

Exercise 1: Time functions?

Which of the following functions are time functions on the respective domain of definition? Which are temporal? Cauchy? Steep?

- 1. $x_0|_U$ for $U := J^+((-1,0)) \cap J^-((1,0)) \subset \mathbb{R}^{1,n}$;
- 2. x_0^3 on $\mathbb{R}^{1,n}$;
- 3. $\arctan \circ x_0$ on $\mathbb{R}^{1,n}$;
- 4. $x_0 + \frac{1}{10} \cdot (\arctan \circ x_0) \cdot x_1$ on $(\mathbb{R}^2, e^{\arctan \circ (x_0 + x_1)}g_{1,1})$.

Exercise 2: The symbol

Let a partial differential operator A of order ℓ between vector bundles $\pi_E : E \to M$ and $\pi_F : F \to M$ be given. We want to define the principal symbol of A as a totally symmetric vector bundle homomorphism from $\bigotimes_{i=1}^k \tau^* M$ to $\pi_E^* \otimes \pi_F$. Given a frame $\partial_1, ..., \partial_n$ in $x \in M$, we use the notation $\xi_i := \partial_1^{i_1} \otimes ... \otimes \partial_n^{i_k} \in \bigotimes_{k=1}^{|i|} T_x M$ for a multiindex $i = (i_1, ..., i_k)$. Show that the following two characterizations of the term 'principal symbol' are well-defined and equivalent, possibly up to overall constants:

1. If A is written w.r.t. trivializing local coordinate charts κ_E of π_E , κ_F of π_F as

$$\kappa_F^{-1} \circ A \circ (\cdot \circ \kappa_E) = \sum_{i \text{ multiindex}, |i| \leq \ell} A_i \partial_i$$

for matrices A_i , then the principal symbol $\sigma(A)$ of A is defined by

$$\kappa_F^{-1} \circ \sigma(A) \circ (\cdot \circ \kappa_E) = \sum_{i \text{ multiindex}, |i|=\ell} A_i \xi_i.$$

2. Let $f \in C^{\infty}(M, \mathbb{R})$ vanish at $x \in M$. The principal symbol of A at $x \in M$ is the unique multilinear bundle map $\sigma_x(A)$ from T_x^*M to $\pi_1^* \otimes \pi_2$ such that $\sigma(A)(d_x f, ..., d_x f)(\psi(x)) = (A(f^{\ell} \cdot \psi))(x)$ for any local section ψ around x.

Exercise 3: Calculating symbols

- 1. Show: $[\nabla_X, A]$ is of order $\leq \ell$ for any linear differential operator A of order $\leq \ell$.
- 2. Show $\sigma(A \circ B) = \sigma(A) \circ \sigma(B)$ for any two partial differential operators A, B.
- 3. Show that for d being the exterior derivative we get $\sigma(d)(x)(v) = v^b \wedge \cdots$
- 4. Show that $\sigma(\operatorname{tr}^g(\nabla^2)) = g \otimes \mathbf{1}$.