Übungen zur Analysis für Physiker

Humboldt-Universität zu Berlin, Wintersemester 2018-2019
PD Dr.habil. Olaf Müller
Übungsblatt 4 bis 5

Exercise 1: Time functions?

Which of the following functions are time functions on the respective domain of definition? Which are temporal? Cauchy? Steep?

1. $\left.x_{0}\right|_{U}$ for $U:=J^{+}((-1,0)) \cap J^{-}((1,0)) \subset \mathbb{R}^{1, n}$;
2. x_{0}^{3} on $\mathbb{R}^{1, n}$;
3. $\arctan \circ x_{0}$ on $\mathbb{R}^{1, n}$;
4. $x_{0}+\frac{1}{10} \cdot\left(\arctan \circ x_{0}\right) \cdot x_{1}$ on $\left(\mathbb{R}^{2}, e^{\arctan \circ\left(x_{0}+x_{1}\right)} g_{1,1}\right)$.

Exercise 2: The symbol

Let a partial differential operator A of order ℓ between vector bundles $\pi_{E}: E \rightarrow M$ and $\pi_{F}: F \rightarrow M$ be given. We want to define the principal symbol of A as a totally symmetric vector bundle homomorphism from $\bigotimes_{i=1}^{k} \tau^{*} M$ to $\pi_{E}^{*} \otimes \pi_{F}$. Given a frame $\partial_{1}, \ldots, \partial_{n}$ in $x \in M$, we use the notation $\xi_{i}:=\partial_{1}^{i_{1}} \otimes \ldots \otimes \partial_{n}^{i_{k}} \in \bigotimes_{k=1}^{i \mid} T_{x} M$ for a multiindex $i=\left(i_{1}, \ldots, i_{k}\right)$. Show that the following two characterizations of the term 'principal symbol' are well-defined and equivalent, possibly up to overall constants:

1. If A is written w.r.t. trivializing local coordinate charts κ_{E} of π_{E}, κ_{F} of π_{F} as

$$
\kappa_{F}^{-1} \circ A \circ\left(\cdot \circ \kappa_{E}\right)=\sum_{i \text { multiindex },|i| \leq \ell} A_{i} \partial_{i}
$$

for matrices A_{i}, then the principal symbol $\sigma(A)$ of A is defined by

$$
\kappa_{F}^{-1} \circ \sigma(A) \circ\left(\cdot \circ \kappa_{E}\right)=\sum_{i \text { multiindex },|i|=\ell} A_{i} \xi_{i} .
$$

2. Let $f \in C^{\infty}(M, \mathbb{R})$ vanish at $x \in M$. The principal symbol of A at $x \in M$ is the unique multilinear bundle map $\sigma_{x}(A)$ from $T_{x}^{*} M$ to $\pi_{1}^{*} \otimes \pi_{2}$ such that $\sigma(A)\left(d_{x} f, \ldots, d_{x} f\right)(\psi(x))=$ $\left(A\left(f^{\ell} \cdot \psi\right)\right)(x)$ for any local section ψ around x.

Exercise 3: Calculating symbols

1. Show: $\left[\nabla_{X}, A\right]$ is of order $\leq \ell$ for any linear differential operator A of order $\leq \ell$.
2. Show $\sigma(A \circ B)=\sigma(A) \circ \sigma(B)$ for any two partial differential operators A, B.
3. Show that for d being the exterior derivative we get $\sigma(d)(x)(v)=v^{b} \wedge \cdot$.
4. Show that $\sigma\left(\operatorname{tr}^{g}\left(\nabla^{2}\right)\right)=g \otimes \mathbb{1}$.
