Übungen zur Lorentzgeometrie und Mathematischen Relativitätstheorie

Humboldt-Universität zu Berlin, Wintersemester 2018-2019
PD Dr.habil. Olaf Müller
Übungsblatt 7

Exercise 1: Killing vector fields along timelike curves

Let X be a timelike Killing vector field on a spacetime (M, g), and let c be a timelike curve parametrized by Lorentzian arclength on an interval $I=[a, b)$. We consider the real functions E and a on I defined by $E:=-g\left(c^{\prime}, X\right)$ and $a:=\sqrt{g\left(c^{\prime \prime}, c^{\prime \prime}\right)}$.

1. Show that a is well-defined (sign under the square-root!) and that $\left|E^{\prime}\right| \leq a \cdot E$.
2. Show that if $\int_{I} a<\infty$ then $\lim _{t \rightarrow b} E(t)<\infty$.
3. Show that if $\int_{I} a<\infty$ then $t \mapsto \mid g(X(c(t), X(c(t))) \mid$ is bounded on I.

Remark. The relevance of the last item is the following: In some spacetimes, like in the so-called negative-mass Schwarzschild spacetimes, which carry a timelike Killing vector field X, there are timelike curves of finite length along which $g(X, X)$ tends to $-\infty$. Item 3 says that those curves cannot be trajectories of autonomous rockets, as those have positive mass without fuel and can carry only a finite amount of fuel to generate acceleration.

Exercise 2: Spatial compactness

Let (M, g) be globally hyperbolic and let $S \subset M$ be a smooth Cauchy surface of (M, g). Let $K \subset M$ and $C \subset S$ be compact.

1. Show that $J^{+}(K) \cap J^{-}(S)$ is compact.
2. Let P be a symmetric-hyperbolic operator on $\pi: E \rightarrow M$. Show that, for any solution $u \in \Gamma_{C^{\infty}}(\pi)$ of $P u=0$ with $\operatorname{supp}\left(\left.u\right|_{S}\right) \subset C$, its support $\operatorname{supp}(u)$ is spatially compact, but not compact.

Exercise 3: Maxwell theory

Let (M, g) be a semi-Riemannian manifold of signature (r, s). For $\alpha \in \Omega^{k}(M)$ we define $* \alpha \in \Omega^{n-k}$ by $\beta \wedge * \alpha=g(\beta, \alpha) \cdot$ vol for every $\beta \in \Omega^{k}(M)$, where g is the extension of the metric to Ω^{k} (as in the DG Primer). We get $*^{2}=(-1)^{k(n-k)+r} 1$. The formal adjoint of an operator $A: \Gamma(\pi) \rightarrow \Gamma(\pi)$ is defined via the equality $\int_{M}\left\langle a, A^{*} b\right\rangle=\int_{M}\langle A a, b\rangle$ for any two compactly supported smooth $a, b \in \Gamma(\pi)$. We will see in the lecture that $d_{k}^{*}=(-1)^{n k+1+r} * d *: \Omega^{k+1}(M) \rightarrow \Omega^{k}(M)$. We define $P: \Omega^{1}(M) \rightarrow \Omega^{1}(M)$ by $P(\alpha):=$ $d^{*} d \alpha=(-1)^{n+r+1} * d *$ for all $\alpha \in \Omega^{1}(M)$. This operator is called Maxwell operator.

1. Show that Lorentzian $(r=1)$ g.h. case, P has no well-posed initial value problem.
2. Let, in the four-dimensional Lorentzian case $r=1, s=3,\left(d x_{0}, d x_{1}, d x_{2}, d x_{3}\right)$ be an oriented coordinate base g-pseudo-orthonormal at x. Calculate $*\left(d x_{i} \wedge d x_{j}\right)$ for $i, j \in \mathbb{N}_{3}$ at x.
3. Show that in the Lorentzian $(r=1)$ g.h. case, for every $\alpha \in \Omega^{1}(M)$ there is $f \in$ $C^{\infty}(M)$ with $d^{*} \tilde{\alpha}=0$ for $\tilde{\alpha}:=\alpha+d f$. Show that $P \alpha=P \tilde{\alpha}=\tilde{P} \tilde{\alpha}$ for $\tilde{P}:=d^{*} d+d d^{*}$. Show that \tilde{P} is symmetric hyperbolic. You might restrict to four dimensions.
