Height Bounds in Diophantine Geometry

Philipp Habegger
habegger@math.ethz.ch

GRK Summer School in Alpbach 2.-7. Sept. 2007

The Manin-Mumford Conjecture

Conjecture

Let C be a smooth projective algebraic curve defined over \mathbb{C} of genus at least 2 embedded into its Jacobian J, then $C \cap J_{\text {tors }}$ is finite.

Generalized by Lang to

Conjecture

Let S be a semi-abelian variety defined over \mathbb{C} and let $X \subset S$ be
an irreducible closed subvariety. If X is not an irreducible
component of an algebraic subgroup of S, then the intersection $X \cap S_{\text {tors }}$ is not Zariski dense in X

Now a theorem thanks to the work of Hindry, Laurent, Raynaud.

The Manin-Mumford Conjecture

Conjecture

Let C be a smooth projective algebraic curve defined over \mathbb{C} of genus at least 2 embedded into its Jacobian J, then $C \cap J_{\text {tors }}$ is finite.

Generalized by Lang to

Conjecture

Let S be a semi-abelian variety defined over \mathbb{C} and let $X \subset S$ be an irreducible closed subvariety. If X is not an irreducible component of an algebraic subgroup of S, then the intersection $X \cap S_{\text {tors }}$ is not Zariski dense in X.

Now a theorem thanks to the work of Hindry, Laurent, Raynaud

The Manin-Mumford Conjecture

Conjecture

Let C be a smooth projective algebraic curve defined over \mathbb{C} of genus at least 2 embedded into its Jacobian J, then $C \cap J_{\text {tors }}$ is finite.

Generalized by Lang to

Conjecture

Let S be a semi-abelian variety defined over \mathbb{C} and let $X \subset S$ be an irreducible closed subvariety. If X is not an irreducible component of an algebraic subgroup of S, then the intersection $X \cap S_{\text {tors }}$ is not Zariski dense in X.

Now a theorem thanks to the work of Hindry, Laurent, Raynaud.

A simple example

Example

- \mathbb{G}_{m} is the multiplicative group, i.e. $\mathbb{G}_{m}(\mathbb{C})=\mathbb{C}^{*}$.
- Consider the curve $C \subset \mathbb{G}_{m}^{2}$ defined by

- Then

$$
C \cap\left(\mathbb{G}_{m}^{2}\right)_{\text {tors }}=\left\{\left(\zeta, \zeta^{-1}\right),\left(\zeta^{-1}, \zeta\right)\right\}
$$

where ζ is a primitive 6 th root of unity.

A simple example

Example

- \mathbb{G}_{m} is the multiplicative group, i.e. $\mathbb{G}_{m}(\mathbb{C})=\mathbb{C}^{*}$.
- Consider the curve $C \subset \mathbb{G}_{m}^{2}$ defined by

$$
X+Y=1
$$

- Then

$$
C \cap\left(\mathbb{G}_{m}^{2}\right)_{\text {tors }}=\left\{\left(\zeta, \zeta^{-1}\right),\left(\zeta^{-1}, \zeta\right)\right\}
$$

where ζ is a primitive 6 th root of unity.

A simple example

Example

- \mathbb{G}_{m} is the multiplicative group, i.e. $\mathbb{G}_{m}(\mathbb{C})=\mathbb{C}^{*}$.
- Consider the curve $C \subset \mathbb{G}_{m}^{2}$ defined by

$$
X+Y=1
$$

- Then

$$
C \cap\left(\mathbb{G}_{m}^{2}\right)_{\mathrm{tors}}=\left\{\left(\zeta, \zeta^{-1}\right),\left(\zeta^{-1}, \zeta\right)\right\}
$$

where ζ is a primitive 6th root of unity.

A generalization

Definition

Let S be a semi-abelian variety defined over \mathbb{C}. We define

$$
\begin{aligned}
S^{[r]} & =\bigcup_{\substack{H \text { alg. subgrp. } \\
\text { codim } H \geq r}} H(\mathbb{C}) \\
& =\{x \in S(\mathbb{C}) ; x \text { contained in an algebraic subgroup } \\
& \text { of codimension } \geq r\} .
\end{aligned}
$$

Example

A generalization

Definition

Let S be a semi-abelian variety defined over \mathbb{C}. We define

$$
\begin{aligned}
S^{[r]} & =\bigcup_{\substack{H \text { alg. subgrp. } \\
\text { codim } H \geq r}} H(\mathbb{C}) \\
& =\{x \in S(\mathbb{C}) ; x \text { contained in an algebraic subgroup } \\
& \text { of codimension } \geq r\} .
\end{aligned}
$$

Example

$$
\text { - } S^{[\mathrm{dim} S]}=S_{\mathrm{tors}}
$$

A generalization

Definition

Let S be a semi-abelian variety defined over \mathbb{C}. We define

$$
\begin{aligned}
S^{[r]} & =\bigcup_{\substack{H \text { alg. subgrp. } \\
\text { codim } H \geq r}} H(\mathbb{C}) \\
& =\{x \in S(\mathbb{C}) ; x \text { contained in an algebraic subgroup } \\
& \text { of codimension } \geq r\} .
\end{aligned}
$$

Example

- $S^{[\operatorname{dim} S]}=S_{\text {tors }}$
- $S^{[0]}=S$

Algebraic subgroups of \mathbb{G}_{m}^{n}

Example

Let H be an algebraic subgroup of \mathbb{G}_{m}^{n} of codimension r. There exist linearly independent vectors

$$
u_{i}=\left(u_{i 1}, \ldots, u_{i n}\right) \in \mathbb{Z}^{n} \quad(1 \leq i \leq r)
$$

such that

$$
H=\left\{\left(x_{1}, \ldots, x_{n}\right) ; x_{1}^{u_{i 1}} \cdots x_{n}^{u_{i n}}=1 \text { for } 1 \leq i \leq r\right\} .
$$

Example

Algebraic subgroups of \mathbb{G}_{m}^{n}

Example

Let H be an algebraic subgroup of \mathbb{G}_{m}^{n} of codimension r ．There exist linearly independent vectors

$$
u_{i}=\left(u_{i 1}, \ldots, u_{i n}\right) \in \mathbb{Z}^{n} \quad(1 \leq i \leq r)
$$

such that

$$
H=\left\{\left(x_{1}, \ldots, x_{n}\right) ; x_{1}^{u_{i 1}} \cdots x_{n}^{u_{i n}}=1 \text { for } 1 \leq i \leq r\right\} .
$$

Example

$$
\begin{aligned}
\left(\mathbb{G}_{m}^{n}\right)^{[1]}=\{ & \left(x_{1}, \ldots, x_{n}\right) \in \mathbb{G}_{m}^{n} ; x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}=1 \\
& \left.\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n} \backslash\{0\}\right\} .
\end{aligned}
$$

Intersecting subvarieties with $S^{[r]}$

Question

Let X be a subvariety of a semi-abelian variety S, what can be said about $X \cap S^{[r]}$? We are specially interested in the critical values $r=\operatorname{dim} X$ and $r=1+\operatorname{dim} X$.

Remark

Manin-Mumford: $X \cap S^{[r]}$ is non-dense if $r=\operatorname{dim} S$ and if X is not an irreducible component of an algebraic subgroup of S

Example
 If C is a curve in \mathbb{G}_{m}^{n}, then $C \cap\left(\mathbb{G}_{m}^{n}\right)^{[1]}$ is always infinite

Intersecting subvarieties with $S^{[r]}$

Question

Let X be a subvariety of a semi-abelian variety S, what can be said about $X \cap S^{[r]}$? We are specially interested in the critical values $r=\operatorname{dim} X$ and $r=1+\operatorname{dim} X$.

Remark

Manin-Mumford: $X \cap S^{[r]}$ is non-dense if $r=\operatorname{dim} S$ and if X is not an irreducible component of an algebraic subgroup of S.

Intersecting subvarieties with $S^{[r]}$

Question

Let X be a subvariety of a semi-abelian variety S, what can be said about $X \cap S^{[r]}$? We are specially interested in the critical values $r=\operatorname{dim} X$ and $r=1+\operatorname{dim} X$.

Remark

Manin-Mumford: $X \cap S^{[r]}$ is non-dense if $r=\operatorname{dim} S$ and if X is not an irreducible component of an algebraic subgroup of S.

Example

If C is a curve in \mathbb{G}_{m}^{n}, then $C \cap\left(\mathbb{G}_{m}^{n}\right)^{[1]}$ is always infinite.

On heights I

Definition (of the height)

The (absolute logarithmic Weil) height $h(x)$ of an algebraic number x is defined as follows:

On heights I

Definition (of the height)

The (absolute logarithmic Weil) height $h(x)$ of an algebraic number x is defined as follows:
There exists a unique $P=a_{d} T^{d}+\cdots+a_{0} \in \mathbb{Z}[T]$, the minimal polynomial, with

- $P(x)=0$,
- P irreducible over $\mathbb{Z}, a_{d}>0$, and
- $P=a_{d}\left(T-\xi_{1}\right) \cdots\left(T-\xi_{d}\right)$ with $\xi_{i} \in \mathbb{C}$.

On heights I

Definition (of the height)

The (absolute logarithmic Weil) height $h(x)$ of an algebraic number x is defined as follows:
There exists a unique $P=a_{d} T^{d}+\cdots+a_{0} \in \mathbb{Z}[T]$, the minimal polynomial, with

- $P(x)=0$,
- P irreducible over $\mathbb{Z}, a_{d}>0$, and
- $P=a_{d}\left(T-\xi_{1}\right) \cdots\left(T-\xi_{d}\right)$ with $\xi_{i} \in \mathbb{C}$.

$$
h(x):=\frac{1}{d} \log \left(a_{d} \prod_{\left|\xi_{i}\right|>1}\left|\xi_{i}\right|\right)=\frac{1}{d} \log (\text { Mahler measure of } P) \geq 0 .
$$

On heights II

Definition (of the height cont.)

If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$ we define

$$
h(x)=h\left(x_{1}\right)+\cdots+h\left(x_{n}\right) .
$$

A property

We have $h\left(x^{k}\right)=|k| h(x)$ for $k \in \mathbb{Z}$.

Remark

Other, non equivalent, definitions are in use. Later, we will see a height defined on $\mathbb{P}^{n}(\overline{\mathbb{Q}})$

On heights II

Definition (of the height cont.)

If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$ we define

$$
h(x)=h\left(x_{1}\right)+\cdots+h\left(x_{n}\right) .
$$

A property
We have $h\left(x^{k}\right)=|k| h(x)$ for $k \in \mathbb{Z}$.

Remark

Other, non equivalent, definitions are in use. Later, we will see a height defined on $\mathbb{P}^{n}(\overline{\mathbb{Q}})$.

Two basic facts I

Theorem (Northcott)

Let $C, D \in \mathbb{R}$, then

$$
\left\{x \in \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}}) ; h(x) \leq C \quad \text { and } \quad[\mathbb{Q}(x): \mathbb{Q}] \leq D\right\}
$$

is finite.

Proof idea

The constants C and D bound the absolute values of the coefficients and degrees of the minimal polynomials of x_{1}, \ldots, x_{n}

Two basic facts I

Theorem (Northcott)

Let $C, D \in \mathbb{R}$, then

$$
\left\{x \in \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}}) ; h(x) \leq C \quad \text { and } \quad[\mathbb{Q}(x): \mathbb{Q}] \leq D\right\}
$$

is finite.

Proof idea

The constants C and D bound the absolute values of the coefficients and degrees of the minimal polynomials of x_{1}, \ldots, x_{n}.

Two basic facts II

Theorem (Kronecker)

If $x \in \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$, then

$$
h(x)=0 \quad \text { if and only if } x \in\left(\mathbb{G}_{m}^{n}\right)_{\text {tors }}
$$

Proof idea of " \Rightarrow "
If $h(x)=0$ then $h\left(x^{k}\right)=|k| h(x)=0$ for all $k \in \mathbb{Z}$. The set $\left\{x^{k}\right\}$
has bounded height and degree.
Northcott: $\left\{x^{k}\right\}$ is finite. There exists $k>k^{\prime}$ with

Two basic facts II

Theorem (Kronecker)

If $x \in \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$, then

$$
h(x)=0 \quad \text { if and only if } x \in\left(\mathbb{G}_{m}^{n}\right)_{\text {tors }}
$$

Proof idea of " \Rightarrow "

If $h(x)=0$ then $h\left(x^{k}\right)=|k| h(x)=0$ for all $k \in \mathbb{Z}$. The set $\left\{x^{k}\right\}$
has bounded height and degree.
Northcott: $\left\{x^{k}\right\}$ is finite. There exists $k>k^{\prime}$ with

$$
x^{k}=x^{k^{\prime}} \quad \text { so } \quad x^{k-k^{\prime}}=1
$$

Theorem of Bombieri, Masser, and Zannier

Theorem (Bombieri, Masser, Zannier 1999)
Let $C \subset \mathbb{G}_{m}^{n}$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in the translate of a proper algebraic subgroup (= proper coset) of \mathbb{G}_{m}^{n}. Then

Theorem of Bombieri, Masser, and Zannier

Theorem (Bombieri, Masser, Zannier 1999)
Let $C \subset \mathbb{G}_{m}^{n}$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in the translate of a proper algebraic subgroup ($=$ proper coset) of \mathbb{G}_{m}^{n}. Then

- $C \cap\left(\mathbb{G}_{m}^{n}\right)^{[1]}$ has bounded height,

Theorem of Bombieri, Masser, and Zannier

Theorem (Bombieri, Masser, Zannier 1999)
Let $C \subset \mathbb{G}_{m}^{n}$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in the translate of a proper algebraic subgroup ($=$ proper coset) of \mathbb{G}_{m}^{n}. Then

- $C \cap\left(\mathbb{G}_{m}^{n}\right)^{[1]}$ has bounded height,
- $C \cap\left(\mathbb{G}_{m}^{n}\right)^{[2]}$ is finite.

A consequence using Northcott's Theorem

Example

If C is a curve as in the Theorem of Bombieri, Masser, and Zannier and K is a number field, then

$$
C(K) \cap\left(\mathbb{G}_{m}^{n}\right)^{[1]}
$$

is finite.

Strategy of proof

The finiteness statement in BMZ's Theorem rests on:

Proposition

Assume $C \subset \mathbb{G}_{m}^{n}$ is a curve which is not contained in a proper algebraic subgroup. If $B \in \mathbb{R}$, then

Remark

The proof of this result uses
"relative Lehmer-type height lower bounds.
We will concentrate on height upper bounds.

Strategy of proof

The finiteness statement in BMZ's Theorem rests on:

Proposition

Assume $C \subset \mathbb{G}_{m}^{n}$ is a curve which is not contained in a proper algebraic subgroup. If $B \in \mathbb{R}$, then

$$
\left\{x \in C \cap\left(\mathbb{G}_{m}^{n}\right)^{[2]} ; h(x) \leq B\right\} \quad \text { is finite. }
$$

Remark

The proof of this result uses
"relative Lehmer-type height lower bounds.
We will concentrate on height upper bounds.

Strategy of proof

The finiteness statement in BMZ's Theorem rests on:

Proposition

Assume $C \subset \mathbb{G}_{m}^{n}$ is a curve which is not contained in a proper algebraic subgroup. If $B \in \mathbb{R}$, then

$$
\left\{x \in C \cap\left(\mathbb{G}_{m}^{n}\right)^{[2]} ; h(x) \leq B\right\} \quad \text { is finite. }
$$

Remark

The proof of this result uses
"relative Lehmer-type height lower bounds."
We will concentrate on height upper bounds.

Another simple example

Example

Let us consider again the curve C defined by $X+Y=1$ in \mathbb{G}_{m}^{2}.

- We already know $\# C \cap\left(\mathbb{G}_{m}^{2}\right)^{[2]}=2$.
- In 2000, Cohen and Zannier proved that if $(x, y) \in C \cap\left(\mathbb{G}_{m}^{2}\right)^{[1]}$, in other words if

$$
x \neq 0,1 \quad \text { and } \quad x^{a}(1-x)^{b}=1 \quad(a, b) \in \mathbb{Z}^{2} \backslash\{0\}
$$

then

$$
h(x) \leq \log 2 \quad \text { and } \quad h(y) \leq \log 2
$$

Another simple example

Example

Let us consider again the curve C defined by $X+Y=1$ in \mathbb{G}_{m}^{2}.

- We already know $\# C \cap\left(\mathbb{G}_{m}^{2}\right)^{[2]}=2$.
- In 2000, Cohen and Zannier proved that if
$(x, y) \in C \cap\left(\mathbb{G}_{m}^{2}\right)^{[1]}$, in other words if

$$
\left.x \neq 0,1 \quad \text { and } \quad x^{a(1}-x\right)^{b}=1 \quad(a, b) \in \mathbb{Z}^{2} \backslash\{0\}
$$

then

$$
h(x) \leq \log 2 \quad \text { and } \quad h(y) \leq \log 2
$$

Another simple example

Example

Let us consider again the curve C defined by $X+Y=1$ in \mathbb{G}_{m}^{2}.

- We already know $\# C \cap\left(\mathbb{G}_{m}^{2}\right)^{[2]}=2$.
- In 2000, Cohen and Zannier proved that if $(x, y) \in C \cap\left(\mathbb{G}_{m}^{2}\right)^{[1]}$, in other words if

$$
x \neq 0,1 \quad \text { and } \quad x^{a}(1-x)^{b}=1 \quad(a, b) \in \mathbb{Z}^{2} \backslash\{0\}
$$

then

$$
h(x) \leq \log 2 \quad \text { and } \quad h(y) \leq \log 2
$$

Finiteness under the weak hypothesis

Theorem (Maurin 2007)

Let $C \subset \mathbb{G}_{m}^{n}$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in a proper algebraic subgroup of \mathbb{G}_{m}^{n}, then

$$
C \cap\left(\mathbb{G}_{m}^{n}\right)^{[2]} \quad \text { is finite. }
$$

Remark
Under this weaker hypothesis, the statement

is wrong

Finiteness under the weak hypothesis

Theorem (Maurin 2007)

Let $C \subset \mathbb{G}_{m}^{n}$ be an algebraic curve defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in a proper algebraic subgroup of \mathbb{G}_{m}^{n}, then

$$
C \cap\left(\mathbb{G}_{m}^{n}\right)^{[2]} \quad \text { is finite. }
$$

Remark

Under this weaker hypothesis, the statement

$$
\text { " } \mathrm{C} \cap\left(\mathbb{G}_{m}^{n}\right)^{[1]} \text { has bounded height" }
$$

is wrong.

Maurin implies Mordell-Lang for curves in \mathbb{G}_{m}^{n}

Example

Let $C \subset \mathbb{G}_{m}^{n}$ be a curve not contained in a proper coset, $n \geq 2$, and let $\gamma_{1}, \ldots, \gamma_{s} \in \overline{\mathbb{Q}}^{*}$ be multiplicatively independent. Then

$$
C \times\left\{\left(\gamma_{1}, \ldots, \gamma_{s}\right)\right\} \subset \mathbb{G}_{m}^{n+s}
$$

is a curve but not in proper algebraic subgroup.

Maurin implies Mordell-Lang for curves in \mathbb{G}_{m}^{n}

Example

Let $C \subset \mathbb{G}_{m}^{n}$ be a curve not contained in a proper coset, $n \geq 2$, and let $\gamma_{1}, \ldots, \gamma_{s} \in \overline{\mathbb{Q}}^{*}$ be multiplicatively independent. Then

$$
C \times\left\{\left(\gamma_{1}, \ldots, \gamma_{s}\right)\right\} \subset \mathbb{G}_{m}^{n+s}
$$

is a curve but not in proper algebraic subgroup.
If $x \in C(\overline{\mathbb{Q}})$ and $k \in \mathbb{N}$ such that the coordinates of x^{k} are in $<\gamma_{1}, \ldots, \gamma_{s}>$, then

$$
\left(x, \gamma_{1}, \ldots, \gamma_{s}\right) \in C(\overline{\mathbb{Q}}) \times\left\{\left(\gamma_{1}, \ldots, \gamma_{s}\right)\right\} \cap\left(\mathbb{G}_{m}^{n}\right)^{[2]}
$$

Therefore, $C \cap \Gamma$ is finite for a subgroup $\Gamma \subset \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$ of finite rank.

A result in arbitrary dimension I

Theorem (Bombieri, Zannier 2000)

Let $X \subset \mathbb{G}_{m}^{n}$ be irreducible and defined over $\overline{\mathbb{Q}}$ of any dimension. Set

$$
X^{o}=X \backslash \bigcup_{\substack{H \subset X \text { coset } \\ \operatorname{dim} H \geq 1}} H,
$$

then

$$
X^{\mathrm{o}} \cap\left(\mathbb{G}_{m}^{n}\right)^{[n-1]}
$$

has bounded height.

Remark (on curves)
The subgroup codim. size $n-1$ is not optimal for curves if $n \geq 3$.

A result in arbitrary dimension I

Theorem (Bombieri, Zannier 2000)

Let $X \subset \mathbb{G}_{m}^{n}$ be irreducible and defined over $\overline{\mathbb{Q}}$ of any dimension. Set

$$
X^{o}=X \backslash \bigcup_{\substack{H \subset X \text { coset } \\ \operatorname{dim} H \geq 1}} H,
$$

then

$$
X^{\mathrm{o}} \cap\left(\mathbb{G}_{m}^{n}\right)^{[n-1]}
$$

has bounded height.

Remark (on curves)

The subgroup codim. size $n-1$ is not optimal for curves if $n \geq 3$.

A result in arbitrary dimension II

Remark (on hypersurfaces)

If X is a hypersurface, i.e. $\operatorname{dim} X=n-1$, then the subgroup codim. size $n-1$ is optimal.

Conclusion
Combining BMZ and BZ's Theorem: we have boundedness of height results with optimal subgroup codim. for curves and hypersurfaces.

A result in arbitrary dimension II

Remark (on hypersurfaces)

If X is a hypersurface, i.e. $\operatorname{dim} X=n-1$, then the subgroup codim. size $n-1$ is optimal.

Conclusion

Combining BMZ and BZ's Theorem: we have boundedness of height results with optimal subgroup codim. for curves and hypersurfaces.

Abelian varieties

What is known for subvarieties of abelian varieties?

Theorem (Viada 2003)

Let E be an elliptic curve and $C \subset E^{g}$ an irreducible curve both over $\overline{\mathbb{Q}}$. Assume C is not contained in a proper coset. Then

Theorem (Rémond 2005)

Boundedness of height for curves in any abelian variety.

Abelian varieties

What is known for subvarieties of abelian varieties?

Theorem (Viada 2003)

Let E be an elliptic curve and $C \subset E^{g}$ an irreducible curve both over $\overline{\mathbb{Q}}$. Assume C is not contained in a proper coset. Then

- any Néron-Tate height is bounded on $C \cap\left(E^{g}\right)^{[1]}$,
- if E has complex multiplication, then $C \cap\left(E^{g}\right)^{[2]}$ is finite.

Theorem (Rémond 2005)

Boundedness of height for curves in any abelian variety.

Abelian varieties

What is known for subvarieties of abelian varieties?

Theorem (Viada 2003)

Let E be an elliptic curve and $C \subset E^{g}$ an irreducible curve both over $\overline{\mathbb{Q}}$. Assume C is not contained in a proper coset. Then

- any Néron-Tate height is bounded on $C \cap\left(E^{g}\right)^{[1]}$,
- if E has complex multiplication, then $C \cap\left(E^{g}\right)^{[2]}$ is finite.

Theorem (Rémond 2005)
Boundedness of height for curves in any abelian variety.

Abelian varieties

What is known for subvarieties of abelian varieties?

Theorem (Viada 2003)

Let E be an elliptic curve and $C \subset E^{g}$ an irreducible curve both over $\overline{\mathbb{Q}}$. Assume C is not contained in a proper coset. Then

- any Néron-Tate height is bounded on $C \cap\left(E^{g}\right)^{[1]}$,
- if E has complex multiplication, then $C \cap\left(E^{g}\right)^{[2]}$ is finite.

Theorem (Rémond 2005)

Boundedness of height for curves in any abelian variety.

Why the complex multiplication hypothesis?

Remark

Finiteness for $C \cap\left(E^{g}\right)^{[2]}$ is deduced as in Bombieri, Masser, and Zannier's Theorem:
One needs a "relative Lehmer-type height lower bound" which is presently only available for elliptic curves with CM.

The obstruction
To deduce height lower bounds one needs a sufficient number of super-singular primes. Current estimates for non-CM curves are too weak

Why the complex multiplication hypothesis?

Remark

Finiteness for $C \cap\left(E^{g}\right)^{[2]}$ is deduced as in Bombieri, Masser, and Zannier's Theorem:
One needs a "relative Lehmer-type height lower bound" which is presently only available for elliptic curves with CM.

The obstruction

To deduce height lower bounds one needs a sufficient number of super-singular primes. Current estimates for non-CM curves are too weak.

Algebraic subgroups of E^{g}

Remark
If E is an elliptic curve over a field of characteristic 0 , then $\operatorname{End}(E)$ is an order in a number field of degree 1 or 2 over \mathbb{Q}.

Example
Let H be an algebraic subgroup of E^{g} of codim. r. There exist End (E)-linearly independent vectors

$$
u_{i}=\left(u_{i 1}, \ldots, u_{i g}\right) \in \operatorname{End}(E)^{g} \quad(1 \leq i \leq r)
$$

such that H has finite index in

Algebraic subgroups of E^{g}

Remark

If E is an elliptic curve over a field of characteristic 0 , then $\operatorname{End}(E)$ is an order in a number field of degree 1 or 2 over \mathbb{Q}.

Example

Let H be an algebraic subgroup of E^{g} of codim. r. There exist $\operatorname{End}(E)$-linearly independent vectors

$$
u_{i}=\left(u_{i 1}, \ldots, u_{i g}\right) \in \operatorname{End}(E)^{g} \quad(1 \leq i \leq r)
$$

such that H has finite index in

$$
\left\{\left(x_{1}, \ldots, x_{g}\right) ; u_{i 1} x_{1}+\cdots+u_{i g} x_{g}=0 \text { for } 1 \leq i \leq r\right\} .
$$

Finiteness under the weak hypothesis

Maurin's finiteness result was known earlier for powers of elliptic curves with complex multiplication:

Theorem (Rémond, Viada 2003)
Let E be an elliptic curve and $C \subset E^{g}$ an irreducible curve both defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in a proper algebraic subgroup. If E has complex multiplication then

Finiteness under the weak hypothesis

Maurin's finiteness result was known earlier for powers of elliptic curves with complex multiplication:

Theorem (Rémond, Viada 2003)

Let E be an elliptic curve and $C \subset E^{g}$ an irreducible curve both defined over $\overline{\mathbb{Q}}$. Assume that C is not contained in a proper algebraic subgroup. If E has complex multiplication then
$C \cap\left(E^{g}\right)^{[2]} \quad$ is finite.

A finiteness conjecture in higher dimension

Conjecture (Zilber)

Let S be semi-abelian and X an irreducible closed subvariety of S both over \mathbb{C}. There exists a finite set \mathcal{H} of proper algebraic subgroups of S such that

$$
X \cap S^{[1+\operatorname{dim} X]} \subset \bigcup_{H \in \mathcal{H}} X \cap H
$$

Remark

If $X \not \subset$ proper algebraic subgroup of S then Zilber would imply

Similar conjectures were stated by Pink and by Bombieri, Masser, Zannier for $S=\mathbb{G}_{n 7}^{n}$

A finiteness conjecture in higher dimension

Conjecture (Zilber)

Let S be semi-abelian and X an irreducible closed subvariety of S both over \mathbb{C}. There exists a finite set \mathcal{H} of proper algebraic subgroups of S such that

$$
X \cap S^{[1+\operatorname{dim} X]} \subset \bigcup_{H \in \mathcal{H}} X \cap H
$$

Remark

If $X \not \subset$ proper algebraic subgroup of S then Zilber would imply

$$
X \cap S^{[1+\operatorname{dim} X]} \text { is not Zariski dense in } X \text {. }
$$

Similar conjectures were stated by Pink and by Bombieri, Masser, Zannier for $S=\mathbb{G}_{m}^{n}$.

A height bound conjecture in higher dimension

Conjecture

Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. Any Néron-Tate height is bounded on

$$
X^{\mathrm{oa}} \cap A^{[\operatorname{dim} X]} .
$$

Remark
 $X^{0 a}$ is a natural subset of X which tries to eliminate trivial counterexamples.

Remark
This coniecture can be generalized to semi-abelian varieties.

A height bound conjecture in higher dimension

Conjecture

Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. Any Néron-Tate height is bounded on

$$
X^{\mathrm{oa}} \cap A^{[\operatorname{dim} X]}
$$

Remark

$X^{\text {oa }}$ is a natural subset of X which tries to eliminate trivial counterexamples.

Remark
This conjecture can be generalized to semi-abelian varieties.

A height bound conjecture in higher dimension

Conjecture

Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. Any Néron-Tate height is bounded on

$$
X^{\mathrm{oa}} \cap A^{[\operatorname{dim} X]}
$$

Remark

$X^{\text {oa }}$ is a natural subset of X which tries to eliminate trivial counterexamples.

Remark

This conjecture can be generalized to semi-abelian varieties.

Anomalous subvarieties I

Remark

Let X, H be subvarieties of A (or \mathbb{G}_{m}^{n} or even S). Let
$Y \subset X \cap H$ be an irreducible component.
If X and H are in general position one expects

$$
\operatorname{dim} Y=\max \{0, \operatorname{dim} X+\operatorname{dim} H-\operatorname{dim} A\}
$$

Definition (Anomalous subvarieties)
An irreducible closed subvariety $Y \subset X$ is called anomalous if there exists a coset H such that $Y \subset H$ and
$\operatorname{dim} Y>\max \{0, \operatorname{dim} X+\operatorname{dim} H-\operatorname{dim} A\}$

Anomalous subvarieties I

Remark

Let X, H be subvarieties of A (or \mathbb{G}_{m}^{n} or even S). Let
$Y \subset X \cap H$ be an irreducible component.
If X and H are in general position one expects

$$
\operatorname{dim} Y=\max \{0, \operatorname{dim} X+\operatorname{dim} H-\operatorname{dim} A\}
$$

Definition (Anomalous subvarieties)

An irreducible closed subvariety $Y \subset X$ is called anomalous if there exists a coset H such that $Y \subset H$ and

$$
\operatorname{dim} Y>\max \{0, \operatorname{dim} X+\operatorname{dim} H-\operatorname{dim} A\}
$$

Anomalous subvarieties II

Definition (Anomalous subvarieties (repeat))

An irreducible closed subvariety $Y \subset X$ is called anomalous if there exists a coset H such that $Y \subset H$ and

$$
\operatorname{dim} Y>\max \{0, \operatorname{dim} X+\operatorname{dim} H-\operatorname{dim} A\}
$$

Example (Curve case)
Any anomalous subvariety of an irreducible curve $C \subset A$ must equal C. The coset H must satisfy $\operatorname{dim} H<\operatorname{dim} A$. Hence,
Y anomalous subvariety of $C \Leftrightarrow Y=C \subset$ proper coset.

Anomalous subvarieties II

Definition (Anomalous subvarieties (repeat))

An irreducible closed subvariety $Y \subset X$ is called anomalous if there exists a coset H such that $Y \subset H$ and

$$
\operatorname{dim} Y>\max \{0, \operatorname{dim} X+\operatorname{dim} H-\operatorname{dim} A\}
$$

Example (Curve case)

Any anomalous subvariety of an irreducible curve $C \subset A$ must equal C. The coset H must satisfy $\operatorname{dim} H<\operatorname{dim} A$. Hence,
Y anomalous subvariety of $C \Leftrightarrow Y=C \subset$ proper coset.

Anomalous subvarieties III

Definition

We define

$$
X^{\mathrm{oa}}=X \backslash \bigcup_{\substack{Y \subset X \\ \text { anomalous }}} Y
$$

Example (Curve case)

Let $C \subset A$ be an irreducible curve, then

In particular, $C^{o a}$ is Zariski open in C.

Anomalous subvarieties III

Definition

We define

$$
X^{\mathrm{oa}}=X \backslash \bigcup_{\substack{Y \subset X \\ \text { anomalous }}} Y
$$

Example (Curve case)

Let $C \subset A$ be an irreducible curve, then

$$
C^{\mathrm{oa}}= \begin{cases}\emptyset & \text { if } C \text { is contained in a proper coset }, \\ C & \text { else wise } .\end{cases}
$$

In particular, $C^{\text {oa }}$ is Zariski open in C.

Anomalous subvarieties IV

Theorem (Bombieri, Masser, and Zannier 2006)
 Let $X \subset \mathbb{G}_{m}^{n}$ be an irreducible closed subvariety over \mathbb{C}, then
 $$
X^{\text {oa }} \text { is Zariski open in } X \text {. }
$$

Theorem (Rémond, H. indep.)
 The same holds for \mathbb{G}_{m}^{n} replaced by an abelian variety.

Remark

Moreover, if E is an elliptic curve and $X \subset E^{g}$ then
$X^{\mathrm{oa}} \neq \emptyset \quad$ if and only if

Anomalous subvarieties IV

Theorem (Bombieri, Masser, and Zannier 2006)

Let $X \subset \mathbb{G}_{m}^{n}$ be an irreducible closed subvariety over \mathbb{C}, then

$$
X^{\text {oa }} \text { is Zariski open in } X \text {. }
$$

Theorem (Rémond, H. indep.)
The same holds for \mathbb{G}_{m}^{n} replaced by an abelian variety.

```
Remark
Moreover, if E is an elliptic curve and X \subsetEg}\mathrm{ then
X oa }\not=\emptyset\quad\mathrm{ if and only if
E}\mp@subsup{E}{}{g}->\mp@subsup{E}{}{\operatorname{dim}X}\mathrm{ surjective }=>\operatorname{dim}\varphi(X)=\operatorname{dim}
```


Anomalous subvarieties IV

Theorem (Bombieri, Masser, and Zannier 2006)

Let $X \subset \mathbb{G}_{m}^{n}$ be an irreducible closed subvariety over \mathbb{C}, then

$$
X^{\text {oa }} \text { is Zariski open in } X \text {. }
$$

Theorem (Rémond, H. indep.)

The same holds for \mathbb{G}_{m}^{n} replaced by an abelian variety.

Remark

Moreover, if E is an elliptic curve and $X \subset E^{g}$ then

$$
\begin{gathered}
X^{\mathrm{oa}} \neq \emptyset \quad \text { if and only if } \\
\varphi: E^{g} \rightarrow E^{\operatorname{dim} X} \text { surjective } \Rightarrow \operatorname{dim} \varphi(X)=\operatorname{dim} X .
\end{gathered}
$$

Some results for abelian varieties I

Height bound and finiteness results are currently more available in the abelian case as opposed to the multiplicative case:

Theorem (Rémond 2007)
Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. If $\Gamma \subset A(\overline{\mathbb{Q}})$ is a subgroup of finite rank then any Néron-Tate height is bounded on

If $A=E^{g}$ with E a CM elliptic curve then (1) is finite.

Some results for abelian varieties I

Height bound and finiteness results are currently more available in the abelian case as opposed to the multiplicative case:

Theorem (Rémond 2007)

Let A be an abelian variety and $X \subset A$ an irreducible closed subvariety both over $\overline{\mathbb{Q}}$. If $\Gamma \subset A(\overline{\mathbb{Q}})$ is a subgroup of finite rank then any Néron-Tate height is bounded on

$$
\begin{equation*}
X^{\mathrm{oa}} \cap\left(\Gamma+A^{[1+\operatorname{dim} X]}\right) \tag{1}
\end{equation*}
$$

If $A=E^{g}$ with E a CM elliptic curve then (1) is finite.

Some results for abelian varieties II

By assuming $\Gamma=0$ we can increase the subgroup size and still get a height bound.

Theorem (H. 2007)

If $X \subset E^{g}$ with E an elliptic curve, then any Néron-Tate height is bounded on

$$
X^{\mathrm{oa}} \cap\left(E^{g}\right)^{[\operatorname{dim} X]}
$$

Remark
We will sketch a proof of this theorem.

Some results for abelian varieties II

By assuming $\Gamma=0$ we can increase the subgroup size and still get a height bound.

Theorem (H. 2007)

If $X \subset E^{g}$ with E an elliptic curve, then any Néron-Tate height is bounded on

$$
X^{\mathrm{oa}} \cap\left(E^{g}\right)^{[\operatorname{dim} X]}
$$

Remark

We will sketch a proof of this theorem.

Some results in \mathbb{G}_{m}^{n}

Remark

Height bound or finiteness results for subvarieties of \mathbb{G}_{m}^{n} other than curves and hypersurfaces with optimal subgroup codim. are rather sparse.

Theorem (H. 2007)
Let $X \subset \mathbb{G}_{m}^{5}$ be an irreducible algebraic surface over $\overline{\mathbb{Q}}$, then

is finite.

Some results in \mathbb{G}_{m}^{n}

Remark

Height bound or finiteness results for subvarieties of \mathbb{G}_{m}^{n} other than curves and hypersurfaces with optimal subgroup codim. are rather sparse.

Theorem (H. 2007)

Let $X \subset \mathbb{G}_{m}^{5}$ be an irreducible algebraic surface over $\overline{\mathbb{Q}}$, then

$$
X^{\mathrm{oa}} \cap\left(\mathbb{G}_{m}^{5}\right)^{[1+\operatorname{dim} X]}=X^{\mathrm{oa}} \cap\left(\mathbb{G}_{m}^{5}\right)^{[3]}
$$

is finite.

