Übungen zur Lorentzgeometrie und Mathematischen Relativitätstheorie

Humboldt-Universität zu Berlin, Wintersemester 2018-2019 PD Dr.habil. Olaf Müller **Übungsblatt 7**

Exercise 1: Killing vector fields along timelike curves

Let X be a timelike Killing vector field on a spacetime (M, g), and let c be a timelike curve parametrized by Lorentzian arclength on an interval I = [a, b). We consider the real functions E and a on I defined by E := -g(c', X) and $a := \sqrt{g(c'', c'')}$.

- 1. Show that a is well-defined (sign under the square-root!) and that $|E'| \leq a \cdot E$.
- 2. Show that if $\int_{I} a < \infty$ then $\lim_{t \to b} E(t) < \infty$.
- 3. Show that if $\int_I a < \infty$ then $t \mapsto |g(X(c(t), X(c(t))))|$ is bounded on I.

Remark. The relevance of the last item is the following: In some spacetimes, like in the so-called negative-mass Schwarzschild spacetimes, which carry a timelike Killing vector field X, there are timelike curves of finite length along which g(X, X) tends to $-\infty$. Item 3 says that those curves cannot be trajectories of autonomous rockets, as those have positive mass without fuel and can carry only a finite amount of fuel to generate acceleration.

Exercise 2: Spatial compactness

Let (M, g) be globally hyperbolic and let $S \subset M$ be a smooth Cauchy surface of (M, g). Let $K \subset M$ and $C \subset S$ be compact.

- 1. Show that $J^+(K) \cap J^-(S)$ is compact.
- 2. Let P be a symmetric-hyperbolic operator on $\pi : E \to M$. Show that, for any solution $u \in \Gamma_{C^{\infty}}(\pi)$ of Pu = 0 with $\operatorname{supp}(u|_S) \subset C$, its $\operatorname{support} \operatorname{supp}(u)$ is spatially compact, but not compact.

Exercise 3: Maxwell theory

Let (M, g) be a semi-Riemannian manifold of signature (r, s). For $\alpha \in \Omega^k(M)$ we define * $\alpha \in \Omega^{n-k}$ by $\beta \wedge *\alpha = g(\beta, \alpha) \cdot \text{vol}$ for every $\beta \in \Omega^k(M)$, where g is the extension of the metric to Ω^k (as in the DG Primer). We get $*^2 = (-1)^{k(n-k)+r}\mathbf{1}$. The **formal adjoint** of an operator $A : \Gamma(\pi) \to \Gamma(\pi)$ is defined via the equality $\int_M \langle a, A^*b \rangle = \int_M \langle Aa, b \rangle$ for any two compactly supported smooth $a, b \in \Gamma(\pi)$. We will see in the lecture that $d_k^* = (-1)^{nk+1+r} * d* : \Omega^{k+1}(M) \to \Omega^k(M)$. We define $P : \Omega^1(M) \to \Omega^1(M)$ by $P(\alpha) := d^*d\alpha = (-1)^{n+r+1} * d*$ for all $\alpha \in \Omega^1(M)$. This operator is called **Maxwell operator**.

- 1. Show that Lorentzian (r = 1) g.h. case, P has no well-posed initial value problem.
- 2. Let, in the four-dimensional Lorentzian case r = 1, s = 3, (dx_0, dx_1, dx_2, dx_3) be an oriented coordinate base g-pseudo-orthonormal at x. Calculate $*(dx_i \wedge dx_j)$ for $i, j \in \mathbb{N}_3$ at x.
- 3. Show that in the Lorentzian (r = 1) g.h. case, for every $\alpha \in \Omega^1(M)$ there is $f \in C^{\infty}(M)$ with $d^*\tilde{\alpha} = 0$ for $\tilde{\alpha} := \alpha + df$. Show that $P\alpha = P\tilde{\alpha} = \tilde{P}\tilde{\alpha}$ for $\tilde{P} := d^*d + dd^*$. Show that \tilde{P} is symmetric hyperbolic. You might restrict to four dimensions.