GRAPHICAL FUNCTIONS IN PARAMETRIC SPACE

MARCEL GOLZ, ERIK PANZER, AND OLIVER SCHNETZ

ABSTRACT. Graphical functions are single-valued functions on the complex
plane which arise in quantum field theory. We generalize a formula by N.
Nakanishi for graphical functions in parametric space. With this result we
show that graphical functions are real analytic on the punctured complex plane
C\{0,1}. Moreover we prove a formula that relates graphical functions of
planar dual graphs.

1. INTRODUCTION

1.1. Graphical functions. Graphical functions were introduced in [11] basically
as a tool for calculating Feynman periods in ¢* quantum field theory (see also [10]).
Some graphical functions also appear as amplitudes and as correlation functions in
N = 4 Super Yang-Mills Theory [4], [5].

Let G be a graph with three distinguished vertices labeled 0, 1, and z. We call
the vertices 0, 1, z ‘external’ while all other vertices of G are ‘internal’. We fix the
dimension

(1.1) d=2\+2>2

and associate to every internal vertex v of G a d-dimensional integration variable
x, € R%. The external vertices 0 and 1 correspond to the origin in R% and a unit
vector (say the column vector (1,0, ...,0)%), respectively. The vertex z is a variable
which for now is a vector in R% (soon it will become a complex number). An edge e
between vertices u and v corresponds to the quadratic form ). which is the square
of the Euclidean distance between v and v,

(1.2) Qe = [Ju—v[|*.

Moreover, every edge e has an edge weight v, € R. For any subgraph g of G with
edge set £; we define

(1.3) Ny=> v

ec&y

as the sum of edge weights in g.
The graphical function of G is given by the integral

dl.v
(14) ék)(z) = < H /]Rd (71Td/2> #a

v internal
where the first product is over all internal vertices of G and the second product is
over all edges of G.
The convergence of the above integral is equivalent to two conditions named
‘infrared’” and ‘ultraviolet’ (this is the weighted analog of Lemma 3.4 in [11]). The
1
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infrared condition is that any subgraph g with at least one edge and no edges
between external vertices fulfills

(1.5) (d—2)Ng > dV,™,

where V;nt is the number of internal vertices v in g with the property that all edges
which are adjacent to v in G are also in g.

The ultraviolet condition is that any subgraph g with at least one edge such that
at most one of its V; vertices is external fulfills

(1.6) (d—2)N, < d(V, —1).

By symmetry, fg‘) depends only on the modulus of z and the angle between z

and the unit vector 1. Without loss of information we can hence restrict fg) to
a two-dimensional plane. We identify this plane with the complex numbers C and
choose the complex number 1 for the unit vector with label ‘1’. Equivalently, we
may specify the vectors associated to the external vertices as

(1.7) 0:(0,...,0)%, 1:(1,0,...,0)", z:(Rez,Imz,0,...,0)".

From now on we consider graphical functions as functions on C.

In [11] ‘completions’ of graphical functions were defined. In this article, however,
we use uncompleted graphs.

Examples of graphs are depicted in Figure 1.

1 1

G4 G?

Figure 1: Graphical functions with four and with seven vertices.

In d = 4 dimensions G4 has the graphical function [11]

(1 _ 4iD(z)
fG4 (Z) - y—7 )
where D is the Bloch-Wigner dilogarithm,
D(z) = Im(Lia(2) + log(1 — z) log|z|).

The Bloch-Wigner dilogarithm is a single-valued version of the dilogarithm Lis(z) =
Yoo, 2%/k?. Tt is real analytic on C\{0,1} and antisymmetric under complex
conjugation D(z) = —D(Z). These properties of the Bloch-Wigner dilogarithm lift
to general properties of graphical functions:

Theorem 1.1. Let G be a graph which fulfills the infrared and ultraviolet condi-
tions (1.5) and (1.6). Then the graphical function fg): C\ {0,1} — R, has the
following general properties:
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(G1)

(1.8) ) =18 @.

(G2) fg‘) 1s single-valued.
(G3) g‘) is real analytic on C\{0,1}.

It was not possible to prove real analyticity (G3) in full generality with the
methods in [11]. In this article we obtain (G3) as a consequence of an alternative
integral representation of graphical functions. This integral representation uses
parametric space where integration variables are associated to edges of the graph

(6], [1].

1.2. Graph polynomials. The graph (or Kirchhoff) polynomial of a graph G is
defined by associating a variable a. to every edge e of G and setting

(1.9) vo@)= S [l

T span. tree eZT

where the sum is over all spanning trees T" of G [7].
Spanning forest polynomials are generalizations of the graph polynomial. They
were defined and studied by F. Brown and K. Yeats [3].

Definition 1.2. Let G be a graph with external vertices 0,1,z. Letp = {p1,...,pn}
(n < 3) be a partition of the set {0,1,z} of external vertices. Let Fg, be the set of
spanning forests with n trees Ty U ... U T, such that the external vertices of p; are
in T; (and only in T;). The spanning forest polynomial associated to p is

(1.10) W)= > ] e

FeFE egF

We denote the five partitions of {0,1,z} by {01z} ifn =1, {12,0}, {0z,1}, {01, 2}
ifn=2,{0,1,z} if n =3 and drop the wavy brackets in the superscript of WY,

Let Z be the complex conjugate of z € C (which also serves as a label in G). We
define

(1.11) Dg(a,2) =5 () (z = 1)(Z — 1) + TZ ()27 + UL 7 ().

The spanning forest polynomial \I/%lz is the graph polynomial ¥ while the
spanning forest polynomial \Ilgll’z equals the graph polynomial ¥ /ey of the graph
G /ext that one obtains from G by identifying the three external vertices without

changing the edge labels.

Example 1.3. If we label the three edges adjacent to 0, 1, z in G4 (see Figure 1)
by 1, 2, 3, respectively, then

V() = Ve, (o) =1,

Wéff(&) = o,

‘I’%Z;l(a) = ay,

\Il(gf(oz) = ag,

\Il%i’z(oz) = ajo + ajas + asas,
Dg,(a,2) = a1(z—1)(Z—-1)+ a22Z + as.
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Let I'(z) = [;° t""te~'dt be the gamma function. A parametric (i.e. depending
on the edge parameters a.) formula for (massive) position space amplitudes in four-
dimensional Minkowski space was given by N. Nakanishi (Equation (8-33) in [8]). In
the massless case this formula, translated into Euclidean space, gives a parametric
representation for four-dimensional graphical functions. We give an independent
proof of the parametric formula in arbitrary dimensions.

Theorem 1.4. Let G be a non-empty graph with Eq edges, Vé’“t internal vertices,
and three external vertices 0,1,z. We label the edges of G by 1,2,...,Eg and
assume that every edge e has an edge weight v. > 0. We further assume that the

graphical function fg) erists. Let
(1.12) Mg = ANg — (A + 1)Vre,

Then the graphical function is given in parametric space as the projective integral

1—\ M Eg i(l_l’e)
(1.13) () = EG( c) / 1%:1%’1% (o),
[LE T(Ave) Ja el 2)Me Wi () G
where
FEa .
(1.14) Qa) = (1) taedas A... Adae A Adag,
e=1

is the top form in PP¢—IR and
(1.15) A={(aq:aa:...:ap,), ac >0 foralle € {1,2,...,Eg}} Cc PE¢TIR
is the positive coordinate simplez.

Readers who are not familiar with projective integrals can specialize to an affine
integral by setting ; = 1 and integrating the ae, e > 1 from 0 to co.

Theorem 2.1 gives a (Cremona-)dual parametric representation which is valid
for any edge weights v, € R.

Note that Mg is restricted by convergence. From (1.5) with ¢ = G and from
(1.6) with ¢ = G\{0,1}, g = G\{0,z}, or ¢ = G\{1, 2} we obtain for a graph G

with no edges between external vertices
(116) 0<MG<Amin{N0+N1,N0+NZ,N1+NZ},

where N; is the sum of weights of edges adjacent to the external vertex .

One immediate advantage of the parametric representation is that for many
graphs with not more than nine vertices the graphical function can be calculated
by parametric integration developed by F. Brown [2] and E. Panzer [9)].

1.3. Planar duals. An (externally) planar dual G* of a graph G with external
vertices 0, 1, z is a planar dual graph which has ‘opposite’ external labels (see Figure
2, see Definition 4.1 for a precise definition).
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H; HZ 1

Figure 2: The graphs H7; and H7 are planar duals.

In the case that Mg = A + 1 graphical functions of dual graphs are related:

Theorem 1.5. Let G be a connected graph with external vertices 0,1,z and edge
weights ve > 0 such that the graphical function fg) erists and

(1.17) Ma=X+1.

Let G have a dual G*. The edges e* of G* are in one to one correspondence to the
edges e of G. Let the edge weights ve« of G* be related to the edge weight v. of G

by

(118) Ver = 1+ )\—1 — V.
Then,
(1.19) N (z) = Mfm(z)’

o [I.- T(Avex) G

where the products are of the edges in G or in G*, respectively.

Note that ultraviolet convergence (1.6) for a single edge e gives Av, < A + 1.
Hence v; > 0. Similarly, positive edge weights in G ensure that the dual graphical

function fé/\*) is convergent.

If in four dimensions a graph G has edge weights 1 then a dual graph G* has
also edge weights 1 and the graphical functions are equal if Mg = 2.

One can also use duality for a planar graph G with Mg # A + 1 if one adds an
edge from 0 to 1 of weight (A+1— M¢)/), see the subsequent example and Remark
4.3.

Example 1.6. We want to calculate the four dimensional graphical function of the
graph G7 in Figure 1 with unit edge weights. We find Mq, = 1. To apply Theorem
1.5 we add an edge between 0 and 1 which contributes to the graphical function by
a factor of 1 (see Figure 2). Hence fg) = ;1,17) Theorem 1.5 gives f1(117) = 1(11;)
The graphical function of Hy can be calculated by the techniques completion and
appending of an edge [11]. We obtain

4iD(z)

f&) =20¢(5)———

where ((s) = Y poq k™ is the Riemann zeta function.



6 MARCEL GOLZ, ERIK PANZER, AND OLIVER SCHNETZ

One obtains a self dual graph Hy with My, = 2 if one adds an edge from 0 to 1
to G4. In this case planar duality leads to an empty statement.

Acknowledgements. The article was written while Oliver Schnetz was visiting
scientist at Humboldt University, Berlin.

2. PROOF OF THEOREM 1.4

Although we are mainly interested in the case of three external vertices 0, 1, z
the result of this section effortlessly generalizes to an arbitrary number of exter-

nal vertices z1,...,zyex € R? Definition 1.2 generalizes straighforwardly. The
generalization of (1.11) is
(2.1) Bola,2)= Y WET R ()| — 2.

1<i<j<Vext

We first prove a (Cremona-)dual version of Theorem 1.4 which has the advantage
that it includes the case of negative edge weights. The dual spanning forest poly-
nomials are given by products over edge variables in the spanning forest,

(2.2) W)= > ] e

FeF? eclF

The duality transformation of spanning forest polynomials is given by a coordinate
inversion,

(2.3) 2 (a)

Il
—~
gJum
Q
)
~—
=h
Qs
B

Do(a,z) = (Hae) da(a™t,2).

Theorem 2.1. Let G be a non-empty graph with edge weights v, € R and external

vertices z1, ..., zyes € R such that the graphical function fg‘) exists. For any
set of non-negative integers n. such that n. + A\v. > 0 we have the following dual
parametric representation for fg) :

(24) f&V(2) =

(—1)Eene I‘(Mg) A AVe—1 Ay 1
[I. T(ne + Ave) /A l(lz[ae : aae)éc(ajz)wfc\j,(a)MpMc Q(a),

where Mg is given by (1.12),
(25) U = \ilél ----- Zyext

the integration cycle A is the projective positive coordinate simplex (1.15), and
is the projective top form (1.14).

Remark 2.2. For negative integer Av. one may set ne = —\ve + 1 and trivially
perform the a. integration.

Proof of the theorem. The proof follows the Schwinger trick (see e.g. [6]). We first
assume that G has no edges between external vertices. By convergence G cannot be
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a single edge, so we may assume that G has at least two edges. From the definition
of the gamma function we obtain for n + Av > 0 the formula
(2.6) Lot /OO a9, e da.
AN T(n+ M) Jy
We use this formula to replace the product of propagators in the definition (1.4) of

the graphical function féf\) by an integral over the edge parameters .. Because the
integrand is positive the integral is absolutely convergent and we can use Fubini’s
theorem to interchange integrations. By continuity of Gaussian integrals we can
also interchange the integration over the vertex variables with the partial derivatives
Oa, and obtain

(2.7) f()\)( ) = T nez+n;ye / / Hane+)\Ve 132:)I(Oz)]:[dae,

where Z(a) is the Gaussian integral

d4z,
I(a) - <v in]t;[nal /]Rd Wd_zj?) P ( ;ae@e> '

The quadratic form Q. is diagonal
Qc=Qc+...+Qf

where the subscript i in Q% indicates the dependence on the ith coordinate of
the vertex variables. Hence the integral Z(«) factorizes into d parts, one for each
coordinate,

d
) = HL(Q)

The argument in the exponential of Z; is a quadratic form in the ith coordinate
of the vertex variables. The Vi vertex variables of G split into internal and ex-
ternal variables. We arrange the coordinates to the Vi dimensional vector (x, z)*
where © = (2}),—1, vyt and z = (z})j=1,. vex. Then, the quadratic form in the
exponential of Z; has the general structure

Z Q! = 2L (a)z + 2" L'°(a)z + 2" L% (a)x + 2 L°°(a) 2

where (by convergence) Li! is positive definite. By symmetry (L°)! = Li® and both
L' and L°° are symmetric. We complete the quadratic form to a perfect square,
shift the integration variable to x 4+ L~!Li°z and obtain by a standard calculation

(2.8) Z; = det (L) "1/ exp (thEiLiiflLiez - theez).

From the quadratic forms Q. the (Laplacian) matrix

Lii Lie
L= < el Jee )

inherits the structure (with possible multiple edges):

> a. ifu=w,
(2'9) L(a)uv = {

eincident towv
_ Ze:{u,v} a. otherwise.
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Now, we orient the edges e in an arbitrary way and define the incidence matrix
1/2

Qe if e begins in v,
I(@)ey = —ai/Q if e ends in v,
0 otherwise.

By the above descriptions of I and L it is clear that
(Itl)uv - Z IeuIe'u - Luv-

With this identity we show that (see (2.5))
det(LH) = W :

Let £c denote the set of edges of G and Ip denote the submatrix of I with rows in
E. We use the Binet-Cauchy theorem to calculate the determinant of L', yielding

(2.10) det(L') = > det(Ip)>.
ECEg
|E|=Vint

The rows of Ir correspond to edges in G and are of the general form
(2.11) Ity = al/?(0,...,0,£1,0,...,0,¥1,0,...,0)
if e connects two internal vertices and

(2.12) Ity = al/?(0,...,0,%£1,0,...,0)

e
if e connects an internal vertex with an external vertex. Assume E contains a

subset Ey which is either a cycle or a path that connects two external vertices.
Choose an orientation on Ej and set sgn(e) = +1 if an edge e € Ey is parallel to

this orientation; otherwise sgn(e) = —1. Then
Z sgn(e)a;lml{e} =0.
ecEy

We conclude that the rows in Ig are linearly dependent and det(Ig) = 0. So,
non-zero contributions to (2.10) can only come from forests in F""*V™* (they are
spanning because |E| = Vi), In this case the matrix I is block diagonal (with
one block for each tree T C E) and det(Ig) factorizes. If we arrange the vertices

and edges along T (starting with the external vertex in T') then the block associated
to T is triangular with diagonal elements :I:ozi/ 2, e € T. Altogether

1/2 3 2] 5eeny Zyrext
(213) det(IE) = :l:HeeE Qe le e "/—'.G ,
0 otherwise,

and the claim follows.
The next step of the proof is to calculate the inverse of L. If M%) ig the
matrix M with the uth row and the vth column deleted then

(Lii—l) _ (_1)u+v det(Lii(U’“))
wv  det(Li) '
We again use the Binet-Cauchy theorem and obtain
det(L) = 37 det(1y”) det(15),

ECéq
|E|=Vvint _1
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where the superscripts (u), (v) mean that we delete the corresponding column in
Ig. From (2.11) and (2.12) we see that removing one column (say v) from Ig is
equivalent to interpreting v as an external vertex. From (2.13) we obtain

1/2 . V21 .52y 0Xt
det(I(U)): iHeeFae/ if I'e Fg Ve,
B 0 otherwise.

Hence, the product det(lgj))det(lg)) has only contributions from forests in the
intersection Fp =TVt M F T 0tvest = FAPF St S \We obtain the inverse of
L' up to signs
(=1 = j:i\i'év’zl"”’z‘/”’“.
u,v \p

Since LU is positive definite (for a. > 0), symmetric with non-positive off-diagonal
entries it is a Stieltjes matrix. In general, the inverse of a Stieltjes matrix has only
non-negative entries (see e.g. Corollary 3.24 in [14]). So, in the above formula we
have plus signs.

Now we proceed to calculate Z; in (2.8). From (2.9) we obtain

cht
(2_14) (\iftheiLii_lLiez)(O() — Z Zizé Z li/év,zh...,zvex: (a)aeaf.
k=1 e={zp,u}

f={z4,v}

Here the zﬁ are ith coordinates of the d-dimensional vector z,. We want to interpret
the second sum in terms of subgraphs of GG. We have to distinguish three cases

(1) k # ¢: Adding the two edges e, f to the spanning forest connects the three
trees T, 2 2, 1%, O z¢, and Ty, 2 w,v. This gives a tree T}, ,, that
connects 2z and z,. Conversely in each tree T3, ., we have a unique path
connecting z; and zy. The edges e, f are unique in this path such that
zr € e and z¢ € f. Summing over u and v we obtain

(215) Z \i/gu,zh...,zvext (a)aeaf _ @2Z27(2m)7n¢k'[ (CY)

e={zp,u}
f={zp,v}

(2) k = ¢ and e # f: Adding the two edges e, f connects Ty, and T, to a
graph C;, with one cycle which contains z;. We obtain a spanning subgraph
C, UU sk T=,, with trees T, . Let CFj, denote the set of all such spanning
subgraphs. A graph g € CFj uniquely defines the pair of edges e, f adjacent
to zj in the cycle of g. Upon interchanging e and f we obtain every graph
in CFj twice. The sum over u and v gives

(2.16) Z \ilév’zl""’z‘/”’“(a)aeaf:2 Z Hae.

e={zp,ul# gECF) e€g
F={zpv}
(3) k= ¢ and e = f: In this case u = v and e connects T, and T}, to a tree
T that contains u and z;. In T there exists a unique path that connects
u with z;. The edge in this path that is adjacent to zj is counted twice.
Summing over u gives

(2.17) Z et (@)a? = Z ( H ae) Z ay.

_ Z15nns Zyrext F
e={zk,u \% ecF fe
{zk,u} FeFg, f adjacent to z,
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If 7., in F5""V™" is the isolated vertex zj then the sum over f on the
right hand 51de is empty and vanishes (by definition).

Because G has no edges between external vertices L*® is diagonal (see (2.9)). From
(2.14) we have to subtract (see (2.8))

pext
@)@ = > G > ([Te) X ar
k=1 Fe]_—él """ Fyext  ecF f adjacent to zg

Again we have to distinguish three cases:

(1) f ¢ F, fUF is aforest. Then f connects two trees in F. Because the path
between 2 and 2, in T3, ., is unique there exists a unique edge f in 7%, .,
with zj € f such that T}, ,,\ f does not connect z; and z,. Therefore

Vext

Z ( H oee) Z af = Z @gn,(zm)m#k,z ().
=1

FlooFyext e f adjacent to zj,
Fere f&F,fUF is a forest

(2) f ¢ F, fUF contains a cycle. Because z, is adjacent to f the cycle contains
zr and fUF € CFg. In a cycle two edges are adjacent to zg. Therefore we
obtain every g € CFy, twice. This part of the sum over F' gives the right
hand side of (2.16).

(3) f € F. This is the right hand side of (2.17).

In (2.8) the contributions from cases (2) and (3) cancel. From case (1) we obtain

Vth
Ii = \1171/2 exp ( \I] 1 Z Zk _ zk )\I/gczb(zm)m¢k 2)
k=1

The terms with k£ = £ cancel. We split the sum into k£ < £ and k > £ and interchange
k with ¢ in the second case. Summing over ¢ gives the polynomial ®¢ in (2.1),

T =02 exp(—Dg /).

The polynomial ¥ has degree V™ whereas ®¢ has degree V™ + 1 in a. Infrared
convergence for ¢ = G ensures that we have at least one edge (say edge 1) with
positive weight. We now assume n1 = 0 and return to the case nq > 0 later. For all
edges e # 1 we substitute o, by aea; in (2.7) and obtain for (—1)2" ], T'(n, +

AVe) (/\)(z) the expression
/ / oM~ 1 H ane—i-)\l/e—lane)\i/—d/Q exp ( _ m%) Hdo‘
1 e Qe lI/ : €

where &g = ég(l,ag, ...,2z) and U = \i/(l,ag, ...) are evaluated at a; = 1. Using
(2.6) for n = 0 to evaluate the integral over a; we obtain

()\)(Z) (- )Z "e I'(Mg) / / Han etAve—lg ne) _ Hejél dae _

[L. D(ne + Ave) e pa+1-Me

The integrand has degree 1 — Av; — Eg in « (Where E¢ = |&g| is the number of
edges of G). Tt hence lifts to the projective integral (2.4).

To prove the case n; > 0 by induction we use the affine chart ae = 1 (where the
orientation of A is opposite to the canonical order) and integrate by parts in «;.
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Finally, we prove that (2.4) remains valid if G has edges between external ver-
tices. Let G have an edge e that connects the external vertices z; and z5. Because
e¢ Fforall F e F V" we have

"Zl,...,ZVext _ ~Zl,...,Zvext
Ut = :

G\e
Likewise, for {k, ¢} # {1,2},
\ijgcn,(zm)m#,e _ \iIZkzz,(zm)m#,e

G\e ’

whereas the forests I € félz%(z"")’"#ﬂ split into two sets depending on whether or
not e is in F'. This yields

T2122,(Zm)m#1,2 _ J,2122,(Zm)m=#1,2 21,.., 2y ext
Ve =V, oV, :

For ®¢ we obtain the formula
b = Do + Uy 7V |z — 2

We use the affine chart ay = 1 for an f # e to prove (2.4) for G. With the
elementary integral formula

(n+ W)I'(Mg — M)
F(MG)AMngl/B)\V

e T
/ an+AU71(—8a)n(A + aB)iMGdOé —
0

we can evaluate the integral over . and arrive with Mg\, = Mg — Ave at Qe
times the dual parametric representation for G\e. Hence, the parametric repre-
sentation is valid for G. By induction over the number of edges between external
vertices the result follows. O

Theorem 1.4 follows as a corollary from Theorem 2.1.

Proof of Theorem 1.4. We set n, = 0 for all edges e of G. We use the affine chart
a1 =1 in (2.4) and invert all a., e > 1. By (2.3) this gives the integrand in (1.13)
for a3 = 1. It has degree A(v; — 1) — Eg, where E¢ is the number of edges in G.
The projective version of this integral is (1.13). O

3. PROOF OF THEOREM 1.1

In this section we prove the real analyticity of graphical functions on C\{0,1}.
We first stay in the general setup of the previous section and write for the squared
distance of the V' external vertices

sij = |lzi — %%

Assume G is a graph such that the graphical function fé/\) exists. Because by (2.1)
the polynomial ®g naturally depends on the s; ; we may use the dual parametric

representation (2.4) to consider fé’\) = fg‘)(s) as a function of the s; ;. We want

to study the analytic continuation of fg‘)(s). It is singular on its Landau surface,
which in general contains the divisors s; ; = 0 but also additional components.
However, we meet no divergences in the region Res; ; > 0:

Theorem 3.1. Let G be a graph with Ve external vertices such that the graphical

function fg) exrists. Then fg‘) admits a single-valued analytic continuation onto
the domain where Res; ; > 0 for all i,j € {1,...,V}.



12 MARCEL GOLZ, ERIK PANZER, AND OLIVER SCHNETZ

In the special case of three external vertices, this implies the real analyticity of
MN(z) on C\{0,1}:
Proof of Theorem 1.1. Let z € C\{0,1}. With the three external labels 0, 1, z
we have sp1 =1 >0, so, = 2Z > 0, and s1, = (z — 1)(Z — 1) > 0 (see (1.7)).
By Theorem 3.1 we obtain that fg‘) (z) is a composition of analytic functions and
hence analytic. This proves (G3).

The identity (G1) is immediate from (2.4). To prove (G2) it is sufficient to see
that in the neighborhood of any closed path v in C\{0,1} the graphical function

fg‘) is real analytic. Hence, along ~, the analytic continuation of fg) equals the
evaluation of fg). The evaluation of fg‘) is single-valued. O

For the proof of Theorem 3.1 we cite the following theorem from [12], Theorem
2.12.

Theorem 3.2. Let © C R™ and Q@ C C" denote domains in the respective spaces
of dimensions m,n € N. Furthermore, let
f=ft2)=f(ts, ..., tm,21,...,20) O x Q — C € C°O x Q,C)
represent a continuous function with the following properties:
(a) For each fized vector t € O the function
O(z) = f(t,z), z€Q

s holomorphic.
(b) We have a continuous integrable function F(t) : © — [0, +00) € C°(0,R)
satisfying

/ F(t)dt < +o0,
(S}

which represents a uniform mayorant to our function f = f(t,z) - that
means
|f(t,2)| < F(t) forall (t,2)€© xQ.
Then the function

©(2) ::/ f(t,2)dt, z€Q
(C]
is holomorphic in €.

For the proof of Theorem 3.1 we need the following generalizations of degree and
of low degree to non-polynomial functions:

Definition 3.3. Let g be a graph with edge set £, and let F : RIEl — C be a
function of the edge variables a., e € £;. The (low) degree (EQ(F)) deg,(F) of
F is defined by

_ . —c X _ . —c X
(3.1) @g(F)—C@}g%t F(ta) € C*, degg(F)—c(btliglot F(ta) € C*.
Proposition 3.4. Let g be a subgraph of a graph G with external vertices. Let

\ilg(a) be a dual spanning forest polynomial (2.2) for some partition p of external
vertices. Then

(52) deg, (W) > V™, deg, (I%) <V — 1,
where V" and Vg are defined in (1.5) and (1.6), respectively.
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Proof. Let F € FZ, be a spanning forest of G. For every tree T in F' we choose an
external vertex vr € T as a root. We orient the edges in T such that they point
towards the root vr. Because F' is spanning, every internal vertex u in g has at
least one outgoing edge in F. Conversely every edge in F' has unique vertex u as
source. Therefore

P\ — : int

deg, (V) = |5gm£\1}£efg =V

By graph homology for any non-empty forest F' with Vg vertices and ho(F') trees
we have |Ep| = Vi — ho(F) < Vg — 1. Therefore

degg(\iﬂé) = max < Vyap—1=V,—1.

|ngF‘,F€}—g

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. We first derive Theorem 3.1 from (2.4) in the case that all
ne = 0. As affine chart of A we choose the standard coordinate simplex {}°, e =
1,a, > 0}. Because the integration domain is compact the integral converges if
the singularities of the integrand are integrable. We consider the integrand as a
function on s = s; ; which assume values in the complex domain (¢ > 0)

OF = {SZ Re Si,j >e¢ foralll << <j< Vext} c CVCXt(VCXt—l)/2_

The integrand can have singularities if o, = 0, ®¢(a,s) = 0, or ¥(a) = 0. In the
polynomials ®¢ and ¥ every monomial in « has a coefficient with strictly positive
real part. Hence, these polynomials can only vanish if every monomial vanishes.
The zeros of these polynomials are non-trivial coordinate subspaces {a : a, = 0
for all e € Ey C &g} (see [1] for a more detailed discussion). Similarly, the low
degree deg Fo of the integrand does not depend on the choice of s € 2°. Hence the

graphical function fg‘)(s) exists for all s € Q° and in particular for the constant
vector s7 ; = ¢. Because a € RE and

|Pa(a, s)| > Re ®g(a, s) > Pala, s°)
for any s € QF° the integrand F(«, s) < F(a, s¢). Therefore the integrable function
F(a, s°) uniformly majorizes the integrand and Theorem 3.2 implies the analyticity
of fé’\) in QF for any € > 0.
Now we consider the case n, > 0. We choose s € {2° and perform the derivatives
n (2.4), yielding the integrand

Ne+AVe—1
[]e
e

where we expanded the numerator polynomial into its monomials o™ = [], al*
of Schwinger parameters and their coefficients ¢, € Q[s]. The integrand F' is
homogeneous in « of degree —|E¢|. Because 9,, reduces the degree by one,

Zme — (degG ) + dege (Vg )Zne = Zne.

The polynomials ®¢ and ¥¢ have degrees V™ + 1 and V™ in . Hence Y, m. =
2Vt S n.. With this identity we see that F(a) = 3 ¢m(s)Fn(a) is a linear
combination of integrands F), which are the integrands of the dual parametric

2o @ (s)

(3.3) F = FR PRSI PSSR PR /E R TARS Shr
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representation fg,) in (2\' +2) = d+ 43 _n. dimensions with weights \'v, =

Ave + ne +me > 0. With the first part of the proof it suffices to show that f()‘ )

a convergent graphical function. The infrared (1.5) and ultraviolet (1.6) condltlons
generalize to an arbitrary number of external vertices. Because differentiation O,
for e € £; can lower the low degree by at most one we obtain

Zmef deg <I)G)+deg \IIG Znez Zne

ecg eeG ecyg

From the convergence of fg‘) and from Proposition 3.4 we obtain
SNV, = S0t ) > AV 2V S = NV,
ecg ecg eeG

proving infrared convergence. Likewise differentiation 0,, for e € &, lowers the
degree by at least one, yielding

Zme deg <I)G)+degg \IIG Zneg Zne

ecg eeG ecyg
Now,
SNV =D (et ne+me) <(A+2> n)(Vy—1) = N(V, 1)
ecg ecg eeG
proves ultraviolet convergence. This completes the proof of Theorem 3.1. O

Remark 3.5. We may consider a graphical function fg\)(z) as a function of two

complex variables z and Z and analytically continue away from the locus where Z is
A)

the complex conjugate of z. In this case Theorem 3.1 states that f is analytic in
z and Z if Rezz >0 and Re(z —1)(Z—1) > 0.

However, after analytic continuation additional singularities will appear, notably
on z = Z which corresponds to the vanishing of the Kdillén function

-2 2 2 2
(2 —2)" =55, +51, +551 — 250,251, — 250,250,1 — 251,250,1-
4. PROOF OF THEOREM 1.5

Planar duality is specific to three external labels for which we use 0, 1, z.

Definition 4.1. Let G be a graph with three external labels 0, 1, z. Let G, be the
graph that we obtain from G by adding an extra vertex v which is connected to the
external vertices of G by edges {0,v}, {1,v}, {z,v}, respectively. We say that G is
(externally) planar if and only if G, is planar.

Let G, be planar and G a planar dual of G,. The edges e* of G are in one
to one correspondence with the edges e of Gy. A planar dual of G is given by G
minus the triangle {0,v}*, {1,v}*, {z,v}* with external labels 0, 1, z corresponding
to the faces 1zv, Ozv, Olv, respectively. The edge weights of G5 are related to the
edge weights of G by (1.18): ve + Ver = 1+ A71.

We can draw an externally planar graph G with the external labels 0, 1, z in the
outer face. A dual G* then has also the labels in the outer face, ‘opposite’ to the
labels of G, see Figure 2.

Another alternative way to construct a dual of G is to add three edges eg; =
{0,1}, eg. = {0, 2}, e1. = {1, z} to obtain G.. A dual G of G, is given by the dual
of G, upon replacing the triangle {0,v}*, {1,v}*, {z,v}* by a star ef;, e},, e}

2"
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From G} we obtain a dual of G by removing the star and labeling the endpoints of
the star by z, 1, 0, respectively. Clearly any construction leads to the same dual
which proves the following lemma:

Lemma 4.2. Let G be externally planar with dual G*. Then G* is externally
planar and G is a dual of G*.

Proof of Theorem 1.5. Because the edge weights are positive we can use n, = 0 in
(2.4). From Mg = A+ 1 we obtain (see (1.12) and (1.18))

Ma: =Y (A+1=2v) = A+ VR = A+ 1)(Eg — Vi = V" — 1),

where Eg is the number of edges of G. Now,
VA = Va: —4 = hi(Gy) — 3 = h1(G),

where hq(X) is the number of independent cycles in the graph X. Because VPt =
Vi — 3 we obtain from Euler’s identity for connected graphs Vg — Eg + h1(G) =1
that Mg» = A+ 1 = Mg. Comparing (2.4) for the graph G with (1.13) for the
graph G* leads to (1.19) provided

(iG = @G*,

where we assume a, = .+ for all edges e. By (1.11) and (2.1) we have to show
the equality \I/g]C = \Ifg;k of spanning forest polynomials for all {i, j,k} = {0, 1, z}.
This is equivalent to a one to one correspondence of 2-forests:

Fe]-"g’k<—>F* :z{e*:e%F}G}—g;k.

Whitney’s planarity criterion ([15], Theorem 29) states that a graph is planar if and
only if it has an algebraic dual. As Tutte points out in [13], Theorem 2.64, this is
equivalent to the statement that every spanning tree of a planar graph corresponds
to the complement of a spanning tree in its dual graph. Using this argument we
can construct the desired correspondence as follows: Let F' € fg ok Adding the
two edges {i,v} and {k,v} gives a spanning tree T; in G,. Similarly adding the
two edges {j,v} and {k,v} gives a spanning tree T; in G,. The complements T},
T of these trees are a spanning tree in G. We have {j,v}* € T} and {i,v}* € T}.
Except for these two edges the trees T} and T are identical. Hence T;\{j,v}* =
Tr\{i,v}* =: F*. Clearly, F'* is a two forest in G*. The edge {j,v}* connects the
external vertices ¢ and k in G*. Because F"* = T}\{j,v}* the 2-forest F"* does not
connect the external vertices ¢ and k € G*. Likewise (interchanging i and j) F*
does not connect the external vertices j and k. Therefore F' € F, gk, By symmetry
with respect to taking duals the map F' — F'* is one to one. (I

Remark 4.3. One can also use Theorem 1.19 for externally planar graphs G in
the case that Mg # XA+ 1: One may add in G (or in G*) an edge {0,1} of weight
(A+1—Mg)/\ (see Figure 2 and Example 1.6). This gives a new graph G’ with
the same graphical function as G and Mg = X+ 1. Dualizing leads to a graph
with a single edge of weight Mg /X (the dual of the edge {0,1}) that connects the
external vertex z in G"™ with the vertex z in G* (which becomes internal in G™ ).
If Mg = X\ the new edge in G'™ has weight 1 and the graphical function of G™ can
be obtained from the graphical function of G* by solving a differential equation (see

[11], Section 3.5).
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