Discovered misprints in
Differential-Algebraic Equations: A Projector
Based Analysis
| Page | Line/Place | Misprint | Correction | discovered by |
| 27 | (1.44) | u(t) := Πi-1x(t) | u(t) := Πμ-1x(t) | S. Miels |
| 30 | -10 | μ = Gμ+ | μ = Gμ-1+ | S. Miels |
| 30 | -9 | := I + Qμ-1… | := I + Qμ-1… | S. Miels |
| 30 | -8 | := μ-1μ-1B0Πμ-2 = | := μ-1μ-1B 0Πμ-2 = | R. Goodfellow |
| 31 | -7 | QjZj = 0 | QjZj = Qj | S. Miels |
| 31 | -1 | …Y μ-1B μ-1 | …Y μ-1G μ-1B μ-1 | |
| 35 | 2 | (Π3)15 = -α2 | (Π 3)15 = +α2 | |
| 36 | 1 | (P0)11 = 1 | (P0)11 = 0 | |
| 37 | -8,-9 | (Piw + Qiz) | (Piw - Qiz) | |
| 46 | -14 | i := K-1X | i := K-1X i | |
| 73 | 10 | B13-(I + B
13-(B
11 + ![]() | B13-(I + (B
11 + | Ch. Strohm |
| 73 | -6 | 3 := -B13-… |
3 := B13-… | Ch. Strohm |
| 94 | 16 | DΠμ-1Gμ-1D- = | DΠ μ-1Gμ-1B μD- = | |
| 96 | Lemma 2.28 (7) | = DΠμ-1Gμ-1BD- | = DΠ μ-1Gμ-1BΠ μ-1D- | |
| 145 | -6 | +Γsub( - I)Γsub- | +Γsub( - I)Γsub-- | |
| 146 | in the middle | K = | K-1 = | Vu Hoang Linh |
| 202 | Ex. 3.19 | G1,22 = 2x2 | x2 | Inęs Vilarinho |
| Q1,32 = 1∕x2 | x2 | Inęs Vilarinho | ||
| P1,32 = -1∕x2 | -x2 | Inęs Vilarinho | ||
| B1 = B0P0Q1 | B1 = B0P0 | Inęs Vilarinho | ||
| G2,22 = 2x2 + x21 | G 2,22 = x2 + x21 | Inęs Vilarinho | ||
| 380 | 5 | D1( , ℝm) |
D1( , ℝm) | |
| 491/2 | -3/17 | reference (2.1) | should be (10.12) | |
| 587 | 8 | … ∈ imEB | … ∈ imEA | D. Estévez Schwarz |
| 591 | -3 | Γ := [η1ηr] | Γ := [η1…ηr] | |
| 613 | -5 | = i+1,i+1[1] | =
i+1,i+1[1] | |