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Abstract. Graphical functions are single-valued functions on the complex
plane which arise in quantum field theory. We generalize a formula by N.
Nakanishi for graphical functions in parametric space. With this result we
show that graphical functions are real analytic on the punctured complex plane
C\{0, 1}. Moreover we prove a formula that relates graphical functions of
planar dual graphs.

1. Introduction

1.1. Graphical functions. Graphical functions were introduced in [11] basically
as a tool for calculating Feynman periods in φ4 quantum field theory (see also [10]).
Some graphical functions also appear as amplitudes and as correlation functions in
N = 4 Super Yang-Mills Theory [4], [5].

Let G be a graph with three distinguished vertices labeled 0, 1, and z. We call
the vertices 0, 1, z ‘external’ while all other vertices of G are ‘internal’. We fix the
dimension

(1.1) d = 2λ+ 2 > 2

and associate to every internal vertex v of G a d-dimensional integration variable
xv ∈ Rd. The external vertices 0 and 1 correspond to the origin in Rd and a unit
vector (say the column vector (1, 0, . . . , 0)t), respectively. The vertex z is a variable
which for now is a vector in Rd (soon it will become a complex number). An edge e
between vertices u and v corresponds to the quadratic form Qe which is the square
of the Euclidean distance between u and v,

(1.2) Qe = ||u− v||2.

Moreover, every edge e has an edge weight νe ∈ R. For any subgraph g of G with
edge set Eg we define

(1.3) Ng =
∑

e∈Eg

νe

as the sum of edge weights in g.
The graphical function of G is given by the integral

(1.4) f
(λ)
G (z) =

( ∏

v internal

∫

Rd

ddxv

πd/2

)
1∏

eQ
λνe
e

,

where the first product is over all internal vertices of G and the second product is
over all edges of G.

The convergence of the above integral is equivalent to two conditions named
‘infrared’ and ‘ultraviolet’ (this is the weighted analog of Lemma 3.4 in [11]). The
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infrared condition is that any subgraph g with at least one edge and no edges
between external vertices fulfills

(1.5) (d− 2)Ng > dV int
g ,

where V int
g is the number of internal vertices v in g with the property that all edges

which are adjacent to v in G are also in g.
The ultraviolet condition is that any subgraph g with at least one edge such that

at most one of its Vg vertices is external fulfills

(1.6) (d− 2)Ng < d(Vg − 1).

By symmetry, f
(λ)
G depends only on the modulus of z and the angle between z

and the unit vector 1. Without loss of information we can hence restrict f
(λ)
G to

a two-dimensional plane. We identify this plane with the complex numbers C and
choose the complex number 1 for the unit vector with label ‘1’. Equivalently, we
may specify the vectors associated to the external vertices as

(1.7) 0 : (0, . . . , 0)t, 1 : (1, 0, . . . , 0)t, z : (Rez, Imz, 0, . . . , 0)t.

From now on we consider graphical functions as functions on C.
In [11] ‘completions’ of graphical functions were defined. In this article, however,

we use uncompleted graphs.
Examples of graphs are depicted in Figure 1.

1

0 z
G4 G7

z0

1

Figure 1: Graphical functions with four and with seven vertices.

In d = 4 dimensions G4 has the graphical function [11]

f
(1)
G4

(z) =
4iD(z)

z − z
,

where D is the Bloch-Wigner dilogarithm,

D(z) = Im(Li2(z) + log(1− z) log |z|).

The Bloch-Wigner dilogarithm is a single-valued version of the dilogarithm Li2(z) =∑∞
k=1 z

k/k2. It is real analytic on C\{0, 1} and antisymmetric under complex
conjugation D(z) = −D(z). These properties of the Bloch-Wigner dilogarithm lift
to general properties of graphical functions:

Theorem 1.1. Let G be a graph which fulfills the infrared and ultraviolet condi-

tions (1.5) and (1.6). Then the graphical function f
(λ)
G : C \ {0, 1} −→ R+ has the

following general properties:
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(G1)

(1.8) f
(λ)
G (z) = f

(λ)
G (z).

(G2) f
(λ)
G is single-valued.

(G3) f
(λ)
G is real analytic on C\{0, 1}.

It was not possible to prove real analyticity (G3) in full generality with the
methods in [11]. In this article we obtain (G3) as a consequence of an alternative
integral representation of graphical functions. This integral representation uses
parametric space where integration variables are associated to edges of the graph
[6], [1].

1.2. Graph polynomials. The graph (or Kirchhoff) polynomial of a graph G is
defined by associating a variable αe to every edge e of G and setting

(1.9) ΨG(α) =
∑

T span. tree

∏

e6∈T

αe,

where the sum is over all spanning trees T of G [7].
Spanning forest polynomials are generalizations of the graph polynomial. They

were defined and studied by F. Brown and K. Yeats [3].

Definition 1.2. Let G be a graph with external vertices 0, 1, z. Let p = {p1, . . . , pn}
(n ≤ 3) be a partition of the set {0, 1, z} of external vertices. Let Fp

G be the set of
spanning forests with n trees T1 ∪ . . . ∪ Tn such that the external vertices of pi are
in Ti (and only in Ti). The spanning forest polynomial associated to p is

(1.10) Ψp
G(α) =

∑

F∈Fp
G

∏

e6∈F

αe.

We denote the five partitions of {0, 1, z} by {01z} if n = 1, {1z, 0}, {0z, 1}, {01, z}
if n = 2, {0, 1, z} if n = 3 and drop the wavy brackets in the superscript of Ψp

G.
Let z be the complex conjugate of z ∈ C (which also serves as a label in G). We

define

(1.11) ΦG(α, z) = Ψ1z,0
G (α)(z − 1)(z − 1) + Ψ0z,1

G (α)zz +Ψ01,z
G (α).

The spanning forest polynomial Ψ01z
G is the graph polynomial ΨG while the

spanning forest polynomial Ψ0,1,z
G equals the graph polynomial ΨG/ext of the graph

G/ext that one obtains from G by identifying the three external vertices without
changing the edge labels.

Example 1.3. If we label the three edges adjacent to 0, 1, z in G4 (see Figure 1)
by 1, 2, 3, respectively, then

Ψ01z
G4

(α) = ΨG4
(α) = 1,

Ψ1z,0
G4

(α) = α1,

Ψ0z,1
G4

(α) = α2,

Ψ01,z
G4

(α) = α3,

Ψ0,1,z
G4

(α) = α1α2 + α1α3 + α2α3,

ΦG4
(α, z) = α1(z − 1)(z − 1) + α2zz + α3.
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Let Γ(x) =
∫∞

0
tx−1e−tdt be the gamma function. A parametric (i.e. depending

on the edge parameters αe) formula for (massive) position space amplitudes in four-
dimensional Minkowski space was given by N. Nakanishi (Equation (8-33) in [8]). In
the massless case this formula, translated into Euclidean space, gives a parametric
representation for four-dimensional graphical functions. We give an independent
proof of the parametric formula in arbitrary dimensions.

Theorem 1.4. Let G be a non-empty graph with EG edges, V int
G internal vertices,

and three external vertices 0, 1, z. We label the edges of G by 1, 2, . . . , EG and
assume that every edge e has an edge weight νe > 0. We further assume that the

graphical function f
(λ)
G exists. Let

(1.12) MG = λNG − (λ+ 1)V int
G .

Then the graphical function is given in parametric space as the projective integral

(1.13) f
(λ)
G (z) =

Γ(MG)∏EG

e=1 Γ(λνe)

∫

∆

∏EG

e=1 α
λ(1−νe)
e

ΦG(α, z)MGΨ0,1,z
G (α)λ+1−MG

Ω(α),

where

(1.14) Ω(α) =

EG∑

e=1

(−1)e−1αedα1 ∧ . . . ∧ d̂αe ∧ . . . ∧ dαEG

is the top form in PEG−1R and

(1.15) ∆ = {(α1 : α2 : . . . : αEG), αe > 0 for all e ∈ {1, 2, . . . , EG}} ⊂ PEG−1R

is the positive coordinate simplex.

Readers who are not familiar with projective integrals can specialize to an affine
integral by setting α1 = 1 and integrating the αe, e > 1 from 0 to ∞.

Theorem 2.1 gives a (Cremona-)dual parametric representation which is valid
for any edge weights νe ∈ R.

Note that MG is restricted by convergence. From (1.5) with g = G and from
(1.6) with g = G\{0, 1}, g = G\{0, z}, or g = G\{1, z} we obtain for a graph G
with no edges between external vertices

(1.16) 0 < MG < λmin {N0 +N1, N0 +Nz, N1 +Nz},

where Ni is the sum of weights of edges adjacent to the external vertex i.
One immediate advantage of the parametric representation is that for many

graphs with not more than nine vertices the graphical function can be calculated
by parametric integration developed by F. Brown [2] and E. Panzer [9].

1.3. Planar duals. An (externally) planar dual G⋆ of a graph G with external
vertices 0, 1, z is a planar dual graph which has ‘opposite’ external labels (see Figure
2, see Definition 4.1 for a precise definition).
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H7

z0

1

H⋆
7

z

1

0

Figure 2: The graphs H7 and H⋆
7 are planar duals.

In the case that MG = λ+ 1 graphical functions of dual graphs are related:

Theorem 1.5. Let G be a connected graph with external vertices 0, 1, z and edge

weights νe > 0 such that the graphical function f
(λ)
G exists and

(1.17) MG = λ+ 1.

Let G have a dual G⋆. The edges e⋆ of G⋆ are in one to one correspondence to the
edges e of G. Let the edge weights νe⋆ of G⋆ be related to the edge weight νe of G
by

(1.18) νe⋆ = 1 + λ−1 − νe.

Then,

(1.19) f
(λ)
G⋆ (z) =

∏
e Γ(λνe)∏

e⋆ Γ(λνe⋆)
f
(λ)
G (z),

where the products are of the edges in G or in G⋆, respectively.

Note that ultraviolet convergence (1.6) for a single edge e gives λνe < λ + 1.
Hence ν⋆e > 0. Similarly, positive edge weights in G ensure that the dual graphical

function f
(λ)
G⋆ is convergent.

If in four dimensions a graph G has edge weights 1 then a dual graph G⋆ has
also edge weights 1 and the graphical functions are equal if MG = 2.

One can also use duality for a planar graph G with MG 6= λ + 1 if one adds an
edge from 0 to 1 of weight (λ+1−MG)/λ, see the subsequent example and Remark
4.3.

Example 1.6. We want to calculate the four dimensional graphical function of the
graph G7 in Figure 1 with unit edge weights. We find MG7

= 1. To apply Theorem
1.5 we add an edge between 0 and 1 which contributes to the graphical function by

a factor of 1 (see Figure 2). Hence f
(1)
G7

= f
(1)
H7

. Theorem 1.5 gives f
(1)
H7

= f
(1)
H⋆

7
.

The graphical function of H⋆
7 can be calculated by the techniques completion and

appending of an edge [11]. We obtain

f
(1)
G7

= 20ζ(5)
4iD(z)

z − z
,

where ζ(s) =
∑∞

k=1 k
−s is the Riemann zeta function.
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One obtains a self dual graph H4 with MH4
= 2 if one adds an edge from 0 to 1

to G4. In this case planar duality leads to an empty statement.

Acknowledgements. The article was written while Oliver Schnetz was visiting
scientist at Humboldt University, Berlin.

2. proof of Theorem 1.4

Although we are mainly interested in the case of three external vertices 0, 1, z
the result of this section effortlessly generalizes to an arbitrary number of exter-
nal vertices z1, . . . , zV ext ∈ Rd. Definition 1.2 generalizes straighforwardly. The
generalization of (1.11) is

(2.1) ΦG(α, z) =
∑

1≤i<j≤V ext

Ψ
zizj ,(zk)k 6=i,j

G (α)||zi − zj||
2.

We first prove a (Cremona-)dual version of Theorem 1.4 which has the advantage
that it includes the case of negative edge weights. The dual spanning forest poly-
nomials are given by products over edge variables in the spanning forest,

(2.2) Ψ̃p
G(α) =

∑

F∈Fp
G

∏

e∈F

αe.

The duality transformation of spanning forest polynomials is given by a coordinate
inversion,

Ψp
G(α) =

(∏

e

αe

)
Ψ̃p

G(α
−1),(2.3)

ΦG(α, z) =
(∏

e

αe

)
Φ̃G(α

−1, z).

Theorem 2.1. Let G be a non-empty graph with edge weights νe ∈ R and external

vertices z1, . . ., zV ext ∈ Rd such that the graphical function f
(λ)
G exists. For any

set of non-negative integers ne such that ne + λνe > 0 we have the following dual

parametric representation for f
(λ)
G :

f
(λ)
G (z) =(2.4)

(−1)
∑

ene Γ(MG)∏
e Γ(ne + λνe)

∫

∆

[
(
∏

e

αne+λνe−1
e ∂ne

αe
)

1

Φ̃G(α, z)MGΨ̃(α)λ+1−MG

]
Ω(α),

where MG is given by (1.12),

(2.5) Ψ̃ = Ψ̃
z1,...,zV ext

G ,

the integration cycle ∆ is the projective positive coordinate simplex (1.15), and Ω
is the projective top form (1.14).

Remark 2.2. For negative integer λνe one may set ne = −λνe + 1 and trivially
perform the αe integration.

Proof of the theorem. The proof follows the Schwinger trick (see e.g. [6]). We first
assume that G has no edges between external vertices. By convergenceG cannot be
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a single edge, so we may assume that G has at least two edges. From the definition
of the gamma function we obtain for n+ λν > 0 the formula

(2.6)
1

Aλν
=

1

Γ(n+ λν)

∫ ∞

0

αn+λν−1(−∂α)
ne−αAdα.

We use this formula to replace the product of propagators in the definition (1.4) of

the graphical function f
(λ)
G by an integral over the edge parameters αe. Because the

integrand is positive the integral is absolutely convergent and we can use Fubini’s
theorem to interchange integrations. By continuity of Gaussian integrals we can
also interchange the integration over the vertex variables with the partial derivatives
∂αe and obtain

(2.7) f
(λ)
G (z) =

(−1)
∑

ene

∏
e Γ(ne + λνe)

∫ ∞

0

. . .

∫ ∞

0

(∏

e

αne+λνe−1∂ne
αe

)
I(α)

∏

e

dαe,

where I(α) is the Gaussian integral

I(α) =

( ∏

v internal

∫

Rd

ddxv

πd/2

)
exp

(
−
∑

e

αeQe

)
.

The quadratic form Qe is diagonal

Qe = Q1
e + . . .+Qd

e,

where the subscript i in Qi
e indicates the dependence on the ith coordinate of

the vertex variables. Hence the integral I(α) factorizes into d parts, one for each
coordinate,

I(α) =

d∏

i=1

Ii(α).

The argument in the exponential of Ii is a quadratic form in the ith coordinate
of the vertex variables. The VG vertex variables of G split into internal and ex-
ternal variables. We arrange the coordinates to the VG dimensional vector (x, z)t

where x = (xi
v)v=1,...,V int and z = (zik)k=1,...,V ext . Then, the quadratic form in the

exponential of Ii has the general structure
∑

e

αeQ
i
e = xtLii(α)x + xtLie(α)z + ztLei(α)x + ztLee(α)z

where (by convergence) Lii is positive definite. By symmetry (Lei)t = Lie and both
Lii and Lee are symmetric. We complete the quadratic form to a perfect square,
shift the integration variable to x+Lii−1Liez and obtain by a standard calculation

(2.8) Ii = det(Lii)−1/2 exp
(
ztLeiLii−1Liez − ztLeez

)
.

From the quadratic forms Qe the (Laplacian) matrix

L =

(
Lii Lie

Lei Lee

)

inherits the structure (with possible multiple edges):

(2.9) L(α)uv =

{ ∑
e incident to v

αe if u = v,

−
∑

e={u,v} αe otherwise.
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Now, we orient the edges e in an arbitrary way and define the incidence matrix

I(α)ev =





α
1/2
e if e begins in v,

−α
1/2
e if e ends in v,
0 otherwise.

By the above descriptions of I and L it is clear that

(ItI)uv =
∑

e

IeuIev = Luv.

With this identity we show that (see (2.5))

det(Lii) = Ψ̃ :

Let EG denote the set of edges of G and IE denote the submatrix of I with rows in
E. We use the Binet-Cauchy theorem to calculate the determinant of Lii, yielding

(2.10) det(Lii) =
∑

E⊆EG
|E|=V int

det(IE)
2.

The rows of IE correspond to edges in G and are of the general form

(2.11) I{e} = α1/2
e (0, . . . , 0,±1, 0, . . . , 0,∓1, 0, . . . , 0)

if e connects two internal vertices and

(2.12) I{e} = α1/2
e (0, . . . , 0,±1, 0, . . . , 0)

if e connects an internal vertex with an external vertex. Assume E contains a
subset E0 which is either a cycle or a path that connects two external vertices.
Choose an orientation on E0 and set sgn(e) = +1 if an edge e ∈ E0 is parallel to
this orientation; otherwise sgn(e) = −1. Then

∑

e∈E0

sgn(e)α−1/2
e I{e} = 0.

We conclude that the rows in IE are linearly dependent and det(IE) = 0. So,
non-zero contributions to (2.10) can only come from forests in F

z1,...,zV ext

G (they are
spanning because |E| = V int). In this case the matrix IE is block diagonal (with
one block for each tree T ⊂ E) and det(IE) factorizes. If we arrange the vertices
and edges along T (starting with the external vertex in T ) then the block associated

to T is triangular with diagonal elements ±α
1/2
e , e ∈ T . Altogether

(2.13) det(IE) =

{
±
∏

e∈E α
1/2
e if E ∈ F

z1,...,zV ext

G ,

0 otherwise,

and the claim follows.
The next step of the proof is to calculate the inverse of Lii. If M (u,v) is the

matrix M with the uth row and the vth column deleted then

(
Lii−1

)
u,v

=
(−1)u+v

det(Lii)
det(Lii(v,u)).

We again use the Binet-Cauchy theorem and obtain

det(Lii(u,v)) =
∑

E⊆EG
|E|=V int−1

det(I
(v)
E ) det(I

(u)
E ),
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where the superscripts (u), (v) mean that we delete the corresponding column in
IE . From (2.11) and (2.12) we see that removing one column (say v) from IE is
equivalent to interpreting v as an external vertex. From (2.13) we obtain

det(I
(v)
E ) =

{
±
∏

e∈F α
1/2
e if F ∈ F

v,z1,...,zV ext

G ,

0 otherwise.

Hence, the product det(I
(v)
E ) det(I

(u)
E ) has only contributions from forests in the

intersection F
u,z1,...,zV ext

G ∩F
v,z1,...,zV ext

G = F
uv,z1,...,zV ext

G . We obtain the inverse of
Lii up to signs

(
Lii−1

)
u,v

= ±
1

Ψ̃
Ψ̃

uv,z1,...,zV ext

G .

Since Lii is positive definite (for αe > 0), symmetric with non-positive off-diagonal
entries it is a Stieltjes matrix. In general, the inverse of a Stieltjes matrix has only
non-negative entries (see e.g. Corollary 3.24 in [14]). So, in the above formula we
have plus signs.

Now we proceed to calculate Ii in (2.8). From (2.9) we obtain

(2.14) (Ψ̃ztLeiLii−1Liez)(α) =

V ext∑

k,ℓ=1

zikz
i
ℓ

∑

e={zk,u}

f={zℓ,v}

Ψ̃
uv,z1,...,zV ext

G (α)αeαf .

Here the zi• are ith coordinates of the d-dimensional vector z•. We want to interpret
the second sum in terms of subgraphs of G. We have to distinguish three cases

(1) k 6= ℓ: Adding the two edges e, f to the spanning forest connects the three
trees Tzk ∋ zk, Tzℓ ∋ zℓ, and Tuv ∋ u, v. This gives a tree Tzkzℓ that
connects zk and zℓ. Conversely in each tree Tzkzℓ we have a unique path
connecting zk and zℓ. The edges e, f are unique in this path such that
zk ∈ e and zℓ ∈ f . Summing over u and v we obtain

(2.15)
∑

e={zk,u}

f={zℓ,v}

Ψ̃
uv,z1,...,zV ext

G (α)αeαf = Ψ̃
zkzℓ,(zm)m 6=k,ℓ

G (α).

(2) k = ℓ and e 6= f : Adding the two edges e, f connects Tuv and Tzk to a
graph Czk with one cycle which contains zk. We obtain a spanning subgraph
Czk∪

⋃
m 6=k Tzm with trees Tzm . Let CFk denote the set of all such spanning

subgraphs. A graph g ∈ CFk uniquely defines the pair of edges e, f adjacent
to zk in the cycle of g. Upon interchanging e and f we obtain every graph
in CFk twice. The sum over u and v gives

(2.16)
∑

e={zk,u}6=

f={zk,v}

Ψ̃
uv,z1,...,zV ext

G (α)αeαf = 2
∑

g∈CFk

∏

e∈g

αe.

(3) k = ℓ and e = f : In this case u = v and e connects Tu and Tzk to a tree
T that contains u and zk. In T there exists a unique path that connects
u with zk. The edge in this path that is adjacent to zk is counted twice.
Summing over u gives

(2.17)
∑

e={zk,u}

Ψ̃
u,z1,...,zV ext

G (α)α2
e =

∑

F∈F
z1,...,zV ext

G

( ∏

e∈F

αe

) ∑

f∈F
f adjacent to zk

αf .



10 MARCEL GOLZ, ERIK PANZER, AND OLIVER SCHNETZ

If Tzk in F
z1,...,zV ext

G is the isolated vertex zk then the sum over f on the
right hand side is empty and vanishes (by definition).

Because G has no edges between external vertices Lee is diagonal (see (2.9)). From
(2.14) we have to subtract (see (2.8))

(Ψ̃ztLeez)(α) =

V ext∑

k=1

(zik)
2

∑

F∈F
z1,...,z

V ext

G

( ∏

e∈F

αe

) ∑

f adjacent to zk

αf .

Again we have to distinguish three cases:

(1) f /∈ F , f ∪F is a forest. Then f connects two trees in F . Because the path
between zk and zℓ in Tzkzℓ is unique there exists a unique edge f in Tzkzℓ

with zk ∈ f such that Tzkzℓ\f does not connect zk and zℓ. Therefore

∑

F∈F
z1,...,z

V ext

G

( ∏

e∈F

αe

) ∑

f adjacent to zk
f /∈F,f∪F is a forest

αf =

V ext∑

ℓ=1

Ψ̃
zkzℓ,(zm)m 6=k,ℓ

G (α).

(2) f /∈ F , f∪F contains a cycle. Because zk is adjacent to f the cycle contains
zk and f ∪F ∈ CFk. In a cycle two edges are adjacent to zk. Therefore we
obtain every g ∈ CFk twice. This part of the sum over F gives the right
hand side of (2.16).

(3) f ∈ F . This is the right hand side of (2.17).

In (2.8) the contributions from cases (2) and (3) cancel. From case (1) we obtain

Ii = Ψ̃−1/2 exp
(
− Ψ̃−1

V ext∑

k,ℓ=1

((zik)
2 − zikz

i
ℓ)Ψ̃

zkzℓ,(zm)m 6=k,ℓ

G

)
.

The terms with k = ℓ cancel. We split the sum into k < ℓ and k > ℓ and interchange
k with ℓ in the second case. Summing over i gives the polynomial Φ̃G in (2.1),

I = Ψ̃−d/2 exp(−Φ̃G/Ψ̃).

The polynomial Ψ̃ has degree V int whereas Φ̃G has degree V int + 1 in α. Infrared
convergence for g = G ensures that we have at least one edge (say edge 1) with
positive weight. We now assume n1 = 0 and return to the case n1 > 0 later. For all
edges e 6= 1 we substitute αe by αeα1 in (2.7) and obtain for (−1)

∑
ene
∏

e Γ(ne +

λνe)f
(λ)
G (z) the expression
∫ ∞

0

. . .

∫ ∞

0

αMG−1
1

(∏

e6=1

αne+λνe−1
e ∂ne

αe

)
Ψ̃−d/2 exp

(
− α1

Φ̃G

Ψ̃

)∏

e

dαe,

where Φ̃G = Φ̃G(1, α2, . . . , z) and Ψ̃ = Ψ̃(1, α2, . . .) are evaluated at α1 = 1. Using
(2.6) for n = 0 to evaluate the integral over α1 we obtain

f
(λ)
G (z) =

(−1)
∑

ene Γ(MG)∏
e Γ(ne + λνe)

∫ ∞

0

. . .

∫ ∞

0

(∏

e6=1

αne+λνe−1
e ∂ne

αe

) ∏
e6=1 dαe

Φ̃MG

G Ψ̃λ+1−MG

.

The integrand has degree 1 − λν1 − EG in α (where EG = |EG| is the number of
edges of G). It hence lifts to the projective integral (2.4).

To prove the case n1 > 0 by induction we use the affine chart α2 = 1 (where the
orientation of ∆ is opposite to the canonical order) and integrate by parts in α1.
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Finally, we prove that (2.4) remains valid if G has edges between external ver-
tices. Let G have an edge e that connects the external vertices z1 and z2. Because
e /∈ F for all F ∈ F

z1,...,zV ext

G we have

Ψ̃
z1,...,zV ext

G = Ψ̃
z1,...,zV ext

G\e .

Likewise, for {k, ℓ} 6= {1, 2},

Ψ̃
zkzℓ,(zm)m 6=k,ℓ

G = Ψ̃
zkzℓ,(zm)m 6=k,ℓ

G\e ,

whereas the forests F ∈ F
z1z2,(zm)m 6=1,2

G split into two sets depending on whether or
not e is in F . This yields

Ψ̃
z1z2,(zm)m 6=1,2

G = Ψ̃
z1z2,(zm)m 6=1,2

G\e + αeΨ̃
z1,...,zV ext

G\e .

For Φ̃G we obtain the formula

Φ̃G = Φ̃G\e + αeΨ̃
z1,...,zV ext

G\e ||z1 − z2||
2.

We use the affine chart αf = 1 for an f 6= e to prove (2.4) for G. With the
elementary integral formula

∫ ∞

0

αn+λν−1(−∂α)
n(A+ αB)−MGdα =

Γ(n+ λν)Γ(MG − λν)

Γ(MG)AMG−λνBλν

we can evaluate the integral over αe and arrive with MG\e = MG − λνe at Q−λνe
e

times the dual parametric representation for G\e. Hence, the parametric repre-
sentation is valid for G. By induction over the number of edges between external
vertices the result follows. �

Theorem 1.4 follows as a corollary from Theorem 2.1.

Proof of Theorem 1.4. We set ne = 0 for all edges e of G. We use the affine chart
α1 = 1 in (2.4) and invert all αe, e > 1. By (2.3) this gives the integrand in (1.13)
for α1 = 1. It has degree λ(ν1 − 1) − EG, where EG is the number of edges in G.
The projective version of this integral is (1.13). �

3. proof of Theorem 1.1

In this section we prove the real analyticity of graphical functions on C\{0, 1}.
We first stay in the general setup of the previous section and write for the squared
distance of the V ext external vertices

si,j = ||zi − zj||
2.

Assume G is a graph such that the graphical function f
(λ)
G exists. Because by (2.1)

the polynomial Φ̃G naturally depends on the si,j we may use the dual parametric

representation (2.4) to consider f
(λ)
G = f

(λ)
G (s) as a function of the si,j . We want

to study the analytic continuation of f
(λ)
G (s). It is singular on its Landau surface,

which in general contains the divisors si,j = 0 but also additional components.
However, we meet no divergences in the region Re si,j > 0:

Theorem 3.1. Let G be a graph with V ext external vertices such that the graphical

function f
(λ)
G exists. Then f

(λ)
G admits a single-valued analytic continuation onto

the domain where Re si,j > 0 for all i, j ∈ {1, . . . , V ext}.
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In the special case of three external vertices, this implies the real analyticity of

f
(λ)
G (z) on C\{0, 1}:

Proof of Theorem 1.1. Let z ∈ C\{0, 1}. With the three external labels 0, 1, z
we have s0,1 = 1 > 0, s0,z = zz > 0, and s1,z = (z − 1)(z − 1) > 0 (see (1.7)).

By Theorem 3.1 we obtain that f
(λ)
G (z) is a composition of analytic functions and

hence analytic. This proves (G3).
The identity (G1) is immediate from (2.4). To prove (G2) it is sufficient to see

that in the neighborhood of any closed path γ in C\{0, 1} the graphical function

f
(λ)
G is real analytic. Hence, along γ, the analytic continuation of f

(λ)
G equals the

evaluation of f
(λ)
G . The evaluation of f

(λ)
G is single-valued. �

For the proof of Theorem 3.1 we cite the following theorem from [12], Theorem
2.12.

Theorem 3.2. Let Θ ⊂ Rm and Ω ⊂ Cn denote domains in the respective spaces
of dimensions m,n ∈ N. Furthermore, let

f = f(t, z) = f(t1, . . . , tm, z1, . . . , zn) : Θ× Ω −→ C ∈ C0(Θ× Ω,C)

represent a continuous function with the following properties:

(a) For each fixed vector t ∈ Θ the function

Φ(z) = f(t, z), z ∈ Ω

is holomorphic.
(b) We have a continuous integrable function F (t) : Θ −→ [0,+∞) ∈ C0(Θ,R)

satisfying ∫

Θ

F (t)dt < +∞,

which represents a uniform mayorant to our function f = f(t, z) - that
means

|f(t, z)| ≤ F (t) for all (t, z) ∈ Θ× Ω.

Then the function

ϕ(z) :=

∫

Θ

f(t, z)dt, z ∈ Ω

is holomorphic in Ω.

For the proof of Theorem 3.1 we need the following generalizations of degree and
of low degree to non-polynomial functions:

Definition 3.3. Let g be a graph with edge set Eg and let F : R|Eg| −→ C be a
function of the edge variables αe, e ∈ Eg. The (low) degree (deg

g
(F )) degg(F ) of

F is defined by

(3.1) deg
g
(F ) = c⇔ lim

t→0
t−cF (tα) ∈ C×, degg(F ) = c⇔ lim

t→∞
t−cF (tα) ∈ C×.

Proposition 3.4. Let g be a subgraph of a graph G with external vertices. Let
Ψ̃p

G(α) be a dual spanning forest polynomial (2.2) for some partition p of external
vertices. Then

(3.2) deg
g
(Ψ̃p

G) ≥ V int
g , degg(Ψ̃

p
G) ≤ Vg − 1,

where V int
g and Vg are defined in (1.5) and (1.6), respectively.
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Proof. Let F ∈ Fp
G be a spanning forest of G. For every tree T in F we choose an

external vertex vT ∈ T as a root. We orient the edges in T such that they point
towards the root vT . Because F is spanning, every internal vertex u in g has at
least one outgoing edge in F . Conversely every edge in F has unique vertex u as
source. Therefore

deg
g
(Ψ̃p

G) = min
|Eg∩F |,F∈Fp

G

≥ V int
g .

By graph homology for any non-empty forest F with VF vertices and h0(F ) trees
we have |EF | = VF − h0(F ) ≤ VF − 1. Therefore

degg(Ψ̃
p
G) = max

|Eg∩F |,F∈Fp
G

≤ Vg∩F − 1 = Vg − 1.

�

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. We first derive Theorem 3.1 from (2.4) in the case that all
ne = 0. As affine chart of ∆ we choose the standard coordinate simplex {

∑
e αe =

1, αe ≥ 0}. Because the integration domain is compact the integral converges if
the singularities of the integrand are integrable. We consider the integrand as a
function on s = si,j which assume values in the complex domain (ε > 0)

Ωε =
{
s : Re si,j ≥ ε for all 1 ≤ i < j ≤ V ext

}
⊂ CV ext(V ext−1)/2.

The integrand can have singularities if αe = 0, Φ̃G(α, s) = 0, or Ψ̃(α) = 0. In the

polynomials Φ̃G and Ψ̃ every monomial in α has a coefficient with strictly positive
real part. Hence, these polynomials can only vanish if every monomial vanishes.
The zeros of these polynomials are non-trivial coordinate subspaces {α : αe = 0
for all e ∈ E0 ⊂ EG} (see [1] for a more detailed discussion). Similarly, the low
degree deg

E0
of the integrand does not depend on the choice of s ∈ Ωε. Hence the

graphical function f
(λ)
G (s) exists for all s ∈ Ωε and in particular for the constant

vector sεi,j = ε. Because α ∈ RE
+ and

|Φ̃G(α, s)| ≥ Re Φ̃G(α, s) ≥ Φ̃G(α, s
ǫ)

for any s ∈ Ωε the integrand F (α, s) ≤ F (α, sǫ). Therefore the integrable function
F (α, sǫ) uniformly majorizes the integrand and Theorem 3.2 implies the analyticity

of f
(λ)
G in Ωε for any ε > 0.
Now we consider the case ne > 0. We choose s ∈ Ωε and perform the derivatives

in (2.4), yielding the integrand

(3.3) F =

[∏

e

αne+λνe−1
e

] ∑
m αmqm(s)

Φ̃G(α, s)MG+
∑

e neΨ̃(α)d/2−MG+
∑

e ne
,

where we expanded the numerator polynomial into its monomials αm =
∏

e α
me
e

of Schwinger parameters and their coefficients qm ∈ Q[s]. The integrand F is
homogeneous in α of degree −|EG|. Because ∂αe reduces the degree by one,

∑

e

me −
(
degG(Φ̃G) + degG(Ψ̃G)

)∑

e

ne = −
∑

e

ne.

The polynomials Φ̃G and Ψ̃G have degrees V int +1 and V int in α. Hence
∑

eme =
2V int

∑
e ne. With this identity we see that F (α) =

∑
m qm(s)Fm(α) is a linear

combination of integrands Fm which are the integrands of the dual parametric
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representation f
(λ′)
G in (2λ′ + 2) = d + 4

∑
e ne dimensions with weights λ′ν′e =

λνe + ne +me > 0. With the first part of the proof it suffices to show that f
(λ′)
G is

a convergent graphical function. The infrared (1.5) and ultraviolet (1.6) conditions
generalize to an arbitrary number of external vertices. Because differentiation ∂αe

for e ∈ Eg can lower the low degree by at most one we obtain
∑

e∈g

me − (deg
g
(Φ̃G) + deg

g
(Ψ̃G))

∑

e∈G

ne ≥ −
∑

e∈g

ne.

From the convergence of f
(λ)
G and from Proposition 3.4 we obtain

∑

e∈g

λ′ν′e =
∑

e∈g

(λνe + ne +me) > λV int
g + 2V int

g

∑

e∈G

ne = λ′V int
g ,

proving infrared convergence. Likewise differentiation ∂αe for e ∈ Eg lowers the
degree by at least one, yielding

∑

e∈g

me − (degg(Φ̃G) + degg(Ψ̃G))
∑

e∈G

ne ≤ −
∑

e∈g

ne.

Now,
∑

e∈g

λ′ν′e =
∑

e∈g

(λνe + ne +me) < (λ+ 2
∑

e∈G

ne)(Vg − 1) = λ′(Vg − 1)

proves ultraviolet convergence. This completes the proof of Theorem 3.1. �

Remark 3.5. We may consider a graphical function f
(λ)
G (z) as a function of two

complex variables z and z and analytically continue away from the locus where z is

the complex conjugate of z. In this case Theorem 3.1 states that f
(λ)
G is analytic in

z and z if Re zz > 0 and Re (z − 1)(z − 1) > 0.
However, after analytic continuation additional singularities will appear, notably

on z = z which corresponds to the vanishing of the Källén function

(z − z)2 = s20,z + s21,z + s20,1 − 2s0,zs1,z − 2s0,zs0,1 − 2s1,zs0,1.

4. proof of Theorem 1.5

Planar duality is specific to three external labels for which we use 0, 1, z.

Definition 4.1. Let G be a graph with three external labels 0, 1, z. Let Gv be the
graph that we obtain from G by adding an extra vertex v which is connected to the
external vertices of G by edges {0, v}, {1, v}, {z, v}, respectively. We say that G is
(externally) planar if and only if Gv is planar.

Let Gv be planar and G⋆
v a planar dual of Gv. The edges e⋆ of G⋆

v are in one
to one correspondence with the edges e of Gv. A planar dual of G is given by G⋆

v

minus the triangle {0, v}⋆, {1, v}⋆, {z, v}⋆ with external labels 0, 1, z corresponding
to the faces 1zv, 0zv, 01v, respectively. The edge weights of G⋆

v are related to the
edge weights of G by (1.18): νe + νe⋆ = 1 + λ−1.

We can draw an externally planar graph G with the external labels 0, 1, z in the
outer face. A dual G⋆ then has also the labels in the outer face, ‘opposite’ to the
labels of G, see Figure 2.

Another alternative way to construct a dual of G is to add three edges e01 =
{0, 1}, e0z = {0, z}, e1z = {1, z} to obtain Ge. A dual G⋆

e of Ge is given by the dual
of Gv upon replacing the triangle {0, v}⋆, {1, v}⋆, {z, v}⋆ by a star e⋆01, e

⋆
0z, e

⋆
1z.
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From G⋆
e we obtain a dual of G by removing the star and labeling the endpoints of

the star by z, 1, 0, respectively. Clearly any construction leads to the same dual
which proves the following lemma:

Lemma 4.2. Let G be externally planar with dual G⋆. Then G⋆ is externally
planar and G is a dual of G⋆.

Proof of Theorem 1.5. Because the edge weights are positive we can use ne = 0 in
(2.4). From MG = λ+ 1 we obtain (see (1.12) and (1.18))

MG⋆ =
∑

e

(λ+ 1− λνe)− (λ+ 1)V int
G⋆ = (λ+ 1)(EG − V int

G⋆ − V int
G − 1),

where EG is the number of edges of G. Now,

V int
G⋆ = VG⋆

v
− 4 = h1(Gv)− 3 = h1(G),

where h1(X) is the number of independent cycles in the graph X . Because V int
G =

VG − 3 we obtain from Euler’s identity for connected graphs VG −EG + h1(G) = 1
that MG⋆ = λ + 1 = MG. Comparing (2.4) for the graph G with (1.13) for the
graph G⋆ leads to (1.19) provided

Φ̃G = ΦG⋆ ,

where we assume αe = αe⋆ for all edges e. By (1.11) and (2.1) we have to show

the equality Ψ̃ij,k
G = Ψij,k

G⋆ of spanning forest polynomials for all {i, j, k} = {0, 1, z}.
This is equivalent to a one to one correspondence of 2-forests:

F ∈ F ij,k
G ←→ F ⋆ := {e⋆ : e 6∈ F} ∈ F ij,k

G⋆ .

Whitney’s planarity criterion ([15], Theorem 29) states that a graph is planar if and
only if it has an algebraic dual. As Tutte points out in [13], Theorem 2.64, this is
equivalent to the statement that every spanning tree of a planar graph corresponds
to the complement of a spanning tree in its dual graph. Using this argument we

can construct the desired correspondence as follows: Let F ∈ F ij,k
G . Adding the

two edges {i, v} and {k, v} gives a spanning tree Ti in Gv. Similarly adding the
two edges {j, v} and {k, v} gives a spanning tree Tj in Gv. The complements T ⋆

i ,
T ⋆
j of these trees are a spanning tree in G⋆

v. We have {j, v}⋆ ∈ T ⋆
i and {i, v}⋆ ∈ T ⋆

j .

Except for these two edges the trees T ⋆
i and T ⋆

j are identical. Hence T ⋆
i \{j, v}

⋆ =
T ⋆
j \{i, v}

⋆ =: F ⋆. Clearly, F ⋆ is a two forest in G⋆. The edge {j, v}⋆ connects the
external vertices i and k in G⋆. Because F ⋆ = T ⋆

i \{j, v}
⋆ the 2-forest F ⋆ does not

connect the external vertices i and k ∈ G⋆. Likewise (interchanging i and j) F ⋆

does not connect the external vertices j and k. Therefore F ∈ F ij,k
G⋆ . By symmetry

with respect to taking duals the map F −→ F ⋆ is one to one. �

Remark 4.3. One can also use Theorem 1.19 for externally planar graphs G in
the case that MG 6= λ + 1: One may add in G (or in G⋆) an edge {0, 1} of weight
(λ + 1 −MG)/λ (see Figure 2 and Example 1.6). This gives a new graph G′ with
the same graphical function as G and MG′ = λ + 1. Dualizing leads to a graph
with a single edge of weight MG/λ (the dual of the edge {0, 1}) that connects the
external vertex z in G′⋆ with the vertex z in G⋆ (which becomes internal in G′⋆).
If MG = λ the new edge in G′⋆ has weight 1 and the graphical function of G′⋆ can
be obtained from the graphical function of G⋆ by solving a differential equation (see
[11], Section 3.5).
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