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The Manin-Mumford Conjecture

Conjecture

Let C be a smooth projective algebraic curve defined over C of
genus at least 2 embedded into its Jacobian J, then C ∩ Jtors is
finite.

Generalized by Lang to

Conjecture

Let S be a semi-abelian variety defined over C and let X ⊂ S be
an irreducible closed subvariety. If X is not an irreducible
component of an algebraic subgroup of S, then the intersection
X ∩ Stors is not Zariski dense in X .

Now a theorem thanks to the work of Hindry, Laurent, Raynaud.
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A simple example

Example

Gm is the multiplicative group, i.e. Gm(C) = C∗.

Consider the curve C ⊂ G2
m defined by

X + Y = 1.

Then
C ∩ (G2

m)tors = {(ζ, ζ−1), (ζ−1, ζ)}

where ζ is a primitive 6th root of unity.
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A generalization

Definition

Let S be a semi-abelian variety defined over C. We define

S [r ] =
⋃

H alg. subgrp.
codim H≥r

H(C)

= {x ∈ S(C); x contained in an algebraic subgroup

of codimension ≥ r}.

Example

S [dim S] = Stors

S [0] = S
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Algebraic subgroups of Gn
m

Example

Let H be an algebraic subgroup of Gn
m of codimension r . There

exist linearly independent vectors

ui = (ui1, . . . , uin) ∈ Zn (1 ≤ i ≤ r)

such that

H = {(x1, . . . , xn); xui1
1 · · · xuin

n = 1 for 1 ≤ i ≤ r}.

Example

(Gn
m)[1] = {(x1, . . . , xn) ∈ Gn

m; xa1
1 · · · xan

n = 1,

(a1, . . . , an) ∈ Zn\{0}}.
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Intersecting subvarieties with S [r ]

Question

Let X be a subvariety of a semi-abelian variety S, what can be said
about X ∩ S [r ]? We are specially interested in the critical values
r = dim X and r = 1 + dim X.

Remark

Manin-Mumford: X ∩ S [r ] is non-dense if r = dim S and if X is
not an irreducible component of an algebraic subgroup of S.

Example

If C is a curve in Gn
m, then C ∩ (Gn

m)[1] is always infinite.
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On heights I

Definition (of the height)

The (absolute logarithmic Weil) height h(x) of an algebraic
number x is defined as follows:
There exists a unique P = adT d + · · ·+ a0 ∈ Z[T ], the minimal
polynomial, with

P(x) = 0,

P irreducible over Z, ad > 0, and

P = ad(T − ξ1) · · · (T − ξd) with ξi ∈ C.

h(x) :=
1

d
log

ad

∏
|ξi |>1

|ξi |

 =
1

d
log(Mahler measure of P)≥ 0.
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On heights II

Definition (of the height cont.)

If x = (x1, . . . , xn) ∈ Gn
m(Q) we define

h(x) = h(x1) + · · ·+ h(xn).

A property

We have h(xk) = |k|h(x) for k ∈ Z.

Remark

Other, non equivalent, definitions are in use. Later, we will see a
height defined on Pn(Q).
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Two basic facts I

Theorem (Northcott)

Let C ,D ∈ R, then

{x ∈ Gn
m(Q); h(x) ≤ C and [Q(x) : Q] ≤ D}

is finite.

Proof idea

The constants C and D bound the absolute values of the
coefficients and degrees of the minimal polynomials of x1, . . . , xn.
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Two basic facts II

Theorem (Kronecker)

If x ∈ Gn
m(Q), then

h(x) = 0 if and only if x ∈ (Gn
m)tors.

Proof idea of “⇒”

If h(x) = 0 then h(xk) = |k|h(x) = 0 for all k ∈ Z. The set {xk}
has bounded height and degree.
Northcott: {xk} is finite. There exists k > k ′ with

xk = xk ′ so xk−k ′ = 1.
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Theorem of Bombieri, Masser, and Zannier

Theorem (Bombieri, Masser, Zannier 1999)

Let C ⊂ Gn
m be an algebraic curve defined over Q. Assume that C

is not contained in the translate of a proper algebraic subgroup
(= proper coset) of Gn

m. Then

C ∩ (Gn
m)[1] has bounded height,

C ∩ (Gn
m)[2] is finite.
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A consequence using Northcott’s Theorem

Example

If C is a curve as in the Theorem of Bombieri, Masser, and Zannier
and K is a number field, then

C (K ) ∩ (Gn
m)[1]

is finite.
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Strategy of proof

The finiteness statement in BMZ’s Theorem rests on:

Proposition

Assume C ⊂ Gn
m is a curve which is not contained in a proper

algebraic subgroup. If B ∈ R, then

{x ∈ C ∩ (Gn
m)[2]; h(x) ≤ B} is finite.

Remark

The proof of this result uses

“relative Lehmer-type height lower bounds.”

We will concentrate on height upper bounds.
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Another simple example

Example

Let us consider again the curve C defined by X + Y = 1 in G2
m.

We already know #C ∩ (G2
m)[2] = 2.

In 2000, Cohen and Zannier proved that if
(x , y) ∈ C ∩ (G2

m)[1], in other words if

x 6= 0, 1 and xa(1− x)b = 1 (a, b) ∈ Z2\{0}

then
h(x) ≤ log 2 and h(y) ≤ log 2.
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Finiteness under the weak hypothesis

Theorem (Maurin 2007)

Let C ⊂ Gn
m be an algebraic curve defined over Q. Assume that C

is not contained in a proper algebraic subgroup of Gn
m, then

C ∩ (Gn
m)[2] is finite.

Remark

Under this weaker hypothesis, the statement

“C ∩ (Gn
m)[1] has bounded height”

is wrong.
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Maurin implies Mordell-Lang for curves in Gn
m

Example

Let C ⊂ Gn
m be a curve not contained in a proper coset, n ≥ 2,

and let γ1, . . . , γs ∈ Q∗
be multiplicatively independent. Then

C × {(γ1, . . . , γs)} ⊂ Gn+s
m

is a curve but not in proper algebraic subgroup.
If x ∈ C (Q) and k ∈ N such that the coordinates of xk are in
< γ1, . . . , γs >, then

(x , γ1, . . . , γs) ∈ C (Q)× {(γ1, . . . , γs)} ∩ (Gn
m)[2].

Therefore, C ∩ Γ is finite for a subgroup Γ ⊂ Gn
m(Q) of finite rank.

P. Habegger Height Bounds in Diophantine Geometry



Curves and hypersurfaces
Higher dimension varieties

Maurin implies Mordell-Lang for curves in Gn
m

Example

Let C ⊂ Gn
m be a curve not contained in a proper coset, n ≥ 2,

and let γ1, . . . , γs ∈ Q∗
be multiplicatively independent. Then

C × {(γ1, . . . , γs)} ⊂ Gn+s
m

is a curve but not in proper algebraic subgroup.
If x ∈ C (Q) and k ∈ N such that the coordinates of xk are in
< γ1, . . . , γs >, then

(x , γ1, . . . , γs) ∈ C (Q)× {(γ1, . . . , γs)} ∩ (Gn
m)[2].

Therefore, C ∩ Γ is finite for a subgroup Γ ⊂ Gn
m(Q) of finite rank.

P. Habegger Height Bounds in Diophantine Geometry



Curves and hypersurfaces
Higher dimension varieties

A result in arbitrary dimension I

Theorem (Bombieri, Zannier 2000)

Let X ⊂ Gn
m be irreducible and defined over Q of any dimension.

Set
X o = X\

⋃
H⊂X coset
dim H≥1

H,

then
X o ∩ (Gn

m)[n−1]

has bounded height.

Remark (on curves)

The subgroup codim. size n − 1 is not optimal for curves if n ≥ 3.
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A result in arbitrary dimension II

Remark (on hypersurfaces)

If X is a hypersurface, i.e. dim X = n − 1, then the subgroup
codim. size n − 1 is optimal.

Conclusion

Combining BMZ and BZ’s Theorem: we have boundedness of
height results with optimal subgroup codim. for curves and
hypersurfaces.
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A result in arbitrary dimension II

Remark (on hypersurfaces)

If X is a hypersurface, i.e. dim X = n − 1, then the subgroup
codim. size n − 1 is optimal.

Conclusion

Combining BMZ and BZ’s Theorem: we have boundedness of
height results with optimal subgroup codim. for curves and
hypersurfaces.
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Abelian varieties

What is known for subvarieties of abelian varieties?

Theorem (Viada 2003)

Let E be an elliptic curve and C ⊂ E g an irreducible curve both
over Q. Assume C is not contained in a proper coset. Then

any Néron-Tate height is bounded on C ∩ (E g )[1],

if E has complex multiplication, then C ∩ (E g )[2] is finite.

Theorem (Rémond 2005)

Boundedness of height for curves in any abelian variety.
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Why the complex multiplication hypothesis?

Remark

Finiteness for C ∩ (E g )[2] is deduced as in Bombieri, Masser, and
Zannier’s Theorem:
One needs a “relative Lehmer-type height lower bound” which is
presently only available for elliptic curves with CM.

The obstruction

To deduce height lower bounds one needs a sufficient number of
super-singular primes. Current estimates for non-CM curves are
too weak.
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Algebraic subgroups of E g

Remark

If E is an elliptic curve over a field of characteristic 0, then
End(E ) is an order in a number field of degree 1 or 2 over Q.

Example

Let H be an algebraic subgroup of E g of codim. r . There exist
End(E )-linearly independent vectors

ui = (ui1, . . . , uig ) ∈ End(E )g (1 ≤ i ≤ r)

such that H has finite index in

{(x1, . . . , xg ); ui1x1 + · · ·+ uigxg = 0 for 1 ≤ i ≤ r}.
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Finiteness under the weak hypothesis

Maurin’s finiteness result was known earlier for powers of elliptic
curves with complex multiplication:

Theorem (Rémond, Viada 2003)

Let E be an elliptic curve and C ⊂ E g an irreducible curve both
defined over Q. Assume that C is not contained in a proper
algebraic subgroup. If E has complex multiplication then

C ∩ (E g )[2] is finite.
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algebraic subgroup. If E has complex multiplication then

C ∩ (E g )[2] is finite.
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A finiteness conjecture in higher dimension

Conjecture (Zilber)

Let S be semi-abelian and X an irreducible closed subvariety of S
both over C. There exists a finite set H of proper algebraic
subgroups of S such that

X ∩ S [1+dim X ] ⊂
⋃

H∈H
X ∩ H.

Remark

If X 6⊂ proper algebraic subgroup of S then Zilber would imply

X ∩ S [1+dim X ] is not Zariski dense in X .

Similar conjectures were stated by Pink and by Bombieri, Masser,
Zannier for S = Gn

m.

P. Habegger Height Bounds in Diophantine Geometry



Curves and hypersurfaces
Higher dimension varieties
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Remark
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Similar conjectures were stated by Pink and by Bombieri, Masser,
Zannier for S = Gn

m.

P. Habegger Height Bounds in Diophantine Geometry



Curves and hypersurfaces
Higher dimension varieties

A height bound conjecture in higher dimension

Conjecture

Let A be an abelian variety and X ⊂ A an irreducible closed
subvariety both over Q. Any Néron-Tate height is bounded on

X oa ∩ A[dim X ].

Remark

X oa is a natural subset of X which tries to eliminate trivial
counterexamples.

Remark

This conjecture can be generalized to semi-abelian varieties.
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A height bound conjecture in higher dimension

Conjecture

Let A be an abelian variety and X ⊂ A an irreducible closed
subvariety both over Q. Any Néron-Tate height is bounded on

X oa ∩ A[dim X ].

Remark

X oa is a natural subset of X which tries to eliminate trivial
counterexamples.

Remark

This conjecture can be generalized to semi-abelian varieties.
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Anomalous subvarieties I

Remark

Let X ,H be subvarieties of A (or Gn
m or even S). Let

Y ⊂ X ∩ H be an irreducible component.

If X and H are in general position one expects

dim Y = max{0,dim X + dim H − dim A}.

Definition (Anomalous subvarieties)

An irreducible closed subvariety Y ⊂ X is called anomalous if there
exists a coset H such that Y ⊂ H and

dim Y > max{0,dim X + dim H − dim A}.
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Anomalous subvarieties I

Remark

Let X ,H be subvarieties of A (or Gn
m or even S). Let

Y ⊂ X ∩ H be an irreducible component.

If X and H are in general position one expects

dim Y = max{0,dim X + dim H − dim A}.

Definition (Anomalous subvarieties)

An irreducible closed subvariety Y ⊂ X is called anomalous if there
exists a coset H such that Y ⊂ H and

dim Y > max{0,dim X + dim H − dim A}.
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Anomalous subvarieties II

Definition (Anomalous subvarieties (repeat))

An irreducible closed subvariety Y ⊂ X is called anomalous if there
exists a coset H such that Y ⊂ H and

dim Y > max{0,dim X + dim H − dim A}.

Example (Curve case)

Any anomalous subvariety of an irreducible curve C ⊂ A must
equal C . The coset H must satisfy dim H < dim A. Hence,

Y anomalous subvariety of C ⇔ Y = C ⊂ proper coset.
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Anomalous subvarieties II

Definition (Anomalous subvarieties (repeat))

An irreducible closed subvariety Y ⊂ X is called anomalous if there
exists a coset H such that Y ⊂ H and

dim Y > max{0,dim X + dim H − dim A}.

Example (Curve case)

Any anomalous subvariety of an irreducible curve C ⊂ A must
equal C . The coset H must satisfy dim H < dim A. Hence,

Y anomalous subvariety of C ⇔ Y = C ⊂ proper coset.
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Anomalous subvarieties III

Definition

We define
X oa = X\

⋃
Y⊂X

anomalous

Y .

Example (Curve case)

Let C ⊂ A be an irreducible curve, then

C oa =

{
∅ if C is contained in a proper coset,
C else wise.

In particular, C oa is Zariski open in C .
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Anomalous subvarieties III

Definition

We define
X oa = X\

⋃
Y⊂X

anomalous

Y .

Example (Curve case)

Let C ⊂ A be an irreducible curve, then

C oa =

{
∅ if C is contained in a proper coset,
C else wise.

In particular, C oa is Zariski open in C .
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Anomalous subvarieties IV

Theorem (Bombieri, Masser, and Zannier 2006)

Let X ⊂ Gn
m be an irreducible closed subvariety over C, then

X oa is Zariski open in X .

Theorem (Rémond, H. indep.)

The same holds for Gn
m replaced by an abelian variety.

Remark

Moreover, if E is an elliptic curve and X ⊂ E g then

X oa 6= ∅ if and only if

ϕ : E g → Edim X surjective ⇒ dim ϕ(X ) = dim X .
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Anomalous subvarieties IV

Theorem (Bombieri, Masser, and Zannier 2006)

Let X ⊂ Gn
m be an irreducible closed subvariety over C, then

X oa is Zariski open in X .

Theorem (Rémond, H. indep.)

The same holds for Gn
m replaced by an abelian variety.

Remark

Moreover, if E is an elliptic curve and X ⊂ E g then

X oa 6= ∅ if and only if

ϕ : E g → Edim X surjective ⇒ dim ϕ(X ) = dim X .
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Anomalous subvarieties IV

Theorem (Bombieri, Masser, and Zannier 2006)

Let X ⊂ Gn
m be an irreducible closed subvariety over C, then

X oa is Zariski open in X .

Theorem (Rémond, H. indep.)

The same holds for Gn
m replaced by an abelian variety.

Remark

Moreover, if E is an elliptic curve and X ⊂ E g then

X oa 6= ∅ if and only if

ϕ : E g → Edim X surjective ⇒ dim ϕ(X ) = dim X .
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Some results for abelian varieties I

Height bound and finiteness results are currently more available in
the abelian case as opposed to the multiplicative case:

Theorem (Rémond 2007)

Let A be an abelian variety and X ⊂ A an irreducible closed
subvariety both over Q. If Γ ⊂ A(Q) is a subgroup of finite rank
then any Néron-Tate height is bounded on

X oa ∩ (Γ + A[1+dim X ]). (1)

If A = E g with E a CM elliptic curve then (1) is finite.
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Some results for abelian varieties I

Height bound and finiteness results are currently more available in
the abelian case as opposed to the multiplicative case:

Theorem (Rémond 2007)

Let A be an abelian variety and X ⊂ A an irreducible closed
subvariety both over Q. If Γ ⊂ A(Q) is a subgroup of finite rank
then any Néron-Tate height is bounded on

X oa ∩ (Γ + A[1+dim X ]). (1)

If A = E g with E a CM elliptic curve then (1) is finite.
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Some results for abelian varieties II

By assuming Γ = 0 we can increase the subgroup size and still get
a height bound.

Theorem (H. 2007)

If X ⊂ E g with E an elliptic curve, then any Néron-Tate height is
bounded on

X oa ∩ (E g )[dim X ].

Remark

We will sketch a proof of this theorem.

P. Habegger Height Bounds in Diophantine Geometry



Curves and hypersurfaces
Higher dimension varieties

Some results for abelian varieties II

By assuming Γ = 0 we can increase the subgroup size and still get
a height bound.

Theorem (H. 2007)

If X ⊂ E g with E an elliptic curve, then any Néron-Tate height is
bounded on

X oa ∩ (E g )[dim X ].

Remark

We will sketch a proof of this theorem.
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Some results in Gn
m

Remark

Height bound or finiteness results for subvarieties of Gn
m other than

curves and hypersurfaces with optimal subgroup codim. are rather
sparse.

Theorem (H. 2007)

Let X ⊂ G5
m be an irreducible algebraic surface over Q, then

X oa ∩ (G5
m)[1+dim X ] = X oa ∩ (G5

m)[3]

is finite.
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