

- \mathbb{G}_m is the multiplicative group, i.e. $\mathbb{G}_m(\mathbb{C}) = \mathbb{C}^*$.
- Consider the curve $C \subset \mathbb{G}_m^2$ defined by

$$X+Y=1.$$

• Then

$$\mathcal{C} \cap (\mathbb{G}_m^2)_{\mathrm{tors}} = \{(\zeta, \zeta^{-1}), (\zeta^{-1}, \zeta)\}$$

where ζ is a primitive 6th root of unity.

▲ □ ▶ ▲ □ ▶ ▲

A generalization

Definition

Let S be a semi-abelian variety defined over \mathbb{C} . We define

$$S^{[r]} = \bigcup H(\mathbb{C})$$

H alg. subgrp. codim H≥r

 $= \{x \in S(\mathbb{C}); x \text{ contained in an algebraic subgroup} \\ \text{ of codimension } \geq r\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A generalization

Definition

Let S be a semi-abelian variety defined over \mathbb{C} . We define

$$S^{[r]} = \bigcup H(\mathbb{C})$$

H alg. subgrp. codim H≥r

 $= \{x \in S(\mathbb{C}); x \text{ contained in an algebraic subgroup} \\ \text{ of codimension } \geq r\}.$

(日) (同) (三) (三)

A generalization

Definition

Let S be a semi-abelian variety defined over \mathbb{C} . We define

$$S^{[r]} = \bigcup H(\mathbb{C})$$

H alg. subgrp. codim H≥r

 $= \{x \in S(\mathbb{C}); x \text{ contained in an algebraic subgroup} \\ \text{ of codimension } \geq r\}.$

(日) (同) (三) (三)

Algebraic subgroups of \mathbb{G}_m^n

Example

Let H be an algebraic subgroup of \mathbb{G}_m^n of codimension r. There exist linearly independent vectors

$$u_i = (u_{i1}, \ldots, u_{in}) \in \mathbb{Z}^n \quad (1 \le i \le r)$$

such that

$$H = \{ (x_1, \ldots, x_n); \ x_1^{u_{i1}} \cdots x_n^{u_{in}} = 1 \text{ for } 1 \le i \le r \}.$$

Example

$$\begin{split} (\mathbb{G}_m^n)^{[1]} &= \{ (x_1, \dots, x_n) \in \mathbb{G}_m^n; \ x_1^{a_1} \cdots x_n^{a_n} = 1, \\ (a_1, \dots, a_n) \in \mathbb{Z}^n \backslash \{0\} \}. \end{split}$$

æ

イロト イポト イヨト イヨト

Algebraic subgroups of \mathbb{G}_m^n

Example

Let H be an algebraic subgroup of \mathbb{G}_m^n of codimension r. There exist linearly independent vectors

$$u_i = (u_{i1}, \ldots, u_{in}) \in \mathbb{Z}^n \quad (1 \le i \le r)$$

such that

$$H = \{ (x_1, \dots, x_n); \ x_1^{u_{i1}} \cdots x_n^{u_{in}} = 1 \text{ for } 1 \le i \le r \}.$$

Example

$$\begin{split} (\mathbb{G}_m^n)^{[1]} &= \{ (x_1, \dots, x_n) \in \mathbb{G}_m^n; \ x_1^{a_1} \cdots x_n^{a_n} = 1, \\ (a_1, \dots, a_n) \in \mathbb{Z}^n \backslash \{0\} \}. \end{split}$$

< 1¹→ >

Intersecting subvarieties with $S^{[r]}$

Question

Let X be a subvariety of a semi-abelian variety S, what can be said about $X \cap S^{[r]}$? We are specially interested in the critical values $r = \dim X$ and $r = 1 + \dim X$.

Remark

Manin-Mumford: $X \cap S^{[r]}$ is non-dense if $r = \dim S$ and if X is not an irreducible component of an algebraic subgroup of S.

Example

If C is a curve in \mathbb{G}_m^n , then $C \cap (\mathbb{G}_m^n)^{[1]}$ is always infinite.

< ロ > < 同 > < 三 > <

Intersecting subvarieties with $S^{[r]}$

Question

Let X be a subvariety of a semi-abelian variety S, what can be said about $X \cap S^{[r]}$? We are specially interested in the critical values $r = \dim X$ and $r = 1 + \dim X$.

Remark

Manin-Mumford: $X \cap S^{[r]}$ is non-dense if $r = \dim S$ and if X is not an irreducible component of an algebraic subgroup of S.

Example

If C is a curve in \mathbb{G}_m^n , then $C \cap (\mathbb{G}_m^n)^{[1]}$ is always infinite.

< ロ > < 同 > < 三 > <

Intersecting subvarieties with $S^{[r]}$

Question

Let X be a subvariety of a semi-abelian variety S, what can be said about $X \cap S^{[r]}$? We are specially interested in the critical values $r = \dim X$ and $r = 1 + \dim X$.

Remark

Manin-Mumford: $X \cap S^{[r]}$ is non-dense if $r = \dim S$ and if X is not an irreducible component of an algebraic subgroup of S.

Example

If C is a curve in \mathbb{G}_m^n , then $C \cap (\mathbb{G}_m^n)^{[1]}$ is always infinite.

• □ > • • • • • • • • • • •

On heights I

Definition (of the height)

The (absolute logarithmic Weil) height h(x) of an **algebraic** number x is defined as follows:

There exists a unique $P = a_d T^d + \cdots + a_0 \in \mathbb{Z}[T]$, the minimal polynomial, with

•
$$P(x) = 0$$
,

• *P* irreducible over
$$\mathbb{Z}$$
, $a_d > 0$, and

•
$$P = a_d(T - \xi_1) \cdots (T - \xi_d)$$
 with $\xi_i \in \mathbb{C}$.

$$h(x) := rac{1}{d} \log \left(a_d \prod_{|\xi_i| > 1} |\xi_i|
ight) = rac{1}{d} \log(\text{Mahler measure of } P) \ge 0.$$

< 🗇 > < 🖃 >

On heights I

Definition (of the height)

The (absolute logarithmic Weil) height h(x) of an **algebraic number** x is defined as follows: There exists a unique $P = a_d T^d + \cdots + a_0 \in \mathbb{Z}[T]$, the minimal polynomial, with

- P(x) = 0,
- *P* irreducible over \mathbb{Z} , $a_d > 0$, and
- $P = a_d(T \xi_1) \cdots (T \xi_d)$ with $\xi_i \in \mathbb{C}$.

 $h(x) := \frac{1}{d} \log \left(a_d \prod_{|\xi_i| > 1} |\xi_i| \right) = \frac{1}{d} \log(\text{Mahler measure of } P) \ge 0.$

▲ 同 ▶ ▲ 三 ▶ ▲

On heights I

Definition (of the height)

The (absolute logarithmic Weil) height h(x) of an **algebraic number** x is defined as follows: There exists a unique $P = a_d T^d + \cdots + a_0 \in \mathbb{Z}[T]$, the minimal polynomial, with

- P(x) = 0,
- *P* irreducible over \mathbb{Z} , $a_d > 0$, and

•
$$P = a_d(T - \xi_1) \cdots (T - \xi_d)$$
 with $\xi_i \in \mathbb{C}$.
$$h(x) := \frac{1}{d} \log \left(a_d \prod_{|\xi_i| > 1} |\xi_i| \right) = \frac{1}{d} \log(\text{Mahler measure of } P) \ge 0.$$

On heights II

Definition (of the height cont.)

If $x = (x_1, \ldots, x_n) \in \mathbb{G}_m^n(\overline{\mathbb{Q}})$ we define

$$h(x) = h(x_1) + \cdots + h(x_n).$$

A property

We have
$$h(x^k) = |k|h(x)$$
 for $k \in \mathbb{Z}$.

Remark

Other, non equivalent, definitions are in use. Later, we will see a height defined on $\mathbb{P}^n(\overline{\mathbb{Q}})$.

イロト イポト イヨト イヨト

3

On heights II

Definition (of the height cont.)

If $x = (x_1, \ldots, x_n) \in \mathbb{G}_m^n(\overline{\mathbb{Q}})$ we define

$$h(x) = h(x_1) + \cdots + h(x_n).$$

A property

We have
$$h(x^k) = |k|h(x)$$
 for $k \in \mathbb{Z}$.

Remark

Other, non equivalent, definitions are in use. Later, we will see a height defined on $\mathbb{P}^n(\overline{\mathbb{Q}})$.

(日) (同) (三) (三)

э

Two basic facts I

Theorem (Northcott)

Let $C, D \in \mathbb{R}$, then

$\{x \in \mathbb{G}_m^n(\overline{\mathbb{Q}}); h(x) \le C \text{ and } [\mathbb{Q}(x):\mathbb{Q}] \le D\}$

is finite.

Proof idea

The constants C and D bound the absolute values of the coefficients and degrees of the minimal polynomials of x_1, \ldots, x_n .

- 4 同 6 4 日 6 4 日 6

Two basic facts I

Theorem (Northcott)

Let $C, D \in \mathbb{R}$, then

$\{x \in \mathbb{G}_m^n(\overline{\mathbb{Q}}); h(x) \le C \text{ and } [\mathbb{Q}(x) : \mathbb{Q}] \le D\}$

is finite.

Proof idea

The constants C and D bound the absolute values of the coefficients and degrees of the minimal polynomials of x_1, \ldots, x_n .

Image: A image: A

Two basic facts II

Theorem (Kronecker)

If $x \in \mathbb{G}_m^n(\overline{\mathbb{Q}})$, then

$$h(x) = 0$$
 if and only if $x \in (\mathbb{G}_m^n)_{\text{tors}}$.

Proof idea of " \Rightarrow '

If h(x) = 0 then $h(x^k) = |k|h(x) = 0$ for all $k \in \mathbb{Z}$. The set $\{x^k\}$ has bounded height and degree. Northcott: $\{x^k\}$ is finite. There exists k > k' with

$$x^k = x^{k'}$$
 so $x^{k-k'} = 1$.

▲□ ► < □ ► </p>

Two basic facts II

Theorem (Kronecker)

If $x \in \mathbb{G}_m^n(\overline{\mathbb{Q}})$, then

$$h(x) = 0$$
 if and only if $x \in (\mathbb{G}_m^n)_{\text{tors}}$.

Proof idea of " \Rightarrow "

If
$$h(x) = 0$$
 then $h(x^k) = |k|h(x) = 0$ for all $k \in \mathbb{Z}$. The set $\{x^k\}$ has bounded height and degree.
Northcott: $\{x^k\}$ is finite. There exists $k > k'$ with

$$x^k = x^{k'}$$
 so $x^{k-k'} = 1$.

э

Theorem of Bombieri, Masser, and Zannier

Theorem (Bombieri, Masser, Zannier 1999)

Let $C \subset \mathbb{G}_m^n$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in the **translate of a proper algebraic subgroup** (= proper coset) of \mathbb{G}_m^n . Then

• $C \cap (\mathbb{G}_m^n)^{[1]}$ has bounded height,

• $C \cap (\mathbb{G}_m^n)^{[2]}$ is finite.

Theorem of Bombieri, Masser, and Zannier

Theorem (Bombieri, Masser, Zannier 1999)

Let $C \subset \mathbb{G}_m^n$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in the **translate of a proper algebraic subgroup** (= proper coset) of \mathbb{G}_m^n . Then

- $C \cap (\mathbb{G}_m^n)^{[1]}$ has bounded height,
- $C \cap (\mathbb{G}_m^n)^{[2]}$ is finite.

Theorem of Bombieri, Masser, and Zannier

Theorem (Bombieri, Masser, Zannier 1999)

Let $C \subset \mathbb{G}_m^n$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in the **translate of a proper algebraic subgroup** (= proper coset) of \mathbb{G}_m^n . Then

- $C \cap (\mathbb{G}_m^n)^{[1]}$ has bounded height,
- $C \cap (\mathbb{G}_m^n)^{[2]}$ is finite.

A consequence using Northcott's Theorem

Example

If C is a curve as in the Theorem of Bombieri, Masser, and Zannier and K is a number field, then

 $C(K) \cap (\mathbb{G}_m^n)^{[1]}$

is finite.

(b) (4) (2) (4)

Strategy of proof

The finiteness statement in BMZ's Theorem rests on:

Proposition

Assume $C \subset \mathbb{G}_m^n$ is a curve which is not contained in a proper algebraic subgroup. If $B \in \mathbb{R}$, then

 $\{x \in C \cap (\mathbb{G}_m^n)^{[2]}; h(x) \le B\}$ is finite.

Remark

The proof of this result uses

"relative Lehmer-type height lower bounds."

We will concentrate on height upper bounds.

▲□ ► ▲ □ ► ▲

Strategy of proof

The finiteness statement in BMZ's Theorem rests on:

Proposition

Assume $C \subset \mathbb{G}_m^n$ is a curve which is not contained in a proper algebraic subgroup. If $B \in \mathbb{R}$, then

$$\{x \in C \cap (\mathbb{G}_m^n)^{[2]}; h(x) \leq B\}$$
 is finite.

Remark

The proof of this result uses

"relative Lehmer-type height lower bounds."

We will concentrate on height upper bounds.

| 4 同 🕨 🖌 🖉 🕨 🔺

Strategy of proof

The finiteness statement in BMZ's Theorem rests on:

Proposition

Assume $C \subset \mathbb{G}_m^n$ is a curve which is not contained in a proper algebraic subgroup. If $B \in \mathbb{R}$, then

$$\{x \in C \cap (\mathbb{G}_m^n)^{[2]}; h(x) \leq B\}$$
 is finite.

Remark

The proof of this result uses

"relative Lehmer-type height lower bounds."

We will concentrate on height upper bounds.

Another simple example

Example

Let us consider again the curve C defined by X + Y = 1 in \mathbb{G}_m^2 .

- We already know $\#C \cap (\mathbb{G}_m^2)^{[2]} = 2.$
- In 2000, Cohen and Zannier proved that if $(x,y) \in C \cap (\mathbb{G}_m^2)^{[1]}$, in other words if

$$x
eq 0,1$$
 and $x^a(1-x)^b=1$ $(a,b)\in \mathbb{Z}^2ackslash \{0\}$

then

$$h(x) \le \log 2$$
 and $h(y) \le \log 2$.

/⊒ ► < ∃ ►

Another simple example

Example

Let us consider again the curve C defined by X + Y = 1 in \mathbb{G}_m^2 .

- We already know $\#C \cap (\mathbb{G}_m^2)^{[2]} = 2.$
- In 2000, Cohen and Zannier proved that if $(x,y) \in C \cap (\mathbb{G}_m^2)^{[1]}$, in other words if

$$x \neq 0,1$$
 and $x^a(1-x)^b = 1$ $(a,b) \in \mathbb{Z}^2 \setminus \{0\}$

then

$$h(x) \le \log 2$$
 and $h(y) \le \log 2$.

▲ □ ▶ → □ ▶

Another simple example

Example

Let us consider again the curve C defined by X + Y = 1 in \mathbb{G}_m^2 .

- We already know $\#C \cap (\mathbb{G}_m^2)^{[2]} = 2.$
- In 2000, Cohen and Zannier proved that if $(x, y) \in C \cap (\mathbb{G}_m^2)^{[1]}$, in other words if

$$x
eq 0,1$$
 and $x^a(1-x)^b=1$ $(a,b)\in\mathbb{Z}^2ackslash\{0\}$

then

$$h(x) \leq \log 2$$
 and $h(y) \leq \log 2$.

Finiteness under the weak hypothesis

Theorem (Maurin 2007)

Let $C \subset \mathbb{G}_m^n$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in a **proper algebraic subgroup** of \mathbb{G}_m^n , then

 $C \cap (\mathbb{G}_m^n)^{[2]}$ is finite.

Remark

Under this weaker hypothesis, the statement

" ${\mathcal C} \cap ({\mathbb G}_m^n)^{[1]}$ has bounded height"

is wrong.

Finiteness under the weak hypothesis

Theorem (Maurin 2007)

Let $C \subset \mathbb{G}_m^n$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in a **proper algebraic subgroup** of \mathbb{G}_m^n , then

 $C \cap (\mathbb{G}_m^n)^{[2]}$ is finite.

Remark

Under this weaker hypothesis, the statement

" ${\mathcal C} \cap ({\mathbb G}_m^n)^{[1]}$ has bounded height"

is wrong.

(人間) ト く ヨ ト く ヨ ト
Maurin implies Mordell-Lang for curves in \mathbb{G}_m^n

Example

Let $C \subset \mathbb{G}_m^n$ be a curve not contained in a proper coset, $n \geq 2$, and let $\gamma_1, \ldots, \gamma_s \in \overline{\mathbb{Q}}^*$ be multiplicatively independent. Then

 $C \times \{(\gamma_1, \ldots, \gamma_s)\} \subset \mathbb{G}_m^{n+s}$

is a curve but not in proper algebraic subgroup. If $x \in C(\overline{\mathbb{Q}})$ and $k \in \mathbb{N}$ such that the coordinates of x^k are in $< \gamma_1, \ldots, \gamma_s >$, then

 $(x, \gamma_1, \ldots, \gamma_s) \in C(\overline{\mathbb{Q}}) \times \{(\gamma_1, \ldots, \gamma_s)\} \cap (\mathbb{G}_m^n)^{[2]}.$

Therefore, $C \cap \Gamma$ is finite for a subgroup $\Gamma \subset \mathbb{G}_m^n(\overline{\mathbb{Q}})$ of finite rank.

- 4 同 6 4 日 6 4 日

Maurin implies Mordell-Lang for curves in \mathbb{G}_m^n

Example

Let $C \subset \mathbb{G}_m^n$ be a curve not contained in a proper coset, $n \geq 2$, and let $\gamma_1, \ldots, \gamma_s \in \overline{\mathbb{Q}}^*$ be multiplicatively independent. Then

 $C \times \{(\gamma_1, \ldots, \gamma_s)\} \subset \mathbb{G}_m^{n+s}$

is a curve but not in proper algebraic subgroup. If $x \in C(\overline{\mathbb{Q}})$ and $k \in \mathbb{N}$ such that the coordinates of x^k are in $< \gamma_1, \ldots, \gamma_s >$, then

$$(x,\gamma_1,\ldots,\gamma_s)\in \mathcal{C}(\overline{\mathbb{Q}}) imes\{(\gamma_1,\ldots,\gamma_s)\}\cap (\mathbb{G}_m^n)^{[2]}.$$

Therefore, $C \cap \Gamma$ is finite for a subgroup $\Gamma \subset \mathbb{G}_m^n(\overline{\mathbb{Q}})$ of finite rank.

A result in arbitrary dimension I

Theorem (Bombieri, Zannier 2000)

Let $X \subset \mathbb{G}_m^n$ be irreducible and defined over $\overline{\mathbb{Q}}$ of any dimension. Set

$$X^{\mathrm{o}} = X \setminus \bigcup_{H \subset X \text{ coset}} H,$$

 $\dim H \ge 1$

then

$$X^{\mathrm{o}} \cap (\mathbb{G}_m^n)^{[n-1]}$$

has bounded height.

Remark (on curves)

The subgroup codim. size n - 1 is not optimal for curves if $n \ge 3$.

A result in arbitrary dimension I

Theorem (Bombieri, Zannier 2000)

Let $X \subset \mathbb{G}_m^n$ be irreducible and defined over $\overline{\mathbb{Q}}$ of any dimension. Set

$$X^{\mathrm{o}} = X \setminus \bigcup_{H \subset X \text{ coset}} H,$$

 $\dim H \ge 1$

then

$$X^{\mathrm{o}} \cap (\mathbb{G}_m^n)^{[n-1]}$$

has bounded height.

Remark (on curves)

The subgroup codim. size n - 1 is not optimal for curves if $n \ge 3$.

• □ ▶ • □ ▶ • □ ▶ •

A result in arbitrary dimension II

Remark (on hypersurfaces)

If X is a hypersurface, i.e. $\dim X = n - 1$, then the subgroup codim. size n - 1 is optimal.

Conclusion

Combining BMZ and BZ's Theorem: we have boundedness of height results with optimal subgroup codim. for **curves** and **hypersurfaces**.

A result in arbitrary dimension II

Remark (on hypersurfaces)

If X is a hypersurface, i.e. $\dim X = n - 1$, then the subgroup codim. size n - 1 is optimal.

Conclusion

Combining BMZ and BZ's Theorem: we have boundedness of height results with optimal subgroup codim. for **curves** and **hypersurfaces**.

▲ □ ▶ ▲ □ ▶ ▲

What is known for subvarieties of abelian varieties?

Theorem (Viada 2003)

Let *E* be an elliptic curve and $C \subset E^g$ an irreducible curve both over $\overline{\mathbb{Q}}$. Assume *C* is not contained in a **proper coset**. Then

any Néron-Tate height is bounded on C ∩ (E^g)^[1]

• if *E* has complex multiplication, then $C \cap (E^g)^{[2]}$ is finite.

Theorem (Rémond 2005)

Boundedness of height for curves in any abelian variety.

What is known for subvarieties of abelian varieties?

Theorem (Viada 2003)

Let *E* be an elliptic curve and $C \subset E^g$ an irreducible curve both over $\overline{\mathbb{Q}}$. Assume *C* is not contained in a **proper coset**. Then

• any Néron-Tate height is bounded on $C \cap (E^g)^{[1]}$,

• if *E* has complex multiplication, then $C \cap (E^g)^{[2]}$ is finite.

Theorem (Rémond 2005)

Boundedness of height for curves in any abelian variety.

What is known for subvarieties of abelian varieties?

Theorem (Viada 2003)

Let E be an elliptic curve and $C \subset E^g$ an irreducible curve both over $\overline{\mathbb{Q}}$. Assume C is not contained in a **proper coset**. Then

- any Néron-Tate height is bounded on $C \cap (E^g)^{[1]}$,
- if E has complex multiplication, then $C \cap (E^g)^{[2]}$ is finite.

Theorem (Rémond 2005)

Boundedness of height for curves in any abelian variety.

▲□ ► < □ ► </p>

What is known for subvarieties of abelian varieties?

Theorem (Viada 2003)

Let *E* be an elliptic curve and $C \subset E^g$ an irreducible curve both over $\overline{\mathbb{Q}}$. Assume *C* is not contained in a **proper coset**. Then

- any Néron-Tate height is bounded on $C \cap (E^g)^{[1]}$,
- if E has complex multiplication, then $C \cap (E^g)^{[2]}$ is finite.

Theorem (Rémond 2005)

Boundedness of height for curves in any abelian variety.

・ 同・ ・ ヨ・

Why the complex multiplication hypothesis?

Remark

Finiteness for $C \cap (E^g)^{[2]}$ is deduced as in Bombieri, Masser, and Zannier's Theorem:

One needs a "relative Lehmer-type height lower bound" which is presently only available for elliptic curves with CM.

The obstruction

To deduce height lower bounds one needs a sufficient number of super-singular primes. Current estimates for non-CM curves are too weak.

< ロ > < 同 > < 三 > <

Why the complex multiplication hypothesis?

Remark

Finiteness for $C \cap (E^g)^{[2]}$ is deduced as in Bombieri, Masser, and Zannier's Theorem:

One needs a "relative Lehmer-type height lower bound" which is presently only available for elliptic curves with CM.

The obstruction

To deduce height lower bounds one needs a sufficient number of super-singular primes. Current estimates for non-CM curves are too weak.

Algebraic subgroups of E^g

Remark

If E is an elliptic curve over a field of characteristic 0, then End(E) is an order in a number field of degree 1 or 2 over \mathbb{Q} .

Example

Let H be an algebraic subgroup of E^g of codim. r. There exist $\operatorname{End}(E)$ -linearly independent vectors

$$u_i = (u_{i1}, \ldots, u_{ig}) \in \operatorname{End}(E)^g \quad (1 \le i \le r)$$

such that *H* has finite index in

$$\{(x_1, \ldots, x_g); u_{i1}x_1 + \cdots + u_{ig}x_g = 0 \text{ for } 1 \le i \le r\}.$$

A (1) > A (2) > A

Algebraic subgroups of E^g

Remark

If E is an elliptic curve over a field of characteristic 0, then End(E) is an order in a number field of degree 1 or 2 over \mathbb{Q} .

Example

Let H be an algebraic subgroup of E^g of codim. r. There exist End(E)-linearly independent vectors

$$u_i = (u_{i1}, \ldots, u_{ig}) \in \operatorname{End}(E)^g \quad (1 \le i \le r)$$

such that H has finite index in

$$\{(x_1, \ldots, x_g); \ u_{i1}x_1 + \cdots + u_{ig}x_g = 0 \text{ for } 1 \le i \le r\}.$$

Finiteness under the weak hypothesis

Maurin's finiteness result was known earlier for powers of elliptic curves with complex multiplication:

Theorem (Rémond, Viada 2003)

Let *E* be an elliptic curve and $C \subset E^g$ an irreducible curve both defined over $\overline{\mathbb{Q}}$. Assume that *C* is not contained in a **proper algebraic subgroup**. If *E* has complex multiplication then

 $C \cap (E^g)^{[2]}$ is finite.

Finiteness under the weak hypothesis

Maurin's finiteness result was known earlier for powers of elliptic curves with complex multiplication:

Theorem (Rémond, Viada 2003)

Let *E* be an elliptic curve and $C \subset E^g$ an irreducible curve both defined over $\overline{\mathbb{Q}}$. Assume that *C* is not contained in a **proper** algebraic subgroup. If *E* has complex multiplication then

 $C \cap (E^g)^{[2]}$ is finite.

A finiteness conjecture in higher dimension

Conjecture (Zilber)

Let S be semi-abelian and X an irreducible closed subvariety of S both over \mathbb{C} . There exists a **finite** set \mathcal{H} of proper algebraic subgroups of S such that

$$X \cap S^{[1+\dim X]} \subset \bigcup_{H \in \mathcal{H}} X \cap H.$$

Remark

If $X \not\subset$ proper algebraic subgroup of S then Zilber would imply

 $X \cap S^{[1+\dim X]}$ is not Zariski dense in X.

Similar conjectures were stated by Pink and by Bombieri, Masser, Zannier for $S = \mathbb{G}_m^n$.

A finiteness conjecture in higher dimension

Conjecture (Zilber)

Let S be semi-abelian and X an irreducible closed subvariety of S both over \mathbb{C} . There exists a **finite** set \mathcal{H} of proper algebraic subgroups of S such that

$$X \cap S^{[1+\dim X]} \subset \bigcup_{H \in \mathcal{H}} X \cap H.$$

Remark

If $X \not\subset$ proper algebraic subgroup of S then Zilber would imply

 $X \cap S^{[1+\dim X]}$ is not Zariski dense in X.

Similar conjectures were stated by Pink and by Bombieri, Masser, Zannier for $S = \mathbb{G}_m^n$.

A height bound conjecture in higher dimension

Conjecture

Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. Any Néron-Tate height is bounded on

 $X^{\mathrm{oa}} \cap A^{[\dim X]}.$

Remark

 X^{oa} is a natural subset of X which tries to eliminate trivial counterexamples.

Remark

This conjecture can be generalized to semi-abelian varieties.

<ロ> (日) (日) (日) (日) (日)

A height bound conjecture in higher dimension

Conjecture

Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. Any Néron-Tate height is bounded on

 $X^{\mathrm{oa}} \cap A^{[\dim X]}.$

Remark

 X^{oa} is a natural subset of X which tries to eliminate trivial counterexamples.

Remark

This conjecture can be generalized to semi-abelian varieties.

<ロ> <同> <同> < 同> < 同>

A height bound conjecture in higher dimension

Conjecture

Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. Any Néron-Tate height is bounded on

 $X^{\mathrm{oa}} \cap A^{[\dim X]}.$

Remark

 X^{oa} is a natural subset of X which tries to eliminate trivial counterexamples.

Remark

This conjecture can be generalized to semi-abelian varieties.

< 日 > < 同 > < 三 > < 三 >

Anomalous subvarieties I

Remark

Let X, H be subvarieties of A (or \mathbb{G}_m^n or even S). Let

 $Y \subset X \cap H$ be an irreducible component.

If X and H are in general position one expects

 $\dim Y = \max\{0, \dim X + \dim H - \dim A\}.$

Definition (Anomalous subvarieties)

An irreducible closed subvariety $Y \subset X$ is called anomalous if there exists a **coset** H such that $Y \subset H$ and

 $\dim Y > \max\{0, \dim X + \dim H - \dim A\}.$

Anomalous subvarieties I

Remark

Let X, H be subvarieties of A (or \mathbb{G}_m^n or even S). Let

 $Y \subset X \cap H$ be an irreducible component.

If X and H are in general position one expects

 $\dim Y = \max\{0, \dim X + \dim H - \dim A\}.$

Definition (Anomalous subvarieties)

An irreducible closed subvariety $Y \subset X$ is called anomalous if there exists a **coset** H such that $Y \subset H$ and

 $\dim Y > \max\{0, \dim X + \dim H - \dim A\}.$

Anomalous subvarieties II

Definition (Anomalous subvarieties (repeat))

An irreducible closed subvariety $Y \subset X$ is called anomalous if there exists a **coset** H such that $Y \subset H$ and

 $\dim Y > \max\{0, \dim X + \dim H - \dim A\}.$

Example (Curve case)

Any anomalous subvariety of an irreducible curve $C \subset A$ must equal C. The coset H must satisfy dim $H < \dim A$. Hence,

Y anomalous subvariety of $C \Leftrightarrow Y = C \subset$ proper coset.

- 4 同 ト 4 ヨ ト 4 ヨ

Anomalous subvarieties II

Definition (Anomalous subvarieties (repeat))

An irreducible closed subvariety $Y \subset X$ is called anomalous if there exists a **coset** H such that $Y \subset H$ and

 $\dim Y > \max\{0, \dim X + \dim H - \dim A\}.$

Example (Curve case)

Any anomalous subvariety of an irreducible curve $C \subset A$ must equal C. The coset H must satisfy dim $H < \dim A$. Hence,

Y anomalous subvariety of $C \Leftrightarrow Y = C \subset$ proper coset.

A (1) < A (

Anomalous subvarieties III

Definition

We define

$$X^{\mathrm{oa}} = X \setminus \bigcup_{\substack{Y \subset X \\ \text{anomalous}}} Y.$$

Example (Curve case)

Let $C \subset A$ be an irreducible curve, then

 $C^{\mathrm{oa}} = \begin{cases} \emptyset & \text{if } C \text{ is contained in a proper coset} \\ C & \text{else wise.} \end{cases}$

In particular, Coa is Zariski open in C.

▲□ ► < □ ► </p>

Anomalous subvarieties III

Definition

We define

$$X^{\mathrm{oa}} = X \setminus \bigcup_{\substack{Y \subset X \\ \text{anomalous}}} Y.$$

Example (Curve case)

Let $C \subset A$ be an irreducible curve, then

$$C^{\mathrm{oa}} = \begin{cases} \emptyset & \text{if } C \text{ is contained in a proper coset,} \\ C & \text{else wise.} \end{cases}$$

In particular, C^{oa} is Zariski open in C.

| 4 同 🕨 🖌 🖉 🕨 🔺

Anomalous subvarieties IV

Theorem (Bombieri, Masser, and Zannier 2006)

Let $X \subset \mathbb{G}_m^n$ be an irreducible closed subvariety over \mathbb{C} , then

 X^{oa} is Zariski open in X.

Theorem (Rémond, H. indep.)

The same holds for \mathbb{G}_m^n replaced by an abelian variety.

Remark

Moreover, if E is an elliptic curve and $X \subset E^g$ then

 $X^{\mathrm{oa}} \neq \emptyset$ if and only if

 $\varphi: E^{g} \to E^{\dim X}$ surjective $\Rightarrow \dim \varphi(X) = \dim X$.

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Anomalous subvarieties IV

Theorem (Bombieri, Masser, and Zannier 2006)

Let $X \subset \mathbb{G}_m^n$ be an irreducible closed subvariety over \mathbb{C} , then

 X^{oa} is Zariski open in X.

Theorem (Rémond, H. indep.)

The same holds for \mathbb{G}_m^n replaced by an abelian variety.

Remark

Moreover, if E is an elliptic curve and $X \subset E^g$ then

 $X^{\mathrm{oa}} \neq \emptyset$ if and only if

 $\varphi: E^g \to E^{\dim X}$ surjective $\Rightarrow \dim \varphi(X) = \dim X$.

A (B) A (B) A (B) A

Anomalous subvarieties IV

Theorem (Bombieri, Masser, and Zannier 2006)

Let $X \subset \mathbb{G}_m^n$ be an irreducible closed subvariety over \mathbb{C} , then

 X^{oa} is Zariski open in X.

Theorem (Rémond, H. indep.)

The same holds for \mathbb{G}_m^n replaced by an abelian variety.

Remark

Moreover, if E is an elliptic curve and $X \subset E^g$ then

 $X^{\mathrm{oa}} \neq \emptyset$ if and only if

$$\varphi: E^{g} \to E^{\dim X} \text{ surjective } \Rightarrow \dim \varphi(X) = \dim X.$$

イロト イポト イヨト イヨト

Some results for abelian varieties I

Height bound and finiteness results are currently more available in the abelian case as opposed to the multiplicative case:

Theorem (Rémond 2007)

Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. If $\Gamma \subset A(\overline{\mathbb{Q}})$ is a subgroup of finite rank then any Néron-Tate height is bounded on

$$X^{\mathrm{oa}} \cap (\Gamma + A^{[1+\dim X]}). \tag{1}$$

If $A = E^g$ with E a CM elliptic curve then (1) is finite.

Some results for abelian varieties I

Height bound and finiteness results are currently more available in the abelian case as opposed to the multiplicative case:

Theorem (Rémond 2007)

Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. If $\Gamma \subset A(\overline{\mathbb{Q}})$ is a subgroup of finite rank then any Néron-Tate height is bounded on

$$X^{\mathrm{oa}} \cap (\Gamma + A^{[1 + \dim X]}). \tag{1}$$

If $A = E^g$ with E a CM elliptic curve then (1) is finite.

Some results for abelian varieties II

By assuming $\Gamma=0$ we can increase the subgroup size and still get a height bound.

Theorem (H. 2007)

If $X \subset E^g$ with E an elliptic curve, then any Néron-Tate height is bounded on

 $X^{\mathrm{oa}} \cap (E^g)^{[\dim X]}.$

Remark

We will sketch a proof of this theorem.

< 日 > < 同 > < 三 > < 三 >

Some results for abelian varieties II

By assuming $\Gamma=0$ we can increase the subgroup size and still get a height bound.

Theorem (H. 2007)

If $X \subset E^g$ with E an elliptic curve, then any Néron-Tate height is bounded on

 $X^{\mathrm{oa}} \cap (E^g)^{[\dim X]}.$

Remark

We will sketch a proof of this theorem.

- 4 同 2 4 日 2 4 日 2

Some results in \mathbb{G}_m^n

Remark

Height bound or finiteness results for subvarieties of \mathbb{G}_m^n other than curves and hypersurfaces with optimal subgroup codim. are rather sparse.

Theorem (H. 2007)

Let $X \subset \mathbb{G}_m^5$ be an irreducible algebraic surface over $\overline{\mathbb{Q}}$, then

$$X^{\mathrm{oa}} \cap (\mathbb{G}_m^5)^{[1+\dim X]} = X^{\mathrm{oa}} \cap (\mathbb{G}_m^5)^{[3]}$$

is finite.

▲ □ ▶ ▲ □ ▶ ▲

Some results in \mathbb{G}_m^n

Remark

Height bound or finiteness results for subvarieties of \mathbb{G}_m^n other than curves and hypersurfaces with optimal subgroup codim. are rather sparse.

Theorem (H. 2007)

Let $X \subset \mathbb{G}_m^5$ be an irreducible algebraic surface over $\overline{\mathbb{Q}}$, then

$$X^{\mathrm{oa}} \cap (\mathbb{G}^5_m)^{[1+\dim X]} = X^{\mathrm{oa}} \cap (\mathbb{G}^5_m)^{[3]}$$

is finite.

Image: A image: A