
Faculty of Mathematics and Natural

Sciences I

Department of Physics

Algorithmization of the Hopf algebra of

Feynman graphs

Master Thesis

A Thesis Submitted in Partial Fulfillment of the Requirements for
the Degree of

Master of Science (M.Sc.)

in Physics

by
Michael Borinsky

Supervisors: Prof. Dr. Dirk Kreimer
Dr. Oliver Schnetz

submitted the

Contents

1 Introduction 3

2 Basic definitions 5

2.1 Graph theoretic concepts . 5

2.1.1 Multigraphs . 5

2.2 Feynman graphs . 7

2.2.1 Definition . 7

2.2.2 Properties of Feynman graphs 10

2.2.3 Contractions of subgraphs 11

2.2.4 Residues of graphs . 12

2.2.5 Weight ωD of a Feynman graph 12

3 The Hopf Algebra of Feynman graphs 15

3.1 Definition . 15

3.2 Properties of HD . 18

3.2.1 The Hopf algebra HD . 20

3.3 Sum of the coproducts of all 1PI graphs 21

3.3.1 Numbers of vertices, edges and connected components of
certain types . 21

3.3.2 Permuting external legs 22

3.3.3 Insertions . 22

3.3.4 Automorphism group of products of graphs 24

3.3.5 Sum formula for 1PI graphs 25

4 Zero-dimensional QFT 29

4.1 ϕk-theory . 29

4.1.1 Generating function . 29

4.1.2 Connected graphs . 32

4.2 |φ|2A-theory . 34

2 CONTENTS

5 Diagram generation 37
5.1 Overview . 37
5.2 Sketch of the implementation of feyngen 37
5.3 Check of validity . 38
5.4 Manual of feyngen . 38

5.4.1 Overview . 38
5.4.2 Options and Parameters 39
5.4.3 Output of ϕk-graphs . 40
5.4.4 Output of QED graphs . 42
5.4.5 Labeled and unlabeled legs 44

6 Coproduct computation 45
6.1 Overview . 45
6.2 Sketch of the implementation of feyncop 45
6.3 Check of validity . 46
6.4 Manual of feyncop . 46

6.4.1 Overview . 46
6.4.2 Option and Parameters . 47
6.4.3 Reference to edges . 48
6.4.4 Output of subgraphs . 48
6.4.5 Output of cographs . 49
6.4.6 Output of tensor products 51
6.4.7 Usage in conjunction with feyngen 52
6.4.8 Filtering for primitive graphs 54

7 Conclusion and future prospects 57

Chapter 1

Introduction

Quantum field theory is a mathematical scheme to describe elementary particles
and forces. It forms the framework for the standard model of particle physics
which gives the most accurate account of matter at the atomic scale. The status
quo strategy to perform explicit calculations in quantum field theory, perturbation
theory, requires renormalization to yield finite results. Recently renormalization
has been given an illuminating formulation by Dirk Kreimer and collaborators.
This formulation of renormalization, which emerged from the BPHZ scheme, is
based on the notion of the Hopf algebra of Feynman graphs. It provides a clear
distinction between analytic and combinatorical aspects of the renormalization
procedure. One of the central objects of this algebra is the coproduct which
encodes the combinatorical aspects of renormalization as the forest formula does
in the BPHZ scheme.

The purpose of this thesis was to develop a program, feyncop, which autom-
atizes the calculation of the coproduct of Feynman graphs. Additionally to the
study of renormalization in general, this program is aimed to be used as input for
parametric integration techniques to evaluate Feynman amplitudes as described
for instance in [2].

These upcoming techniques initiated an interest in relatively large loop order
Feynman diagrams. Therefore, an additional program, feyngen, to generate high
loop order diagrams needed to be developed to fulfill this demand.

An introduction to the properties of the Hopf algebra of Feynman graphs
preceded by a definition of Feynman graphs and their properties is given in the
chapters 2 and 3. These properties were used to derive theorem 1 which yielded
an identity suitable to check the coproduct computation of feyncop. The com-
binatorical proof of this theorem constitutes a simplification of the proof given in
[13].

A short treatment of zero dimensional quantum field theory, which gives useful
formulas to check the Feynman graph generation with feyngen, is layed out in

4 1. INTRODUCTION

chapter 4.
Therefore, both programs are validated. Details to the Feynman graph gen-

eration program feyngen are given in chapter 5 and the coproduct computation
program, feyncop is described in chapter 6.

feyngen is capable of generating ϕk-theory and QED Feynman graphs and of
filtering these graphs for the properties of connectedness, one-particle-irreducibleness,
2-vertex-connectivity and tadpole-freeness. It can handle graphs with fixed ex-
ternal legs as those without fixed external legs. For instance, all 130516 1PI,
ϕ4, 8-loop diagrams with four external legs can be generated, together with their
symmetry factor, within eight hours and all 342430 1PI, QED, vertex residue
type, 6-loop diagrams can be generated in three days both on a standard end-
user computer.

The output of feyngen can be used in conjunction with feyncop which
can compute the coproduct of a graph with weights assigned to its edges for
an arbitrary dimension.

Chapter 2

Basic definitions

2.1 Graph theoretic concepts

For the graph generation and the calculation of the coproduct, the graph the-
oretical tool nauty, described in [10], is used. Therefore, some definitions of
basic graph theoretical terms are required. Here, the focus is on the transition
from the treatment of graphs in combinatorics and graph theory to a quantum
field theoretic context. On the graph theoretical side, the definitions are based
on [1], whereas the quantum field theoretical view point is based on [9] and [5],
which can be consulted for a more detailed discussion of the following notions.
The central objects of perturbative QFT are Feynman graphs. These are special
cases of multigraphs.

2.1.1 Multigraphs

Definition 1. A multiset is a generalization of the notion of a set in which
elements are allowed to appear more than once.

Definition 2. A multigraph G is a pair (V,E), where V denotes the vertex set of
finite cardinality and E is a multiset, the edge multiset, with elements e ∈ V ×V .

Adjacency and incidence For any edge e = (v1, v2) ∈ E the vertices v1 and
v2 are called adjacent to each other and incident to the edge e.

Self-loop An edge (v, v) incident to only one vertex is called a self-loop.

Valency The number of incident edges to a vertex v ∈ V is called the valency
of v. Self-loops incident to v are counted twice.

6 2. BASIC DEFINITIONS

Simple graph A multigraph G = (V,E) is a simple graph if it has no self-loops
and every edge is only present once in E.

Directed, undirected and mixed graphs Depending on whether the ele-
ments of the edge multiset e ∈ E are ordered or unordered pairs of vertices,
the multigraph is called directed or undirected. A multigraph may also contain
directed and undirected edges.

Isomorphy Two graphs G = (V,E) and G′ = (V ′, E ′) are considered as iso-
morphic, G ' G′, if there is a bijection φ : G → G′ that maps the vertex set V
onto V ′ and the edge multiset E onto E ′, such that adjacency is respected:

φ(e) = (φ(v1), φ(v2)) ∀e ∈ E with (v1, v2) = e.

φ is called an isomorphism between G and G′ .

Automorphism group The set of all isomorphisms of a graph onto itself φ :
G→ G is the automorphism group, Aut(G), of G. The inverse of the cardinality
of the automorphism group is called the symmetry factor of the graph.

Handling Feynman graphs, a small pathology arises in connection with self-
loops. For the notions of isomorphy and the automorphism group unoriented
self-loops are to be considered as edges consisting of two half-edges which can
be permuted freely. The overall effect of this additional freedom is that every
unoriented self-loop is assigned an additional symmetry generator of the auto-
morphism group of order two. This generator commutes with all other elements
of Aut(G).

Subgraphs A graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if E ′ ⊆ E and
V ′ ⊆ V . This relation is denoted as G′ ⊆ G.

Connectedness A multigraph G is disconnected if the vertex set and the edge
multiset can be split into disjoint sets and multisets V = V1∪V2 and E = E1∪E2,
such that g1 = (V1, E1) and g2 = (V2, E2) are again multigraphs in the sense of
Definition 2. Implicitly, this statement is also expressed as G being a disjoint
union of the graphs g1 and g2: G = g1 ∪ g2.

Applying this procedure successively, eventually yields a set of multigraphs,
{G1, . . . , Gn}, which are connected. These are subgraphs of G =

⋃
i

Gi and are

called the connected components of G.

2.2 Feynman graphs 7

Loop number or first Betti number The loop number or first Betti number
h1(G) is the number of independent loops or cycles of G.

The identity

h1(G) = |E| − |V |+ fG (2.1)

is valid for every graph, where |E| and |V | are the appropriate cardinalities of
the vertex sets and edge multisets of G and fG denotes the number of connected
components of G.

Proof. (Sketch) Obviously, the formula holds for the empty graph G = ∅ without
vertices or edges.

For an arbitrary graph G, adding a vertex will increase |V | and the number
of connected components fG by one. Therefore, the formula holds for all graphs
without edges.

Adding an edge, will either reduce the number of connected components fG
by one or it will add a loop to the graph. So, identity (2.1) stays valid after this
operation. Every graph can be constructed by subsequently adding vertices or
edges. Therefore equation (2.1) is valid for all graphs.

2.2 Feynman graphs

To capture the structure of a Feynman graph in general, more information than
the one of a multigraph is necessary. Viewed from a graph theoretical view point,
Feynman graphs are edge-colored multigraphs. But for the treatment of the Hopf
algebra of Feynman graphs, a taylor-made definition in resemblance to [5] is more
convenient.

2.2.1 Definition

Let G = (V,E) be a multigraph with the vertex set and edge multiset being

disjoint unions of the sets and multisets Γ
[0]
int, Γ

[0]
ext, Γ

[1]
int and Γ

[1]
ext, such that

V = Γ
[0]
int ∪ Γ

[0]
ext

and

E = Γ
[1]
int ∪ Γ

[1]
ext.

The vertices in Γ
[0]
ext shall have valency 1 and those in Γ

[0]
int valency ≥ 3. The edges

in Γ
[1]
int must be incident only to vertices v ∈ Γ

[0]
int and those in Γ

[1]
ext are incident to

at least one vertex v ∈ Γ
[0]
ext.

8 2. BASIC DEFINITIONS

The vertices in Γ
[0]
int are called internal vertices and those in Γ

[0]
ext are called

external or source vertices. The edges in Γ
[1]
int are called internal edges and the

ones in Γ
[1]
ext are called external edges or legs.

Definition 3. A Feynman graph Γ = (G, res) is a pair of a multigraph G with
the above properties and a coloring res,

res : Γ[1] → RE, (2.2)

which assigns a color or type from a set of allowed edge types RE to every edge
in G.

The map res can be extended to the internal vertices of Γ,

res : Γ
[0]
int ∪ Γ[1] → RV ∪RE, (2.3)

by assigning a vertex type rV ∈ RV to every internal vertex v ∈ Γ
[0]
int, such that the

vertex types are determined uniquely by the edges incident to v. The elements r ∈
RV ∪RE are also called the allowed residue types of the theory under inspection.

Generally, the Feynman rules restrict the sets RV and RE, such that only
Feynman graphs with certain vertex and edge types are allowed. For instance, ϕ4

theory has one vertex type, Rϕ4

V = { }, and one edge type, Rϕ4

E = { }, whereas
quantum electro dynamics (QED) allows one vertex type, RQED

V =
{ }

, and

two edge types, RQED
E = { , }.

This definition differs slightly from the one in [9] and [5], because of the

additional external vertices in Γ
[0]
ext. These external or source vertices are added

for simplicity of the representation of graphs as edge lists, for the determination of
the isomorphy class of a graph and for the transition from multigraphs to simple
graphs needed as input for the nauty package.

In the following, Feynman graphs will be referred to as graphs or diagrams if
the distinction from other types of graphs is clear from the context.

Examples of Feynman graphs of QED and ϕ4-theory are depicted in figure
2.1.

Feynman graphs with fixed source vertices

Usually, handling green’s functions in quantum field theory, the external edges
and the source vertices of Feynman graphs are considered as fixed. That means,
there is an additional bijective map,

δ : Γ
[0]
ext →

{
1, . . . , |Γ[0]

ext|
}
,

2.2 Feynman graphs 9

e2

e0

e3

e1

v2 v3v0 v1

Γ
[0]
int = {v0, v1} Γ

[0]
ext = {v2, v3}

Γ
[1]
int = {e0, e1} Γ

[1]
ext = {e2, e3}

e0 = (v0, v1) e1 = (v1, v0)

e2 = (v0, v2) e3 = (v1, v3)

res(e0) = res(e1) =

res(e2) = res(e3) =

res(v0) = res(v1) =

(a) A QED Feynman graph

e7 e6

e9

e0

e2e3

e8
e1

e4e5

v5

v6

v4

v7

v1

v2

v0

v3

Γ
[0]
int = {v0, v1, v2, v3}

Γ
[0]
ext = {v4, v5, v6, v7}

Γ
[1]
int = {e0, e1, e2, e3, e4, e5}

Γ
[1]
ext = {e6, e7, e8, e9}

e0 = (v0, v1) e1 = (v2, v3)

e2 = e3 = (v1, v2) e4 = e5 = (v0, v3)

e6 = (v0, v4) e7 = (v1, v5)

e8 = (v2, v6) e9 = (v3, v7)

res(e) = ∀e ∈ Γ
[1]
int ∪ Γ

[1]
ext

res(v) = ∀v ∈ Γ
[0]
int

(b) A ϕ4-theory Feynman graph

Figure 2.1: Examples of Feynman graphs after definition 3.

10 2. BASIC DEFINITIONS

associated to a graph Γ, giving a unique numbering of the external vertices. Note,
that this map also induces a unique numbering on the external edges, because
every external vertex is incident to at least one external edge.

In the scope of this thesis, a graph with fixed external edges and vertices is
referred to as leg-fixed graph.

Isomorphy

Although, the concepts of adjacency, incidency and connectedness apply trans-
parently to Feynman graphs using the appropriate properties of the underlying
multigraph, care must be taken considering isomorphy of Feynman graphs. Two
Feynman graphs Γ = (G, res) and Γ′ = (G′, res′) are isomorphic if there is an
isomorphism φ between the two underlying multigraphs φ : G→ G′, such that φ
preserves the edge and vertex types: res ◦ φ = res′.

For leg-fixed graphs, the isomorphism φ also needs to preserve the numbering
of the legs: δ ◦ φ = δ′.

Figure 2.2 depicts some examples of Feynman graphs with the corresponding
orders of the automorphism groups for the leg-fixed (lf) and the not leg-fixed
(nlf) case.

Subgraphs of Feynman graphs

A Feynman graph γ is a subgraph of a graph Γ, γ ⊆ Γ, if γ
[1]
int ⊆ Γ

[1]
int, γ

[0]
int ⊆ Γ

[0]
int

and every vertex v ∈ γ[0]
int ⊆ Γ

[0]
int has the same vertex type in γ as in Γ: resγ(v) =

resΓ(v). That means, possible deficiencies of incident edges in a subgraph are fixed
by adding additional external legs. Note that a subgraph is given uniquely by its
internal edges and vertices. The external edges and vertices can be reconstructed
from missing edges incident to a vertex to fulfill the vertex type requirement.

A canonical ordering of the external legs can not be defined easily. Therefore
subgraphs are considered as non-leg-fixed graphs in the scope of this thesis.

2.2.2 Properties of Feynman graphs

1PI - one particle irreducibleness A graph, which is still connected if any
internal edge is removed, is called a 1PI graph.

Figure 2.2 (b), 2.2 (c) and 2.2 (d) show examples of 1PI graphs. In figure 2.2
(a) a disconnected graph is depicted, which is thereby not 1PI.

2-vertex-connectivity A graph, which has no self-loops and is still connected
if any vertex v is removed together with the edges incident to v, is called 2-vertex-
connected.

2.2 Feynman graphs 11

|Autlf| = 2
|Autnlf| = 8

(a) A disconnected
graph with a self-
loop (i.e. a tadpole
graph).

|Autlf| = 4
|Autnlf| = 32

(b) A 1PI, but not
2-vertex connected
and not tadpole
graph.

|Autlf| = 4
|Autnlf| = 16

(c) A 2-vertex-
connected graph.

|Autlf| = 12
|Autnlf| = 24

(d) A 1PI tadpole
graph without self-
loops.

Figure 2.2: Examples of Feynman graphs, which fulfill certain properties, with
the orders of their automorphism groups.

In figure 2.2 (c) a 2-vertex-connected graph is shown. The other graphs in
figure 2.2 are not 2-vertex-connected.

Tadpole graphs A not 2-vertex-connected graph Γ, which either has self-loops
or can be split into connected components upon removal of any vertex, such that
one of the new connected components is not connected to an external vertex, is
called a tadpole graph.

For graphs without external legs, this notion coincides with 2-vertex connec-
tivity.

Figure 2.2 (a) depicts a disconnected tadpole graph and figure 2.2 (d) shows
an example of a tadpole graph without self-loops.

2.2.3 Contractions of subgraphs

An important notion in connection to the Hopf algebra of Feynman graphs is the
contraction of subgraphs. If γ ⊆ Γ, the contraction, Γ/γ, of γ in Γ is obtained by

removing all edges e ∈ γ[1]
int ⊆ Γ

[1]
int of Γ and by merging all vertices connected to

these edges to one new vertex. If the new vertex is of valency 2, it is also removed
and the two edges incident to it are joined to one edge.

Contractions are commutative operations if disjoint subgraphs are contracted.
For a graph Γ with γ1, γ2 ⊆ Γ and γ1 ∩ γ2 = ∅:

(Γ/γ1) /γ2 = (Γ/γ2) /γ1 = Γ/ (γ1 ∪ γ2) . (2.4)

Furthermore, contractions can be “canceled”, for instance for δ ⊆ γ ⊆ Γ

(Γ/δ) / (γ/δ) = Γ/γ. (2.5)

12 2. BASIC DEFINITIONS

Example Consider the graph

Γ =

and suppose the following subgraphs of Γ, depicted as thick lines, are to be
contracted:

γ1 = and γ2 = .

The contractions will yield the graphs

Γ/γ1 = , Γ/γ2 = and Γ/(γ1 ∪ γ2) = .

2.2.4 Residues of graphs

Using the notion of contractions, the map res can be extended to act on connected
Feynman graphs Γ. The maximal contraction, Γ/Γ, is formed, which contracts
all internal edges of Γ, such that only one internal vertex or an external edge is
left. res(Γ) denotes the vertex or edge type of the left over vertex or edge. This
is called the residue type of Γ.

Examples

res

()
= res

()
= res

()
=

res

()
= res

()
=

2.2.5 Weight ωD of a Feynman graph

Vertex and edge weights

The Feynman rules give rise to a weight for every vertex and edge type:

ω : RV ∪RE → Z. (2.6)

2.2 Feynman graphs 13

This weight corresponds to the negative power of the momenta in the associated
Feynman rule.

In QED for example, a weight of 2 is assigned to photon edges, ω () = 2,
and 1 is assigned to fermion edges, ω () = 1. Because QED vertices do not
depend on any momenta, their weight is 0, ω

()
= 0.

In ϕk-theory all edges are assigned the weight 2, ω () = 2 and the vertices
have weight 0.

The map ωD on Feynman graphs

Using the map ω for given Feynman rules to assign a weight to every vertex and
edge type, an additional map ωD can be defined, giving a weight to a Feynman
graph:

Definition 4.

ωD (Γ) :=
∑
v∈Γ

[0]
int

ω(res(v)) +
∑
e∈Γ

[1]
int

ω(res(e))−Dh1 (Γ) (2.7)

where h1(Γ) denotes the loop number of Γ and D is a parameter that will be
associated with the spacetime dimension. Neglecting possible infrared divergencies,
the value of ωD coincides with the degree of divergence of the integral associated to
the graph in a D-dimensional quantum field theory. To the empty graph the weight
0 is assigned: ωD (∅) = 0. A 1PI graph Γ with ωD(Γ) ≤ 0 is called superficially
divergent in D dimensions.

Examples

ω4

()
= ω4

()
= ω6

()
= −2

ω4

()
= ω4

()
= ω4

()
= ω6

()
= 0

ω4

()
= ω4

()
= ω6

()
= 2

14 2. BASIC DEFINITIONS

Chapter 3

The Hopf Algebra of Feynman
graphs

3.1 Definition

Let T be the set of all non-isomorphic 1PI Feynman graphs of a given quantum
field theory, including the empty graph. F is the free commutative monoid gen-
erated by the elements in T . The empty graph is associated with the neutral
element I ∈ F .

Following [6], HD is the vector space spanned by the elements of F with the
multiplication m on F extended to linear combinations of products of graphs.

Additionally, HD is equipped with a linear map called the coproduct. For 1PI
graphs Γ ∈ T ⊂ HD it is defined as

Definition 5.

∆DΓ :=
∑
γEΓ

γ ⊗ Γ/γ : T → HD ⊗HD (3.1)

where

γ E Γ⇔ γ ∈

{
δ ⊆ Γ

∣∣∣∣∣δ =
⋃
i

δi, such that δi ∈ T and ωD(δi) ≤ 0

}
(3.2)

denotes the membership of γ in the set of subgraphs of Γ, whose connected com-
ponents are superficially divergent 1PI graphs. Disconnected graphs γ =

⋃
i

γi are

identified with the product

(∏
i

γi

)
∈ F ⊂ HD. The cograph Γ/Γ and the empty

graph γ = ∅ in (3.1) are identified with I ∈ HD.

16 3. THE HOPF ALGEBRA OF FEYNMAN GRAPHS

Note, that while Γ/γ, the so-called cographs, in (3.1) can inherit a numbering
of the external edges from Γ, it is not possible to assign a numbering to the
external legs of the subgraphs γ. That means, if the corresponding spaces of leg
fixed and non-leg fixed 1PI graphs, T leg-fixed, T non-leg-fixed, HD

leg-fixed, HD
non-leg-fixed

are distinguished, ∆D maps the spaces as follows:

∆D : T non-leg-fixed → Hnon-leg-fixed
D ⊗ Hnon-leg-fixed

D

∆D : T leg-fixed → Hnon-leg-fixed
D ⊗ Hleg-fixed

D .

Strictly speaking, only a coaction not a coproduct is obtained in the leg-fixed case.
A coproduct can be obtained by defining a map T non-leg-fixed → T leg-fixed which
maps a non-leg-fixed graph to the sum of all leg-fixed graphs which correspond to
the non-leg-fixed graph if the ordering of the external edges is ignored. Therefore,
∆D can still be promoted to a coproduct in the leg-fixed case.

Because here, the subgraphs themselves and not the algebra elements asso-
ciated with them are of most interest, this ambiguity will not play a major role
in this thesis. For most of the properties of HD, it is not relevant whether the
set of leg-fixed or the one of non-leg-fixed 1PI graphs is taken as generators.
An exception is section 3.3, which will only cope with non-leg-fixed graphs for
simplicity.

The map ∆D can be extended recursively to products of graphs, ∆D : F →
HD ⊗HD, by defining for (Γ1Γ2) ∈ F with Γ1 ∈ T and Γ2 ∈ F as

∆D (Γ1Γ2) := (∆DΓ1) (∆DΓ2) . (3.3)

In accordance to this, ∆DI := I⊗I is set. Eventually, ∆D can be extended linearly
to all elements h ∈ HD, equipping HD with a coproduct ∆D : HD → HD ⊗HD.

Additionally, the reduced coproduct ∆̃D is defined as

∆̃D := ∆D − id⊗ I− I⊗ id : HD → HD ⊗HD, (3.4)

giving rise to the space of primitive elements of HD:

Prim (HD) := ker ∆̃. (3.5)

Example

Suppose the coproduct in 6 dimensions of the ϕ3-theory graph

Γ =

3.1 Definition 17

shall be calculated. The graph has the following 1PI subgraphs, represented as
thick lines in Γ:

γ1 = , γ2 = , γ3 = ,

γ4 = , γ5 = , γ6 = ,

γ7 = , γ8 = , γ9 = ,

γ10 = , γ11 = , γ12 = .

Of these subgraphs only γ1, γ3, γ4, γ8, γ9 and γ12 are superficially divergent in 6
dimensions, as can be checked by applying ω6 on them.

γ3 and γ4 are disjoint. Therefore, their disjoint union must be included in the
set of subgraphs composed of superficially divergent 1PI graphs:{

δ ⊆ Γ

∣∣∣∣∣δ =
⋃
i

δi, such that δi ∈ T and ωD(δi) ≤ 0

}
=

= {γ1, γ3, γ4, γ8, γ9, γ3 ∪ γ4, γ12} .

The relevant cographs can be calculated by contracting the corresponding sub-
graphs,

Γ/γ3 = Γ/γ4 =

Γ/γ8 = Γ/γ9 = Γ/ (γ3 ∪ γ4) = ,

and subgraphs can be decorated with external legs promoting them to elements

18 3. THE HOPF ALGEBRA OF FEYNMAN GRAPHS

of F :

γ3 and γ4 → ∈ F γ8 and γ9 → ∈ F

γ3 ∪ γ4 →

2

∈ F

Note, that γ1 = ∅ and Γ/γ12 = Γ/Γ are identified with the unit I ∈ F .
Therefore, the coproduct can be given:

∆D

()
=
∑
γEΓ

γ ⊗ Γ/γ =
∑

γ∈{γ1,γ3,γ4,γ8,γ9,γ3∪γ4,γ12}

γ ⊗ Γ/γ =

= I⊗ + ⊗ I+

+ 2 ⊗ + 2 ⊗ +

+

()2

⊗ .

3.2 Properties of HD

Proposition 1. ∆D is a coassociative map,

(∆D ⊗ id) ∆D = (id⊗∆D) ∆D, (3.6)

and thereby HD is a bialgebra.

Proof. It is sufficient to prove the coassociativity for ∆D acting on a graph Γ ∈ T .
Applying the coproduct twice on Γ yields

(id⊗∆D) ∆DΓ =
∑
γEΓ

γ ⊗

∑
δEΓ/γ

δ ⊗ (Γ/γ) /δ

 ,
where δ can be substituted by δ′/γ,

=
∑
γEΓ

γ ⊗
∑

γEδ′EΓ

δ′/γ ⊗ (Γ/γ) / (δ′/γ) ,

3.2 Properties of HD 19

and (Γ/γ) / (δ′/γ) reduces to Γ/δ′:

=
∑
γEΓ

γ ⊗
∑

γEδ′EΓ

δ′/γ ⊗ Γ/δ′.

Changing the order of summation and using transitivity of the relation E,

=
∑
δ′EΓ

[∑
γEδ′

γ ⊗ δ′/γ

]
⊗ Γ/δ′,

establishes:

= (∆D ⊗ id) ∆DΓ.

Proposition 2. HD is a bialgebra graded by the loop number. That means, m
and ∆D are maps between the relevant spaces:

HD =
⊕
L≥0

H(L)
D and (3.7)

m : H(L1)
D ⊗H(L2)

D → H(L1+L2)
D (3.8)

∆D : H(L)
D →

⊕
L1,L2≥0
L1+L2=L

H(L1)
D ⊗H(L2)

D . (3.9)

Proof. Graphs with different loop numbers are non-isomorphic. Therefore, (3.7)
is trivial. (3.8) follows from the association of products with disjoint union of
graphs, for which the loop number is additive:

h1(
∏
i

Γi) =
∑
i

h1(Γi) ∀Γi ∈ T

It is enough to proof the compatibility of ∆D with the grading for graphs
Γ ∈ T . Suppose γ is a 1PI subgraph γ ⊆ Γ. Because γ is a 1PI graph, it can

assumed that
∣∣∣γ[1]

ext

∣∣∣ =
∣∣∣γ[0]

ext

∣∣∣.
If γ is of edge residue type, the cograph Γ/γ fulfills∣∣∣(Γ/γ)[1]

∣∣∣ =
∣∣Γ[1]

∣∣− ∣∣∣γ[1]
int

∣∣∣− 1∣∣∣(Γ/γ)[0]
∣∣∣ =

∣∣Γ[0]
∣∣− ∣∣∣γ[0]

int

∣∣∣ ,

20 3. THE HOPF ALGEBRA OF FEYNMAN GRAPHS

because all internal edges and vertices of γ are removed from Γ and one pair of
edges is joined to a single one. Subtracting the second from the first equation
and using h1(G) = |E| − |V |+ fG with fΓ = fγ = fΓ/γ = 1, yields

h1 (Γ/γ)− 1 = h1(Γ)− 1− (h1(γ)− 1)− 1

⇒ h1 (Γ/γ) = h1(Γ)− h1(γ),

which is the desired result.

If the 1PI γ ⊆ Γ is of vertex residue type, all internal edges of γ are removed
form Γ, but one vertex will be left after the contraction. Therefore,∣∣∣(Γ/γ)[1]

∣∣∣ =
∣∣Γ[1]

∣∣− ∣∣∣γ[1]
int

∣∣∣∣∣∣(Γ/γ)[0]
∣∣∣ =

∣∣Γ[0]
∣∣− ∣∣∣γ[0]

int

∣∣∣+ 1,

which by subtraction of the second from the first equation yields equation (3.10)
again.

This generalizes to disconnected graphs γ =
⋃
γi ⊆ Γ by subsequent compu-

tation of the contraction, because Γ/ (γ1 ∪ γ2) = (Γ/γ1) / γ2:

h1(Γ/γ1) = h1(Γ)− h1(γ1)

h1 ((Γ/γ1) /γ2) = h1(Γ/γ1)− h1(γ2) = h1(Γ)− h1(γ1)− h1(γ2)

. . .

⇒ h1

(
Γ/

(⋃
i

γi

))
= h1(Γ)−

∑
i

h1(γi)

3.2.1 The Hopf algebra HD

With the additional algebra morphisms ε, the counit, and S the antipode,

ε (I) := 1 (3.10)

ε (Γ) := 0 ∀Γ 6= ∅,Γ ∈ T (3.11)

S(X) := −X −m(id⊗ S)∆̃D(X) ∀X ∈ HD, (3.12)

HD becomes a Hopf algebra.

3.3 Sum of the coproducts of all 1PI graphs 21

3.3 Sum of the coproducts of all 1PI graphs

Having established the basic properties of the Hopf algebra of Feynman graphs,
an additional identity, suitable to test the functionality of feyncop, will be de-
rived in this section. To do so, some further properties of Feynman graphs must
be introduced. For simplicity, this section will only take graphs without fixed
external legs into account.

3.3.1 Numbers of vertices, edges and connected compo-
nents of certain types

For every residue type r ∈ RV ∪RE and graph Γ ∈ T ,

mr(Γ) :=
∣∣∣{t ∈ Γ

[0]
int ∪ Γ

[1]
int

∣∣∣ res(t) = r
}∣∣∣ (3.13)

gives the number of internal vertices or edges in Γ of type r.

Suppose, γ is a product of graphs, γ =

(∏
i

γi

)
∈ F , then

nr(γ) := |{γi ∈ T such that res(γi) = r}| (3.14)

denotes the number of factors of γ with residue r.

Let R′E be the set of edge residue types taking different orientations into
account. That means that for each oriented edge type in rE ∈ RE there a two
edge types in R′E each corresponding to one of the possible orientations. Edge
types without orientation appear once in R′E as in RE. For QED for instance
this means R′QED

E = { , , }.
Given some edge type rE ∈ R′E and a vertex type rV ∈ RV ,

NrE (rV) (3.15)

is the number of edges of type rE incident to vertices of type rV in the given
orientation. For QED the values are,

N
()

= N
()

= N
()

= 1. (3.16)

On the other hand for ϕ3-theory, the only relevant value is

N () = 3. (3.17)

22 3. THE HOPF ALGEBRA OF FEYNMAN GRAPHS

3.3.2 Permuting external legs

Let Permext(Γ) for Γ ∈ T be the group of permutations of external vertices of Γ,
preserving the external vertex types.

By permuting the external vertices of Γ new graphs can be obtained. In the
case of non-leg-fixed graphs, these new graphs will be isomorphic to the original
one.

For Γ ∈ T the number of different permutations is given as∏
rE∈R′

E

NrE (res(Γ))!. (3.18)

For a product of graphs γ =

(∏
i

γi

)
∈ F with some numbering of the factors

chosen, Permext(γ) is defined as the product group:

Permext(γ) = Permext(γ1)× Permext(γ2)× . . . (3.19)

The cardinality of this group is

|Permext(γ)| =
∏

r∈RV ∪RE

 ∏
rE∈R′

E

NrE(rV)!

nr(γ)

. (3.20)

3.3.3 Insertions

Inserting a graph into another can be interpreted as an inverse to the operation
of contracting a subgraph. Suppose γ,Γ ∈ T and γ should be inserted into Γ.
If γ has an edge type residue, it can be glued in an internal edge e ∈ Γ

[1]
int with

res(e) = res(γ) and if it has a vertex type residue, it can be inserted to replace

an internal vertex v ∈ Γ
[0]
int with res(v) = res(γ).

This can be extended to products of graphs γ =

(∏
i

γi

)
∈ F being inserted

into Γ ∈ T , by inserting all the graphs γi subsequently into different vertices or
edges of Γ. Note that it is possible to insert multiple graphs of edge residue type
into the same edge of Γ, whereas it is not possible to insert more than one of
vertex residue type into the same vertex of Γ.

The set of insertions of γ ∈ F into Γ ∈ T , yielding possibly isomorphic graphs,
is denoted by I(Γ|γ).

The graph obtained, when γ is inserted into Γ using an insertion i ∈ I(Γ|γ),
is denoted by Γ ◦i γ ∈ T .

3.3 Sum of the coproducts of all 1PI graphs 23

The cardinality of I(Γ|γ) is,

|I(Γ|γ)| = |Permext(γ)|
∏

rV ∈RV

nrV (γ)!

(
mrV (Γ)

nrV (γ)

)
×

×
∏

rE∈RE

nrE(γ)!

(
mrE(Γ) + nrE(γ)− 1

nrE(γ)

)
,

(3.21)

where the first term describes the freedom to insert γ into Γ in all permutations of
γ’s external legs, the second term represents the numbers of choices of insertion
places for the factors of vertex residue type and the last term stands for the
number of choices to insert factors of edge type into Γ. The factorials count the
number of ways to choose a suitable order of the factors to insert. The difference
in the vertex and edge insertions results from the fact that edges can be used for
multiple insertions and vertices only for one. The special cases are declared as

|I(Γ|I)| = |I(I|Γ)| = |I(I|I)| = 1 ∀Γ ∈ T (3.22)

and |I(I|γ)| = 0 ∀γ ∈ F , γ /∈ T .

Examples Suppose

Γ = γ =

and γ shall be inserted into Γ. Dealing with a ϕ4-theory only one vertex and
one edge type need to be considered. γ is connected and of vertex residue type.
Therefore, n (γ) = 1 and n (γ) = 0. |Permext(γ)| = 4! = 24, because of the
four external legs of γ of similar type.

Γ has two internal edges and two internal vertices. Consequently, m (Γ) = 2
and m (Γ) = 2. The total number of insertions is then, according to formula
(3.21),

|I(Γ|γ)| = 24 · 1! ·
(

2

1

)
· 0! ·

(
2− 1

0

)
= 48.

Only two non isomorphic graphs will be yielded if Γ ◦i γ is formed for all
i ∈ I(Γ|γ). Considering the possible permutations of the external legs of γ, there
will be 32 insertions giving graphs of the same isomorphy class as

24 3. THE HOPF ALGEBRA OF FEYNMAN GRAPHS

and 16 insertions will give graphs of the same isomorphy class as

.

If on the other hand the product of graphs

γ′ =

2

shall be inserted into Γ, the edge insertion places of Γ need to be considered.
Clearly, n (γ′) = 0, n (γ′) = 2 and |Permext(γ

′)| = (2!)2 = 4, because both
factors of γ′ have two external legs of the same type. Plugging into formula
(3.21) yields

|I(Γ|γ′)| = 4 · 0! ·
(

2

0

)
· 2! ·

(
2 + 2− 1

2

)
= 24.

Forming Γ ◦i γ′ for all i ∈ I(Γ|γ′) will yield 16 graphs isomorphic to

and 8 graphs isomorphic to

.

3.3.4 Automorphism group of products of graphs

Guided by the association of products of graphs with disconnected graphs the
notion of the automorphism group can be extended. The extension to products
of non-isomorphic graphs is easy, because all factors can be distinguished:

Aut

(∏
i

γi

)
= Aut (γ1)× Aut (γ2)× . . . with γi ∈ T and γi 6' γj ∀i, j

(3.23)

⇒

∣∣∣∣∣Aut

(∏
i

γi

)∣∣∣∣∣ =
∏
i

|Aut(γi)| with γi ∈ T and γi 6' γj ∀i, j

(3.24)

3.3 Sum of the coproducts of all 1PI graphs 25

If the product contains more than one graph of the same isomorphy class, addi-
tional symmetry generators are obtained given by the permutations of the graphs
of the same isomorphy class. Therefore, with given multiplicities ni for every
isomorphy class the cardinality of the automorphism group is:∣∣∣∣∣Aut

(∏
i

(γi)
ni

)∣∣∣∣∣ =
∏
i

(ni! |Aut (γi)|ni) with γi ∈ T and γi 6' γj ∀i, j.

(3.25)

3.3.5 Sum formula for 1PI graphs

Making use of the preceding definitions and properties of Feynman graphs an
identity of 1PI graphs sums involving the coproduct is proved. The statement is
also proved in [13]. Here, a different argument is layed out based on the following
lemma, a variant of a theorem in [3]:

Lemma 1. For three given graphs γ ∈ F , Γ ∈ T and Γ̃ ∈ T , the set of pairs
(j1, j2) of an embedding j1 of γ into Γ and an isomorphism j2 between Γ/j1(γ)

and Γ̃,

A(γ, Γ̃,Γ) =
{

(j1, j2)
∣∣∣j1 : γ → Γ and j2 : Γ/j1(γ)→ Γ̃

}
, (3.26)

has the same cardinality as the set of all pairs (i, j) of insertions i ∈ I(Γ̃|γ) and

isomorphisms j between Γ̃ ◦i γ and Γ,

B(γ, Γ̃,Γ) =
{

(i, j)
∣∣∣i ∈ I(Γ̃|γ) and j : Γ̃ ◦i γ → Γ

}
. (3.27)

Proof. A bijection between the sets A(γ, Γ̃,Γ) and B(γ, Γ̃,Γ) is constructed.

Given is a pair (j1, j2) ∈ A(γ, Γ̃,Γ). j1 gives rise to a subgraph j1(γ) ⊆ Γ. This
subgraph can be contracted to yield an insertion i′ ∈ I (Γ/j1(γ)|j1(γ)). Using j1

and j2 an insertion i ∈ I
(

Γ̃|γ
)

can be won. Clearly, there is an isomorphism

j : Γ̃ ◦i γ → Γ, induced by j1 and j2 because (Γ/j1(γ)) ◦i′ j1(Γ) = Γ.

This construction is reversible, because with these (i, j) ∈ B(γ, Γ̃,Γ), the

isomorphism j : Γ̃ ◦i γ → Γ can be used to reconstruct j1 by restricting it on
γ ⊆ Γ̃ ◦i γ. Contracting Γ to Γ/j1(γ) and applying j−1 to get j−1(Γ)/j−1 (j1(γ))

gives Γ̃. Therefore, j2 is also retrieved. This procedure is defined for all (i, j) ∈
B(γ, Γ̃,Γ) and establishes that this is a one-to-one.

Corollary 1. For γ ∈ F and Γ̃ ∈ T ,∣∣∣I(Γ̃|γ)
∣∣∣

|Aut(γ)|
∣∣∣Aut(Γ̃)

∣∣∣ =
∑
Γ∈T

∣∣∣{γ′ ⊆ Γ
∣∣∣γ′ ' γ and Γ/γ′ ' Γ̃

}∣∣∣
|Aut(Γ)|

. (3.28)

26 3. THE HOPF ALGEBRA OF FEYNMAN GRAPHS

Proof. Because the total number of automorphisms of a graph γ is given by
|Aut(γ)|

|A(γ, Γ̃,Γ)| = |Aut(γ)|
∣∣∣Aut(Γ̃)

∣∣∣ ∣∣∣{γ′ ⊆ Γ
∣∣∣γ′ ' γ and Γ/γ′ ' Γ̃

}∣∣∣ (3.29)

and

|B(γ, Γ̃,Γ)| = |Aut(Γ)|
∣∣∣{i ∣∣∣i ∈ I(Γ̃|γ) and Γ̃ ◦i γ ' Γ

}∣∣∣ . (3.30)

Using ∑
Γ∈T

∣∣∣{i ∣∣∣i ∈ I(Γ̃|γ) and Γ̃ ◦i γ ' Γ
}∣∣∣ =

∣∣∣I(Γ̃|γ)
∣∣∣ , (3.31)

and plugging in |B(γ,Γ̃,Γ)|
|Aut(Γ)| yields

∣∣∣I(Γ̃|γ)
∣∣∣ =

∑
Γ∈T

∣∣∣B(γ, Γ̃,Γ)
∣∣∣

|Aut(Γ)|

=
∑
Γ∈T

|Aut(γ)|
∣∣∣Aut(Γ̃)

∣∣∣ ∣∣∣{γ′ ⊆ Γ
∣∣∣γ′ ' γ and Γ/γ′ ' Γ̃

}∣∣∣
|Aut(Γ)|

,

(3.32)

which confirms (3.28).

Using this corollary, it is possible to prove the theorem, which is the purpose
of this section:

Theorem 1.

∑
Γ∈T

∆DΓ

|Aut(Γ)|
=

∑
γ=

(∏
i
γi

)
∈F

ωD(γi)≤0

∑
Γ̃∈T

∣∣∣I(Γ̃|γ)
∣∣∣

|Aut(γ)|
∣∣∣Aut(Γ̃)

∣∣∣γ ⊗ Γ̃. (3.33)

Proof. The right hand side of the statement can be rewritten using corollary 1:

∑
Γ∈T

∑
γ=

(∏
i
γi

)
∈F

ωD(γi)≤0

∑
Γ̃∈T

∣∣∣{γ′ ⊆ Γ
∣∣∣γ′ ' γ and Γ/γ′ ' Γ̃

}∣∣∣
|Aut(Γ)|

γ ⊗ Γ̃.
(3.34)

3.3 Sum of the coproducts of all 1PI graphs 27

Interchanging sums is permissible, because the grading guaranties that the left
hand side of the statement, restricted on a certain loop number, will be a finite
sum of tensor products. Performing the two inner sums and taking definition of
the relation E in (3.2) into account, gives the result

=
∑
Γ∈T

∑
γ′EΓ

1

|Aut(Γ)|
γ′ ⊗ Γ/γ′, (3.35)

where the inner sum coincides with the definition of the coproduct on Feynman
graphs.

This formula gives a non-trival check of the coproduct computation in feyn-
cop. Clearly, identity (3.33) can be restricted to graphs with a certain residue r,
because the cographs carry the same residue as the original graph, and a certain
loop number L using the grading:

∑
Γ∈T

h1(Γ)=L
res(Γ)=r

∆DΓ

|Aut(Γ)|
=

∑
l1,l2≥0
l1+l2=L

∑
γ=

(∏
i
γi

)
∈F

ωD(γi)≤0
h1(γ)=l1

∑
Γ̃∈T

h1(Γ̃)=l2
res(Γ̃)=r

∣∣∣I(Γ̃|γ)
∣∣∣

|Aut(γ)|
∣∣∣Aut(Γ̃)

∣∣∣γ ⊗ Γ̃. (3.36)

feyncop implements a unit test which uses this formula to check the computation
if all graphs of a given loop number and a certain residue type are given as input.
This check was performed for QED, ϕ3 and ϕ4 graphs up to at least fourth loop
order and the residue types in RE ∪RV . Additional checks were also performed
with graphs of residue types not in RE ∪RV .

Example To illustrate the check, which can be performed using identity (3.33),
an example is given.

Consider the sum of all two loop, propagator residue type ϕ4-graphs weighted
by their symmetry factor:

X2 :=
∑
Γ∈T

h1(Γ)=2
res(Γ)=

Γ

|Aut(Γ)|
=

1

8
+

1

12
.

The coproducts of both graphs in four dimensions are

∆4

()
= I⊗ + ⊗ I + ⊗ + ⊗

∆4

()
= I⊗ + ⊗ I + 3 ⊗ .

28 3. THE HOPF ALGEBRA OF FEYNMAN GRAPHS

Therefore, applying the coproduct to the sum yields

∆4X2 = I⊗X2 +X2 ⊗ I +
1

8
⊗ +

3

8
⊗ .

On the other hand identity (3.36) gives:

∆4X2 =
∑
Γ∈T

h1(Γ)=2
res(Γ)=

∆DΓ

|Aut(Γ)|
= I⊗X2 +X2 ⊗ I+

+
∑

γ=

(∏
i
γi

)
∈F

ω4(γi)≤0
h1(γ)=1

∑
Γ̃∈T

h1(Γ̃)=1

res(Γ̃)=

∣∣∣I(Γ̃|γ)
∣∣∣

|Aut(γ)|
∣∣∣Aut(Γ̃)

∣∣∣γ ⊗ Γ̃,

where the trivial summands were already evaluated in accordance to the special
values given in (3.22).

The only relevant graphs for the sum over the subgraphs γ on the right hand

side are and , because these are the only 1PI, ϕ4, one-loop graphs with

ω4(γ) ≤ 0. For the sum over the cographs Γ̃ only has to be considered,

because it is the only 1PI, one-loop graph with two external legs.
Calculating the numbers of insertions,∣∣∣I (∣∣∣)∣∣∣ = 2

∣∣∣I (∣∣∣)∣∣∣ = 24,

which in this case only depend on the possible external leg permutations and the
orders of the automorphism groups,∣∣∣Aut

()∣∣∣ = 4
∣∣∣Aut

()∣∣∣ = 16,

yields the same result as the direct calculation above:

∑
γ=

(∏
i
γi

)
∈F

ω4(γi)≤0
h1(γ)=1

∑
Γ̃∈T

h1(Γ̃)=1

res(Γ̃)=

∣∣∣I(Γ̃|γ)
∣∣∣

|Aut(γ)|
∣∣∣Aut(Γ̃)

∣∣∣γ ⊗ Γ̃ =

=
2

4 · 4
⊗ +

24

16 · 4
⊗ .

Chapter 4

Zero-dimensional QFT

Although, most interacting quantum field theories are hard to solve in general,
zero-dimensional quantum field theories form an exception, which is worth study-
ing, especially for the analysis of Feynman diagram topologies. The topologies
of graphs are independent of the dimension of spacetime. A solution of the zero-
dimensional theory can be used to check the validity of the graph topologies for
the D-dimensional case. To validate the Feynman graph generation with the
program feyngen, the perturbation expansion of a zero dimensional quantum
field theory was used. The following chapter sketches the procedure to obtain a
perturbation expansion from such a field theory guided by explicit examples of
the necessary calculations.

4.1 ϕk-theory

4.1.1 Generating function

For a zero-dimensional ϕk-theory on a single point the generating function of the
graphs is given, similar to [8], as,

Zϕk(a, λ, j) :=

∫
R

dϕ√
2πa

e−
ϕ2

2a
+λϕ

k

k!
+jϕ, (4.1)

where a counts the number of edges (including external ones), j counts the number
of source vertices and λ counts the number of internal vertices. The measure is
chosen such that Zϕk(a, 0, 0) = 1 ∀a > 0, meaning that the empty graph is
assigned the symmetry factor 1. Of course, there is no propagation in a zero
dimensional field theory of a single point. Therefore, the propagator is simulated
by the constant self interaction amplitude a.

30 4. ZERO-DIMENSIONAL QFT

For general, possibly odd, k ≥ 3, this integral is only convergent if λ = 0.
But from a perturbative view point, a formal power series can still be obtained
by expanding the j, λ factors and pulling the summations to the front:

Zϕk(a, λ, j) =

∫
R

dϕ√
2πa

{
e−

ϕ2

2a

∑
n≥0

1

n!

(
λϕk

k!

)n∑
m≥0

1

m!
(jϕ)m

}
(4.2)

⇒ Z̃ϕk(a, λ, j) :=
∑
n,m≥0

∫
R

dϕ√
2πa

{
e−

ϕ2

2a
1

n!m!

(
λϕk

k!

)n
(jϕ)m

}
. (4.3)

Z̃ϕk gives a more suitable definition, because the integral converges, resulting in
a well defined formal power series. The series is not convergent for λ > 0, but in
the present case only the enumerative properties of the series are of interest and
questions of convergence can be ignored.

The sum over monomials in ϕ has the combinatorical interpretation of corollas,
entities consisting of a vertex (mirroring the λ factor) with k nodes connected to
it (associated with the ϕk factor coming with each λ),

ϕ ϕ ϕ

λ

︸ ︷︷ ︸
k-times

and source nodes connected to source vertices ϕ and j factors:

ϕ j

The integration can be interpreted as application of Wick’s theorem acting on
the monomials in ϕ by gluing the nodes associated to the ϕ-factors together in all
possible ways, so called Wick contractions. By gluing corollas and source vertices
together all all Feynman graphs can be obtained.

The factorials in the denominator of the summands correspond to a division
by the total size of the relevant symmetry group acting on these corollas and
the source vertices. The number of Wick contractions yielding isomorphic graphs
corresponds to the orbit size of these graphs under this symmetry group. Ap-
plying the orbit stabilizer theorem, every term obtains the inverse of the size of
the subgroup stabilizing the graph under the action of the full symmetry group,
such that Z̃ϕk is equal to a sum over all non-isomorphic graphs weighted by the
inverse of that stabilizer (i.e. their symmetry factor).

4.1 ϕk-theory 31

In this case, Wick’s Theorem takes the simple form,∫
R

dϕ√
2πa

ϕ2l e−aϕ
2

=
1

al
(2l − 1)!! ∀l ∈ N (4.4)

∫
R

dϕ√
2πa

ϕ2l+1 e−aϕ
2

= 0 ∀l ∈ N, (4.5)

with which the formal power series can be written as

Z̃ϕk(a, λ, j) =
∑
l≥0

∑
n,m≥0

nk+m=2l

(2l − 1)!!

n!m!(k!)n
alλnjm. (4.6)

and a closed form for the coefficient in every order if a, λ and j is won.

Example For a ϕ3 theory the terms up to a3 are:

Z̃ϕ3(a, λ, j) = 1 +
1

2
j2a+

(
1

8
j4 +

1

2
jλ

)
a2+

+

(
1

48
j6 +

5

12
j3λ+

5

24
λ2

)
a3 + . . .

(4.7)

In accordance to the combinatorical interpretation stated above, every term in
this expansion can be identified with a sum over the symmetry factors of all non-
isomorphic ϕ3 Feynman graphs (without fixed legs) with the number of source
vertices, internal vertices and edges corresponding to the powers in j, λ and a.

In this case the corresponding series in diagrammatic notation is:

Z̃ϕ3(a, λ, j) = 1 +
1

2︸︷︷︸
1
2
j2a

+
1

8︸︷︷︸
1
8
j4a2

+
1

2︸ ︷︷ ︸
1
2
jλa2

+
1

48︸ ︷︷ ︸
1
48
j6a3

+

+
1

6
+

1

4︸ ︷︷ ︸
5
12
j3λa3

+
1

12
+

1

8︸ ︷︷ ︸
5
24
λ2a3

+ . . .
(4.8)

Crossed source vertices correspond to j-factors, dotted vertices to λ-factors and
every edge corresponds to a power in a.

Note, the closed form of the perturbative expansion of a zero dimensional field
theory in (4.6) can be interpreted as an expansion of a general field theory with
Feynman rules assigning the amplitude 1 to every graph.

32 4. ZERO-DIMENSIONAL QFT

If all the non-isomorphic graphs for a ϕk quantum field theory shall be gener-
ated, equation (4.6) can be used to check the validity of the sum of the computed
symmetry factors by comparing it with a term in the series as done in the example.

feyngen performs this check automatically if all graphs contributing to a
certain summand in Z̃ are computed.

4.1.2 Connected graphs

Usually, only more restricted sets of diagrams are of interest. Because Z̃ϕk(a, λ, j)
effectively counts labeled objects, a consequence of the weighting with the symme-
try factor, the exponential formula from the field of labeled counting, as stated for
instance in [14] or [7], can be applied to obtain the power series that enumerates
connected graphs.

The exponential formula gives the simple correspondence between the gener-
ating function Z̃ϕk(a, λ, j) of all graphs and the generation function Wϕk(a, λ, j)
of the connected graphs,

Z̃ϕk(a, λ, j) = Z̃ϕk(0, 0, 0)eWϕk
(a,λ,j) (4.9)

⇒ Wϕk(a, λ, j) = log

(
Z̃ϕk(a, λ, j)

Z̃ϕk(0, 0, 0)

)
. (4.10)

The expansion of Zϕk starts with a 1, therefore using,

log(1 + x) = −
∑
n≥1

(−1)n

n
xn, (4.11)

a formal power series for Wϕk(a, λ, j) could be obtained.
Unfortunately, the above expansion (4.11) is not suitable for a practical calcu-

lation of Wϕk(a, λ, j), because calculating higher powers of Z̃ϕk becomes a highly
exhaustive task for higher orders. For a more efficient explicit calculation of the
connected diagrams the reciprocal of the generating function Z̃ϕk is needed.

Abbreviating,

Z̃ϕk(a, λ, j) =
∑
l≥0

alzl(λ, j) (4.12)

with

zl(λ, j) :=
∑
n,m≥0

nk+m=2l

(2l − 1)!!

n!m!(k!)n
λnjm (4.13)

4.1 ϕk-theory 33

and

1

Z̃ϕk(a, λ, j)
=:
∑
l≥0

alzrec
l (λ, j), (4.14)

the coefficients of the reciprocal power series can be computed following the stan-
dard procedure:

1 =
∑
l≥0

alzrec
l (λ, j)

∑
l′≥0

al
′
zl′(λ, j) =

=
∑
L≥0

aL
L∑
l=0

zrec
l (λ, j)zL−l(λ, j),

(4.15)

which yields a recursion relation for zrec
l (λ, j):

zrec
0 (λ, j) = 1

zrec
L (λ, j) = −

L−1∑
l=0

zrec
l (λ, j)zL−l(λ, j) ∀L ≥ 1.

(4.16)

With this result, a recursion relation for the coefficients of

Wϕk(a, λ, j) =
∑
l≥1

alwl(λ, j) (4.17)

can be given. Differentiating equation (4.10) on both sides by a,

∂Wϕk(a, λ, j)

∂a
=

∂Z̃
ϕk

(a,λ,j)

∂a

Z̃ϕk(a, λ, j)
, (4.18)

and plugging in the power series yields the relation,∑
l≥0

(l + 1)alwl+1(λ, j) =
∑
l≥0

(l + 1)alzl+1(λ, j)
∑
l′≥0

al
′
zrec
l′ (λ, j) =

=
∑
L

aL
L∑
l=0

(l + 1)zl+1(λ, j)zrec
L−l(λ, j),

(4.19)

from which a recursion can be read off,

⇒ (L+ 1)wL+1(λ, j) =
L∑
l=0

(l + 1)zl+1(λ, j)zrec
L−l(λ, j) ∀L ≥ 0 (4.20)

⇒ wL(λ, j) =
1

L

L∑
l=1

lzl(λ, j)z
rec
L−l(λ, j) ∀L ≥ 1 (4.21)

34 4. ZERO-DIMENSIONAL QFT

Example For ϕ3 theory the first coefficients zrec
l (λ, j), calculated using the

recursion formula (4.16), are:

zrec
0 (λ, j) = 1

zrec
1 (λ, j) = −1

2
j2

zrec
2 (λ, j) = −1

8
j4 − 1

2
jλ+

(
1

2
j2

)2

=
1

8
j4 − 1

2
jλ

(4.22)

Using recursion (4.21), the first coefficients wl(λ, j) can be calculated,

w1(λ, j) =
1

2
j2

w2(λ, j) =
1

2

(
−1

4
j4 + 2

(
1

8
j4 +

1

2
jλ

))
=

1

2
jλ

w3(λ, j) =
1

3

(
1

16
j6 − 1

4
j3λ+ 2

(
− 1

16
j6 − 1

4
j3λ

)
+

+ 3

(
1

48
j6 +

5

12
j3λ+

5

24
λ2

))
=

1

6
j3λ+

5

24
λ2

(4.23)

This corresponds to the diagrammatic series of connected graphs:

Wϕ3(a, λ, j) =
1

2︸︷︷︸
1
2
j2a

+
1

2︸ ︷︷ ︸
1
2
jλa2

+
1

6︸︷︷︸
1
6
j3λa3

+
1

12
+

1

8︸ ︷︷ ︸
5
24
λ2a3

+ . . .
(4.24)

4.2 |φ|2A-theory

Additionally, QED graphs with two types of edges, one directed and one undi-
rected, will be generated. To check this computation, another generating function
needs to be introduced. The topology of the diagram is not influenced by the
spin characteristics of the theory. Therefore, it is enough to take the generating
function of a theory with one charged scalar field φ and a neutral scalar field A,
interacting via a q|φ|2A term, mimicking the qψ̄ /Aψ interaction.

The generating function

Z|φ|2A(a, q, j, η, η̄) =

∫
R

dA√
2πa

∫
C

d2φ

πa
e−

A2+2|φ|2
2a

+q|φ|2A+jA+ηφ̄+η̄φ (4.25)

is normalized such that Z|φ|2A(a, 0, 0, 0, 0) = 1 ∀a > 0. The a again gives a
constant self-interaction amplitude. The expansion around q = 0 under the

4.2 |φ|2A-theory 35

integral is performed and integration and summation are interchanged, yielding
a formal power series:

Z̃|φ|2A(a, q, j, η, η̄) =
∑

n,m,s,t≥0

∫
R

dA√
2πa

∫
C

d2φ

πa

{
e−

A2+2|φ|2
2a ×

× qn

n!

(
A|φ|2

)n jm
m!
Am

ηs

s!
φ̄s
η̄t

t!
φt
}
.

(4.26)

Using ∫
C

d2φ

πa
|φ|2le−

|φ|2
a = l!al ∀l ∈ N (4.27)

∫
C

d2φ

πa
φsφ̄te−

|φ|2
a = 0 ∀s, t ∈ N and s 6= t, (4.28)

the integration can be performed term wise:

Z̃|φ|2A(a, q, j, η, η̄) =
∑
l≥0

al
∑

n,m,r≥0
m+n+2n+2r=2l

(m+ n+ 1)!!(2n+ 2r)!

n!m!(r!)2
qnjm|η|2r.

(4.29)

The connected diagrams can be obtained using the exponential formula as in the
last section. The explicit calculation is performed in the same way as depicted
for ϕk-theory.

36 4. ZERO-DIMENSIONAL QFT

Chapter 5

Diagram generation

5.1 Overview

The python program feyngen can generate ϕk for k ≥ 3 and QED diagrams
ready to be used in green’s function calculations. The main purpose of feyngen
is to provide input for the coproduct calculation in feyncop.

Developing feyngen, the focus was on the generation of Feynman diagrams
with comparatively large loop orders. For instance, all 130516 1PI, ϕ4, 8-loop
diagrams with four external legs can be generated, together with their symmetry
factor, within eight hours and all 342430 1PI, QED, vertex residue type, 6-loop
diagrams can be generated in three days both on a standard end-user computer.

Additionally to the computation of non-isomorphic diagrams, feyngen cal-
culates the symmetry factors of the resulting graphs. Handling of leg-fixed and
non-leg-fixed graphs is implemented. Furthermore, options are available to filter
for connected, 1PI, vertex-2-connected and tadpole free graphs.

To achieve the high speed for the computation feyngen relies on the estab-
lished nauty package.

5.2 Sketch of the implementation of feyngen

The graphs in feyngen are represented as edge lists or respectively as an ordered
sequence representing the multiset Γ[1] of a graph Γ as defined in definition 3.
The edges themselves are stored as pairs of vertices. Vertices are represented
by integers ≥ 0. The vertex set is not explicitly stored, but every vertex is
given implicitly by the edges incident to it. This is possible, because vertices
with valency 0 are not required. Internal and external edges are stored equally.
External vertices are only characterized by their valency being 1.

In the first step of the computation of non-isomorphic Feynman diagrams, the

38 5. DIAGRAM GENERATION

nauty programs geng and multig, whose implementation is discussed in [11],
are used to compute non-isomorphic multigraphs without self-loops.

feyngen decorates these diagrams with self-loops if the generation of tadpole
diagrams is requested, until every vertex has the desired vertex type.

If the generation of QED graphs is required, the possible ways to color and
direct the graph’s edges as photon or fermions, to yield a valid QED graph, are
computed.

Afterwards, the filters requested by the given options are tested on the graph.
If the graph fulfills all desired properties, the algorithm continues. Next, if not
otherwise stated by the parameters, the different topologies resulting from possi-
ble permutations of the external legs are computed.

To calculate the order of the automorphism group, the edge and vertex colored
multigraph must be converted to a vertex colored, simple graph. This conversa-
tion is achieved by adding auxiliary colored vertices, representing the colored or
multiple edges.

In the last step, using nauty, the order of the automorphism group of the
graph is computed and it is ensured that by coloring, adding self-loops or per-
muting the external legs no isomorphic graphs were generated.

5.3 Check of validity

To check the validity of the diagram generation, the results of chapter 4 were
used. If feyngen calculates all diagrams or all connected diagrams of a given
class, the sum of the symmetry factors is compared to an corresponding term in
a power series, associated to a zero dimensional theory as shown in the referred
chapter.

Another test for the computation of 1PI graphs is possible in conjunction with
feyncop. It is described in section 6.3.

5.4 Manual of feyngen

5.4.1 Overview

Because feyngen is a program optimized to generate non-isomorphic high loop
Feynman diagrams, the only mandatory parameter for feyngen is the order in
~ in the perturbation series of the class of diagrams to be generated. This corre-
sponds to the number

h1(γ)− fγ + 1,

5.4 Manual of feyngen 39

where fγ is the number of connected components of the graphs γ to generate. For
connected graphs, fγ = 1, this number is equivalent to the loop number h1(γ).

For example, the call to feyngen,

$./feyngen 3 4 5

will generate all connected 3, 4 and 5 loop vacuum diagrams and all disconnected
diagrams which correspond to these loop orders in respect to their order in ~ in
the perturbation series of ϕ4 theory.

5.4.2 Options and Parameters

Additionally to the loop number, the generation can be controlled by various
options. feyngen called with the option --help prints the list of all possible
program options together with a short description.

$./feyngen --help

For instance, only graphs with certain properties can be generated. Such restric-
tions on the graphs generated can be set by the following options:

-c / --connected
Generate only connected graphs.

-p / --1PI
Generate only 1PI graphs.

-v / --vtx2cntd
Generate only 2-vertex connected graphs.

-t / --notadpoles
Generate only non-tadpole graphs.

By default, feyngen generates ϕ4 graphs. The two options:

-k# / --valence=#
Generate graphs with vertex valence # for a scalar ϕ# theory.

--qed
Generate graphs for QED.

can be used to alter the type of graphs generated.
The external leg structure of the graphs is determined by the parameters,

-j# / --ext legs=#
Set the total number of external legs # of ϕk graphs.

40 5. DIAGRAM GENERATION

-b# / --ext photon legs=#
Set the number of external photon legs # of QED graphs.

-f# / --ext fermion legs=#
Set the number of external fermion legs # of QED graphs.

depending on whether graphs for ϕk-theory or for QED are generated. By default,
only graphs without external legs are given as output.

Additionally, the behaviour under graph isomorphisms of the external legs
can be controlled:

-u / --no ext label
External legs of graphs are not considered as fixed if this option is set. This
option influences isomorphism testing and symmetry factor calculation of
graphs.

If not stated otherwise, leg-fixed diagrams are generated.

5.4.3 Output of ϕk-graphs

Representation of graphs

Graphs are represented as edge lists. An edge is represented by a pair of vertices
or a triple of two vertices and an integer, representing the weight of the edge.
The pairs or triples are embraced by brackets. Vertices are labeled by integers.

So for example

[2,3] and [6,4,1]

represent one edge without weight between the vertices 2 and 3 and one of weight
1 between the vertices 4 and 6. For QED graphs edges with weight 1 will depict
oriented fermion edges, so [6,4,1] can be interpreted as an fermion pointing
from vertex 6 to vertex 4.

External edges are not distinguished from internal edges, except that they are
incident to an external one-valent vertex as in definition 3.

The edge list is embraced by brackets and prefixed by a G to simplify the usage
of the output with maple.

Example The graphs

2 3
0 1

and 1 2
0

5.4 Manual of feyngen 41

are represented as

G[[1,0],[1,0],[2,0],[3,1]] and G[[0,0],[1,0],[2,0]],

where in the first diagram 0 and 1 are the internal vertices and 2 and 3 are external
vertices. In the second diagram 0 is the only internal vertex with 1 and 2 depicting
external vertices. The labeling of the vertices is auxiliary and is used to give a
representative of the isomorphy class of the graph. The labeling is assigned using
nauty, which chooses a canonical labeling unique for every isomorphy class of
graphs. The labeling is chosen, such that the external vertices carry the highest
labels.

Output of graph sums

The output format of feyngen is designed to be readable by a maple program.
Therefore, the graphs generated by feyngen are written as a sum of graphs with
every graph weighted by its symmetry factor.

For instance, the sum of all ϕ3 2-loop graphs without external legs, with each
graph weighted by its symmetry factor, depicted diagrammatically as

1

8

0 1
+

1

12
0 1

can be generated by feyngen as follows:

$./feyngen 2 -k3

phi3_j0_h2 :=

+G[[0,0],[1,0],[1,1]]/8

+G[[1,0],[1,0],[1,0]]/12

;

Where the 2 in the command line stands for diagram generation of order ~2 and
-k3 for ϕ3-theory, such that only graphs with three valent vertices are generated.

Symmetry factors As can be seen in the above example, the graphs are given
weighted by their symmetry factor. The format is

G[...]/Aut,

where Aut is the order of the automorphism group of the graph.
Note that in general, the calculation of the symmetry factor depends on the

-u option if external legs are present, depending on whether external legs are
labeled or not. An explicit example for the behaviour of the -u option is given in
section 5.4.5.

42 5. DIAGRAM GENERATION

Distinguished name for maple usage

The sum of graphs is given a name, which indicates the loop number(s), the
number of external edges and the theory type.

That means, the output is always of the form:

phi(k)_j(m)_h(L) :=

+G[...]/Aut1

+G[...]/Aut2

+...

...

;

Where (k) is replaced with the appropriate theory degree, (m) is substituted by
the number of external edges and (L) is given by the order in ~ of the graphs.

5.4.4 Output of QED graphs

QED diagrams carry additional information, because they have two different edge
types. These edge types are associated with different weights. Consequently, an
QED edge [v1,v2,w] is depicted as a pair of vertices v1,v2 together with the
edge’s weight w.

Weight 1 is assigned to a fermion propagator and weight 2 is assigned to a
photon propagator. QED Feynman diagrams are represented as edge lists as in
the last section. Additionally, fermion propagators carry orientation information,
therefore fermion edges are depicted as ordered pairs of vertices.

Example For example, the graph

2 3
0 1

is represented as

G[[0,1,1],[1,0,1],[2,0,2],[3,1,2]]

and

4

5

3

1

2

0

,

5.4 Manual of feyngen 43

is depicted as

G[[1,0,1],[2,1,1],[2,0,2],[0,3,1],[5,2,1],[4,1,2]].

The orientation of the fermion lines matches the ordering of the vertices in the
edges. feyngen only generates graphs with valid QED vertex types as described
in definition 3.

Output of graph sums

The output of graph sums is similar to the output of ϕk graphs. As for the
treatment of ϕk graphs, an example for the case of QED diagram generation is
given.

Example Consider the sum of all two loop, photon propagator residue type,
1PI, QED diagrams

23

4 5

0 1
+

1 2

4 5

0 3
+

2

3

4 5

0 1
.

feyngen generates them if it is called with the command line

$./feyngen --qed 2 -b2 -p

qed_f0_b2_h2 :=

+G[[0,1,1],[1,2,1],[2,3,1],[3,0,1],[3,2,2],[4,0,2],[5,1,2]]/1

+G[[0,1,1],[1,2,1],[2,3,1],[3,0,1],[2,1,2],[4,0,2],[5,3,2]]/1

+G[[0,3,1],[1,2,1],[2,0,1],[3,1,1],[3,2,2],[4,0,2],[5,1,2]]/1

;

--qed indicates QED graph generation, 2 stands for 2-loop diagrams (~2), -b2
makes feyngen generate graphs with 2 photon legs and the -p option filters out
non 1PI graphs.

Distinguished name for maple usage

The name of the graph sum for QED diagrams is slightly modified:

qed_f(m1)_b(m2)_h(L) :=

...

;

Instead of j(m) indicating the total number of legs as in the case of ϕk graphs,
f(m1) and b(m2) are given with (m1) being replaced by the number of fermion
legs and (m2) by the number of photon legs.

44 5. DIAGRAM GENERATION

5.4.5 Labeled and unlabeled legs

Again, without the -u option the external legs are considered as fixed. For this
reason the first and the second graphs in the last example are not isomorphic and
all diagrams carry a symmetry factor of 1.

The -u option controls this behaviour and influences the generation of non-
isomorphic graphs and the calculation of symmetry factors appropriately.

Example Consider again the two loop, photon propagator, 1PI, QED diagrams,
but without fixed external legs,

01

4 5

3 2
+

1

2

3

2

4 5

0 1
.

Because of the additional freedom in permuting the edges and vertices, the first
two diagrams of the last example belong to the same isomorphy class.

Furthermore, the last diagram gains an additional symmetry generator of
index 2, such that the order of the automorphism group increases from 1 to 2.

This can be reproduced using feyngen with the -u option:

$./feyngen --qed 2 -b2 -p -u

qed_f0_b2_h2_unlab_ext_legs :=

+G[[0,1,1],[1,3,1],[2,0,1],[3,2,1],[1,0,2],[4,3,2],[5,2,2]]/1

+G[[0,2,1],[1,3,1],[2,1,1],[3,0,1],[3,2,2],[4,0,2],[5,1,2]]/2

;

The text unlab ext legs succeeding the name of the graph sum acknowledges
this behaviour for later reproducibility.

Chapter 6

Coproduct computation

6.1 Overview

The python program feyncop can be used to compute the reduced coproduct
∆̃D of given 1PI graphs as defined in (3.4). The output of feyngen can be piped
into feyncop to calculate the reduced coproduct of all 1PI graphs of a given loop
order and residue type.

By default, the subgraphs composed of superficially divergent, 1PI graphs
of the input graphs are computed and given as output. These correspond to
the left factor of the tensor product originating the coproduct. Optionally, the
complementary cographs, giving account to the right factor of the tensor product,
can be computed. Furthermore, there is the option to identify the sub- and
cographs with unlabeled 1PI graphs.

Additionally, the input graphs can be filtered for primitive graphs.
The coproduct calculation does only take the degree of divergence obtained

by power counting, formulated by the map ωD into account. Further information,
as gained by Furry’s theorem in the case of QED, is not used.

6.2 Sketch of the implementation of feyncop

First feyncop reads the input graphs, piped into the python program, in a man-
ner compatible with feyngen.

Internally, graphs are represented as edge lists as in the implementation of
feyngen. Optionally, a weight can be assigned to every edge. By default, a
weight of 2 for every edge is assumed.

To calculate the coproduct, the subgraphs of the given graph are computed.
They are tested for one particle irreducibleness and superficially divergence of
their connected components. Therefore, the computation relies on a fast 1PI

46 6. COPRODUCT COMPUTATION

testing function build upon a DFS algorithm as for instance described in [4].
If required, the edges of the cograph are computed by shrinking the internal
subgraph edges subsequently.

If the sub- and cographs are to be identified with full fledged Feynman graphs,
two-valent vertices are removed from the cograph and external legs are added in
accordance to the vertex types of the graph.

To identify the subgraphs with unlabeled ones the nauty package is used
to compute a canonical labeling. Similar types of resulting tensor products are
collected and given as output.

6.3 Check of validity

The reduced coproduct computation was checked for validity by testing the results
for the coassociativity and the gradedness of the coproduct derived in chapter 3.

Additionally, the coproduct of a sum of 1PI graphs of a given graded class of
graphs has been checked for accordance with theorem 1. This check also confirms
the validity of the computation of 1PI diagrams by feyngen.

6.4 Manual of feyncop

6.4.1 Overview

A graph or a sum of graphs, for which the reduced coproduct shall be calculated,
must piped as input into feyncop.

For example,

$ echo "G[[1,0],[1,0],[1,0],[2,0],[3,1]]" | ./feyncop -D4

where the echo command is used to pipe the input into feyncop, will give the
three proper non empty subgraphs of the diagram

2 3

0 1
,

which are, in four dimensions, composed of superficially divergent 1PI graphs.
Details to the output format will be given in section 6.4.4 and the following ones
with elaborate examples.

QED graphs are handled the same way, except for the weights that must be
given with the edges.

6.4 Manual of feyncop 47

For instance, the subgraphs for the reduced coproduct ∆̃4 of the graph

2

3

4 5

0 1

or given in the G-format as

G[[0,3,1],[1,2,1],[2,0,1],[3,1,1],[3,2,2],[4,0,2],[5,1,2]]

can be calculated using the command line

$ echo "G[[0,3,1],[1,2,1],[2,0,1],[3,1,1],[3,2,2],[4,0,2],[5,1,2]]"

| ./feyncop -D4

.

6.4.2 Option and Parameters

Similar to feyngen,

$./feyncop --help

prints a list of the available options and parameters with a short summary.
The parameter D, altering the dimension parameter of the reduced coproduct

∆D, is controlled by the option

-D# / --dimension=#
Set the dimension for the calculation of the coproduct.

By default D = 4 is assumed.
By default, feyncop calculates only the subgraphs, which are composed of

superficially divergent 1PI graphs, of the input graphs. This behaviour can be
changed by the options:

-c / --cographs
Calculate and print the cographs additionally to the corresponding sub-
graphs. Output format: Sum of graphs with a list of the subgraphs, com-
posed of superficially divergent, 1PI graphs, and their cograph.

-u / --unlabeled
Transform the subgraphs and the cographs to unlabeled graphs and identify
similar tensor products. Output format: Sum of tensor products.

-p / --primitives
Only filter the input graphs for primitive graphs. Output format: Sum of
graphs.

48 6. COPRODUCT COMPUTATION

6.4.3 Reference to edges

feyncop represents subgraphs as a set of edges of the original graph. This has
the advantage that the location of the subgraph in the original graph is implicitly
included in the output. This information is crucial for some applications of the
coproduct of a Feynman diagram. The edges are referred to by their index in the
edge list of the G-format, as described in the last chapter, starting with 0.

Example The graph, with an auxiliary vertex labeling,

6

4

7

5

2

0

3

1

,

represented in the G-format by

G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],[4,0],[5,1],[6,2],[7,3]],

will be assigned the following internal edge labels,

5

21 43

0

.

Here, labels for external legs were omitted for simplicity. They are not of interest
for the description of subgraphs.

6.4.4 Output of subgraphs

By default, only the subgraphs composed of superficially divergent 1PI graphs
are outputted. The output is given as pairs of the original graph in the G-format
and of the subgraphs, each split into its connected components.

These pairs are preceded by an D to mark an new object suitable to be read
by maple.

Therefore, giving a single graph as input, the output will take the form:

6.4 Manual of feyncop 49

D[(original graph), [

{ { 1. subgraph’s 1. connected component’s edges },

{ 1. subgraph’s 2. connected component’s edges },

...

},

{ { 2. subgraph’s 1. connected component’s edges }, ... }

...

]]

Example Taking again the graph , represented in the G-format as above,

the output to the call,

$ echo "G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]]" | ./feyncop -D4

will look as follows:

+ D[G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],[4,0],[5,1],[6,2],[7,3]],

[{{1,2}}, {{3,4}}, {{1,2},{3,4}}]]

;

The original graph is paired with the information about the subgraphs composed
of superficially divergent components in [{{1,2}}, {{3,4}}, {{1,2},{3,4}}].
The three sets in the list correspond to the three subgraphs, indicated by thick
lines,

5

21

0

43 ,

5

21

0

43 and

5

21

0

43 ,

represented as the sets of sets,

{{1,2}}, {{3,4}} and {{1,2},{3,4}}.

The subgraphs are split into their connected components and every connected
component is given as a set of edge references.

6.4.5 Output of cographs

Called with the -c option, feyncop also outputs the cographs for the reduced
coproduct.

50 6. COPRODUCT COMPUTATION

With this option the output is a triple with the original graph, the subgraphs
as described above and with the corresponding cograph in the G-format.

The contracted edges of the cographs are not removed from the original edge
list, but replaced by the dummy edge [-1,-1] to simplify reference to the edges
by index.

The output will be of the form

D[(original graph), [

[{ { 1. subgraph’s 1. connected component’s edges },

{ 1. subgraph’s 2. connected component’s edges },

...

},

(cograph to 1. subgraph)],

[{ { 2. subgraph’s 1. connected component’s edges }, ... },

(cograph to 2. subgraph)],

...

]].

Example With as input,

$ echo "G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]]" | ./feyncop -D4 -c

the following outcome will be produced:

+ D[G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]],[

[{{1,2}},

G[[1,0],[-1,-1],[-1,-1],[3,1],[3,1],[3,0],

[4,0],[5,1],[6,0],[7,3]]],

[{{3,4}},

G[[1,0],[2,0],[2,0],[-1,-1],[-1,-1],[1,2],

[4,0],[5,1],[6,2],[7,1]]],

[{{1,2},{3,4}},

G[[1,0],[-1,-1],[-1,-1],[-1,-1],[-1,-1],[1,0],

[4,0],[5,1],[6,0],[7,1]]]]

]

;

The cographs, with vertex and edge labeling, corresponding to the subgraphs in
the last section

6.4 Manual of feyncop 51

5

43

0

6

4

7

5

0

1

3

,

5

21

0

6

4

7

5

2

0

1 and

5

0

6

4

7

5

0 1 ,

are represented in the G-format as

G[[1,0],[-1,-1],[-1,-1],[3,1],[3,1],[3,0],

[4,0],[5,1],[6,0],[7,3]]

,

G[[1,0],[2,0],[2,0],[-1,-1],[-1,-1],[1,2],

[4,0],[5,1],[6,2],[7,1]]

and
G[[1,0],[-1,-1],[-1,-1],[-1,-1],[-1,-1],[1,0],

[4,0],[5,1],[6,0],[7,1]].

During the calculation of the cographs, vertices are removed. Therefore, the
vertex labeling of the cographs is not compatible with the one of the original
graph. Whenever two vertices are merged, the new vertex will carry the smaller
label.

6.4.6 Output of tensor products

Called with the option -u, feyncop identifies the subgraphs and cographs with
unlabeled graphs, groups them in tensor products and sums tensor products of
similar form.

Called with this option feyncop will handle all graphs as non-leg-fixed graphs.
Giving leg-fixed graphs as input will result in less terms with higher factors than
expected.

The tensor products are given as pairs of a product of superficially divergent
connected components of the subgraphs and the cograph. The pairs are preceded
by an T to indicate the tensor product type of output. The output is a sum of
these tensor products.

Example Giving again as input,

$ echo "G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],[4,0],[5,1],[6,2],[7,3]]

" | ./feyncop -D4 -u

the output will be:

52 6. COPRODUCT COMPUTATION

+ 2/1 * T[G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]],

G[[1,0],[1,0],[2,0],[2,1],[3,2],[4,2],[5,0],[6,1]]]

+ T[(G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]])^2,

G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]]]

;

This output corresponds to the reduced coproduct calculation,

∆̃4

()
= 2 ⊗ +

()2

⊗ .

Where,

2 ⊗ ,

is represented as

2/1 * T[G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]],

G[[1,0],[1,0],[2,0],[2,1],[3,2],[4,2],[5,0],[6,1]]]

and ()2

⊗ ,

is denoted as

T[(G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]])^2,

G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]]].

Note that the labelings of the vertices of the subgraphs and cographs in this mode
of feyncop carry no resemblance to the vertex labeling of the input graph. The
labelings are again chosen using nauty’s canonical labeling algorithm. Therefore,
the graphs are representatives of the corresponding graph isomorphy class.

6.4.7 Usage in conjunction with feyngen

feyncop can also be used in conjunction with feyngen. The coproduct of every
input graph is computed and the sum of the coproducts in a format depending
on the options is given as output. The output of feyngen can be piped into
feyncop as input.

The instance,

$./feyngen 2 -j2 -k4 -pu | ./feyncop -D4

will yield the sum of the reduced coproducts, given in the D-format, of all non-leg-
fixed two loop, ϕ4, 1PI graphs with two external legs weighted by the symmetry
factor of the original graph:

6.4 Manual of feyncop 53

+ 1/8 * D[G[[1,0],[1,0],[1,1],[2,0],[3,0]],

[{{2}}, {{0,1}}]]

+ 1/12 * D[G[[1,0],[1,0],[1,0],[2,0],[3,1]],

[{{0,1}}, {{0,2}}, {{1,2}}]]

;

Where the relevant graph sum with edge and vertex labels, of which the coproduct
is calculated, is:

1

8

 0 1

2 3

2

0

1

+

1

12

1

2

0

2 3
0 1

On the other hand,

$./feyngen 2 -j2 -k4 -pu | ./feyncop -D4 -u

will yield the sum of tensor products of unlabeled graphs corresponding to the
reduced coproduct applied to the sum of all two loop, ϕ4, 1PI graphs with two
external legs weighted by their symmetry factor:

phi4_j2_h2_unlab_ext_legs_reduced_coproduct_unlabeled :=

+ 1/8 * T[G[[0,0],[1,0],[2,0]], G[[0,0],[1,0],[2,0]]]

+ 3/8 * T[G[[1,0],[1,0],[2,0],[3,0],[4,1],[5,1]],

G[[0,0],[1,0],[2,0]]]

;

This corresponds to the calculation

∆̃4

(
1

8
+

1

12

)
=

1

8
⊗ +

3

8
⊗ ,

which can be validated using the identity (3.33) as shown in the example in
section 3.3.5.

54 6. COPRODUCT COMPUTATION

6.4.8 Filtering for primitive graphs

Additionally, feyncop has the ability to filter the input graphs for primitive ones.
This behaviour is triggered by the -p option.

A convenient usage pattern is to pipe the output of feyngen of a larger
group of graphs into feyncop to obtain a set of primitive graphs with the desired
properties.

Example If all primitive, QED, vertex diagrams with three loops are desired,
the call to feyngen,

$./feyngen 3 --qed -b1 -f2 -p

to generate the 100 not necessarily primitive QED diagrams is needed.

To filter these diagrams for primitive ones, they can be piped into feyncop:

$./feyngen 3 --qed -b1 -f2 -p | ./feyncop -D4 -p

This call will result in the output

qed_f2_b1_h3_proj_to_prim :=

+ G[[1,4,1],[2,3,1],[3,6,1],[4,5,1],[5,0,1],[6,1,1],[4,3,2],

[5,2,2],[6,0,2],[0,7,1],[8,2,1],[9,1,2]]

+ G[[1,4,1],[2,3,1],[3,6,1],[4,5,1],[5,0,1],[6,1,1],[4,2,2],

[5,3,2],[6,0,2],[0,7,1],[8,2,1],[9,1,2]]

+ G[[1,2,1],[2,6,1],[3,4,1],[4,5,1],[5,1,1],[6,0,1],[3,2,2],

[4,0,2],[6,5,2],[0,7,1],[8,3,1],[9,1,2]]

+ G[[1,6,1],[2,5,1],[3,4,1],[4,1,1],[5,0,1],[6,2,1],[3,2,2],

[5,4,2],[6,0,2],[0,7,1],[8,3,1],[9,1,2]]

+ G[[1,6,1],[2,4,1],[3,2,1],[4,5,1],[5,1,1],[6,0,1],[4,0,2],

[5,3,2],[6,2,2],[0,7,1],[8,3,1],[9,1,2]]

+ G[[1,6,1],[2,5,1],[3,4,1],[4,0,1],[5,1,1],[6,3,1],[4,2,2],

[5,3,2],[6,0,2],[0,7,1],[8,2,1],[9,1,2]]

+ G[[1,4,1],[2,6,1],[3,5,1],[4,0,1],[5,1,1],[6,3,1],[4,3,2],

[5,2,2],[6,0,2],[0,7,1],[8,2,1],[9,1,2]]

;

6.4 Manual of feyncop 55

corresponding to the sum of the seven primitive, three loop, vertex diagrams in
QED:

9

8

7

1

0

2

4
5

6
3

+ 9

8

7

1

0

2

4
5

6
3

+ 9

8

7

1

0

3

2
6

5
4

+

+ 9

8

7

1

0

3
4

6

5
2

+ 9

8

7

1

0

3

6

2

5
4

+ 9

8

7

1

0

2
5

6

4
3

+

+ 9

8

7

1

0

2

4

6

5
3

.

56 6. COPRODUCT COMPUTATION

Chapter 7

Conclusion and future prospects

In the scope of this thesis, the program feyngen to generate Feynman graphs of
large loop orders and the program feyncop to calculate the coproduct of given
Feynman graphs were developed. These programs can be downloaded from:

http://people.physik.hu-berlin.de/~borinsky/feyncop/

In a future work, feyngen and feyncop could be expanded to handle graphs of
further types of quantum field theories as for instance non-abelian Yang-Mills the-
ory or spontaneously broken theories. The performance of feyngen to generate
graphs with external legs and QED graphs could still be increased significantly
by taking the automorphism groups of the graphs into account during the graph
generation.

From a larger perspective, the next step will be to implement a program that
evaluates the renormalized amplitudes of 1PI graphs by parametric intergration
techniques. First steps in this endeavour are persued in [12].

I would like to thank Dirk Kreimer for his great supervision and for his col-
orful way of teaching that I could enjoy in the last years. I wish to express
my grateful thanks to Oliver Schnetz for his great advice and steady assistance.
For numerous illuminating discussions about physics, life and everything else, I
would like to thank Olaf Krüger, Bettina Grauel, Marko Berghoff, Eric Panzer,
Lutz Klaczynski, Matthias Sars and everyone else from our group who made the
writing of this thesis such an enjoyable task.

58 7. CONCLUSION AND FUTURE PROSPECTS

Bibliography

[1] B. Bollobás. Modern Graph Theory. Graduate Texts in Mathematics.
Springer-Verlag GmbH, 1998.

[2] Francis Brown and Dirk Kreimer. Angles, scales and parametric renormal-
ization. Letters in Mathematical Physics, 103(9):933–1007, 2013.

[3] Alain Connes and Dirk Kreimer. Renormalization in quantum field theory
and the riemann–hilbert problem i: The hopf algebra structure of graphs and
the main theorem. Communications in Mathematical Physics, 210(1):249–
273, 2000.

[4] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-
erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd
edition, 2001.

[5] Matthias Sars Dirk Kreimer and Walter Suijlekom. Quantization of
gauge fields, graph polynomials and graph cohomology. arXiv.org: hep-
th/1208.6477, 2012.

[6] Kurusch Ebrahimi-Fard and Dirk Kreimer. The hopf algebra approach to
feynman diagram calculations. Journal of Physics A: Mathematical and Gen-
eral, 38(50):R385, 2005.

[7] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009.

[8] Claude Itzykson and Jean-Bernard Zuber. Quantum field theory. Interna-
tional series in pure and applied physics. McGraw-Hill, New York, NY, 1980.
Also a reprint ed.: Mineola, Dover, 2005.

[9] Dominique Manchon. Hopf algebras, from basics to applications to renormal-
isation, rencontres mathématiques de glanon. arXiv.org: math/0408405v2,
2003.

60 BIBLIOGRAPHY

[10] Brendan D. McKay. Practical graph isomorphism. In 10th. Manitoba Confer-
ence on Numerical Mathematics and Computing; Congressus Numerantium,
30, pages 45–87. Department of Computer Science, Vanderbilt University,
1981.

[11] Brendan D McKay. Isomorph-free exhaustive generation. Journal of Algo-
rithms, 26(2):306–324, 1998.

[12] Erik Panzer. On the analytic computation of massless propagators in dimen-
sional regularization. arXiv.org: hep-th/1305.2161, 2013.

[13] WalterD. Suijlekom. Renormalization of gauge fields: A hopf algebra ap-
proach. Communications in Mathematical Physics, 276(3):773–798, 2007.

[14] H.S. Wilf. Generating Functionology. Ak Peters Series. A K Peters, 2006.

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Abschlussarbeit selbständig und
nur mit den angegebenen Hilfsmitteln verfasst habe.

Ich erkläre ausdrücklich, dass ich sämtliche in der Arbeit verwendeten fremden
Quellen, auch aus dem Internet, als solche kenntlich gemacht habe. Insbesondere
bestätige ich, dass ich ausnahmslos sowohl bei wörtlich übernommenen Aussagen
bzw. unverändert übernommenen Tabellen, Grafiken u. Ä. (Zitaten) als auch
bei in eigenen Worten wiedergegebenen Aussagen bzw. von mir abgewandelten
Tabellen, Grafiken u. Ä. anderer Autorinnen und Autoren (indirektes Zitieren)
die Quelle angegeben habe.

Mir ist bewusst, dass Verstöße gegen die Grundsätze der Selbstständigkeit
als Täuschung betrachtet und entsprechend der Prüfungsordnung und/oder der
Allgemeinen Satzung für Studien- und Prüfungsangelegenheiten der HU (ASSP)
geahndet werden.

Die Arbeit wurde in gleicher oder ähnlicher Form bisher bei keiner anderen
Institution eingereicht.

Ort, den (Datum) Unterschrift

