Übungen zur Lorentzgeometrie und Mathematischen Relativitätstheorie

Humboldt-Universität zu Berlin, Wintersemester 2017-18 PD Dr.habil. Olaf Müller

PD Dr.habil. Olaf M Übungsblatt 2

Exercise 1: Foundations of causality theory

Let (M, g) be a spacetime. Show the push-up property for any three points of M, and show $J^+(p) \subset \overline{I^+(p)}$ for all $p \in M$.

Exercise 2: Domains of dependence

Let (M,g) be a spacetime and let $A \subset M$ be acausal. Show that D(A) is causally convex and does not contain closed causal curves.

Exercise 3: Causal? Diamond-compact?

Let $a \in \mathbb{R}^+$, $u \in C^{\infty}(\mathbb{R}^2)$ and $f \in C^{\infty}((-1;1))$. Which are the conditions on a, u, f such that the following spacetimes are causal and/or diamond-compact? In the third example, try to answer the question for the concrete examples $f_1(x) := (1 - x^2)^2$ und $f_2 := (1 - x^2)^{1/4}$.

- 1. $\{x = (x_0, x_1) \in \mathbb{R}^{1,1} : |x_1| < 1 \land x \in I^+((-a, 0)) \cap I^-((a, 0))\};$
- 2. $(\mathbb{R}^2, g_{1,1} + e^u dx_1^2);$
- 3. $(\mathbb{R} \times (-1;1), -f^2(x_1)dx_0^2 + dx_1^2);$
- 4. $\{(x_0, x_1) \in \mathbb{R}^{1,1} | x_0 \in (-a; a) \land x_0 + x_1 \in (-a; a) \}$.