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Abstract

In this article it is shown that for the standard symplectic form on the
space of compactly supported sections of a symplectic fibre bundle, there is
no locally-finite Borel measure which is preserved by the Hamiltonian flows
of even a quite restricted set of functions on this space. As this would mean
that some of the operators associated to classical observables would not be
Hermitean, the result suggests that one should consider quotients by gauge
groups as classical phase spaces to avoid this problem.

1 Introduction and statement of the results

One of the basic features of Hamiltonian flows on finite-dimensional symplectic
manifolds is that they preserve the symplectic form ω and hence the natural volume
form ω∧ω∧ ...∧ω. Now one could try to obtain a similar result on the phase space
of a field theory which is often a Frechet manifold of sections of a fibre bundle.
Sometimes this fibre bundle is a symplectic fibre bundle, e.g. in the case that one
has a Cauchy correspondence of first order, i.e. a Frechet diffeomorphism between
the space of initial values up to the first derivatives and the space of classical
solutions. Then one can construct an associated symplectic form on the space Γ(π)
of sections of the symplectic fibre bundle π (which is defined below) and ask whether
there is a nonzero locally finite Borel measure on Γ(π) that is preserved by the group
of Hamiltonian flows on Γ(π). We will show that the answer is no. This implies
that in this case, the operators corresponding to quantum observables in geometric
quantization are not Hermitean.

We will first describe shortly the framework of Geometric Quantization. Details
can be found in [9].

Geometric Quantization (a good overview of which is provided by the books
of Woodhouse, [14], and Sniatycki, [13]) is basically a replacement of the abstract
Hilbert space of some quantum theory by the space of smooth sections of a complex
line bundle l over the space (Γ(π)) of classical solutions which is in general a Frechet
manifold of sections of a fibre bundle π : E →M . Here we assume for later use that
M is equipped with a volume form dvolM. The Hilbert space operators are then
replaced by some linear Hermitean first order differential operators in Γ(l). Thus
on the level of observables, Geometric Quantization is a mapping
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Q : C∞(Γ(π),R) ⊃ S → End(Γ(l)),

Q(f)(ψ) := −i~∇Xf
ψ + f · ψ

where l is a Hermitean complex line bundle on Γ(π) with a Hermitean connection ∇
whose curvature is a (weakly) symplectic 2-form ~−1Ω defining Hamiltonian vector
fieldsXf for some functions f by Ω(Xf , ·) = df(·), and S is the subset of all functions
with a Hamiltonian vector field (thus S is closed under the Poisson bracket).By
End(Γ(l)) we mean the set of linear operators acting on Γ(l). The operators obtained
are first order differential operators, i.e. they are not only elements of End(Γ(l)),
but also elements of End(j1l) where j1l : J1l→ Γ(π)) is the first jet bundle of l. A
condition ensuring the existence of the line bundle above is given by the following
theorem (for the proof cf. [14]):

Theorem 1 Let M be a (possibly infinite-dimensional Frechet) manifold carrying
a (weakly) symplectic form Ω. Then there is a Hermitean line bundle with a con-
nection of curvature ~−1Ω if and only if the cohomology class of Ω in H2(M,R)
lies in H2(M,Z) 2

We will call a manifold prequantizable iff it satisfies this condition.

The map Q satisfies Dirac’s famous axiom system for correspondences between
classical and quantum observables ([3]):

1. The map f → Q(f) is R-linear,

2. For f constant, Q(f) is the corresponding multiplication operator,

3. The map Q is an algebra homomorphism, more precisely, the following dia-
gram commutes:

S × S {·,·}−−−−→ S

Q

y yQ
End(Γ(l))× End(Γ(l))

−i~[·,·]−−−−→ End(Γ(l))

where {·, ·} is the Poisson bracket w.r.t. the symplectic form Ω, and [·, ·] means the
commutator of linear operators.

In addition, we need a measure µ on the classical phase space for which all quantum
operators are Hermitean with respect to the L2-norm if restricted to smooth square-
integrable sections of l (as in general µ need not to be finite). Recall that in the
light of the Kopenhagen interpretation Hermiticity is important because only in
that case all expectation values are real. Now we will see that there is no such
measure. This will be done in Proposition 3.

Let us introduce some non-standard notation. Let Γ̃n(π) denote the space of all
n times continuously differentiable sections of the fibre bundle π : E → M , i.e.
Γ̃n(π) := {γ ∈ Cn(M,E) : π ◦ γ = 1M}. Let Γn(π) be the corresponding spaces
of sections of compact support which in the case of a fibre bundle means that the
section coincides with a fixed reference section outside a compact set: fix γ0 ∈ Γ̃n(π),
then
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Γn(π) = {s ∈ Γ̃n8π)|∃ compact C ⊂M with s|M\C = γ0|M\C}.

The spaces Γ̃0(π) and Γ0(π) can be equipped with the metric of uniform convergence
on compact subspaces, i.e.

d(γ1, γ2) :=
∑
n∈N

min(
1

2n
, max
x∈Kn

(d0(γ1(x)− γ2(x)))). (1)

for an increasing sequence Kn of compact sets with
⋃
nKn = M where d0 is the

Riemannian distance (with respect to an arbitrary Riemannian metric on E) in
the submanifold π−1(x). This generates the compact-open topology τ on Γ0(π)
a subbasis of which is formed by all sets (C,O) := {γ ∈ Γ(π) : γ(C) ⊂ O} of
sections that map a fixed compact set C ⊂ M into a fixed open set in E. Set
σπ := σ(τ), where for a family of subsets K the term σ(K) means the smallest
σ-algebra containing K. By a Borel measure we mean a measure on σπ.
Finally, note that σπ = σ({pr{m}|m ∈M}) = {pr{m}(B)|m ∈M,B ∈ B(π−1({m}))},
where pr{m} := evm : Γ(π)→ π−1({m}), the evaluation map at p, and B(π−1({m}))
is the Borel-σ-algebra of π−1({m}).

The symplectic form used here is quite common in geometric quantization of field
theories and goes probably back to Chernoff and Marsden ([2]; [10] and [4] for the
case of a trivial bundle; [14] and [9] for an overview).

A crucial tool of the construction is the identification of a tangent vector V resp.
the value of a vector field V on Γ̃k+1(π) at a fixed section γ with a vector field along
γ, i.e. a section of γ∗T vE:

ˆ : T |γΓ̃k+1(π)→ Γ̃k(γ∗T vE),

V̂ |γ(p) := LV evp
or equivalently,

V̂ |γ : p 7→ ∂t(γt(p)),

where p ∈ N , γt a curve representing V (γ). This means, we fix a point p ∈
M and note the direction in which it is moved infinitesimally by the family of
maps γt. If we start with a tangent vector V at Γ̃k(π) tangent to the submanifold
Γk(π) of compactly supported sections, then V̂ |γ has also compact support because⋃
t∈[−1;1] γt has compact support.

The definition of the symplectic form on Γ1(π) is relatively simple: To every (p, 0)-
tensor field A on E we can associate a (p, 0)-tensor field Ã ∈ Γ((T ∗M)⊗p) on Γ1(π)
by the prescription

Ã(V1, ...Vp)(γ) :=

∫
M

A(V̂ γ1 , ..., V̂
γ
p )dvolM

where each V̂ γi is the corresponding vector field along γ. Then, by means of an
arbitrary auxiliary Riemannian metric g on the total space E, to every (p, q)-tensor
field A on E we can associate a (p, q)-tensor field Ã on Γ1(π) by the prescription

g̃(Ã(V1, ...Vp), Vp+1 ⊗ ...⊗ Vp+q)(γ) :=

∫
M

g(A(V̂ γ1 , ..., V̂
γ
p ), V̂ γp+1 ⊗ ...V̂

γ
p+q)dvolM

This construction shares many good properties such as naturality under isometric
embeddings (for details cf. [9]). Moreover, it induces a chain map as follows:
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Theorem 2 [12],[9]
The map ˜: Λ∗(E) → Λ∗(Γ(π)) is a chain map, i.e. d ◦ ˜ = ˜ ◦ d. Moreover the
kernel of ˜are exactly the forms which are zero along the fibres of π.

Now we assume π to be a symplectic fibre bundle, where the fibre manifold carries
a symplectic form ω smoothly depending on the base point in M . Then Γ1(π) is
equipped with the 2-form ω̃ which assigns to any two tangent vectors X,Y at a
section γ (with X̂, Ŷ the associated vector fields along γ) the number

Ω(X,Y ) := ω̃(X,Y ) =

∫
M

ω(X̂, Ŷ )dvolM, (2)

and an almost immediate consequence from the theorem above is that Ω is a
(weakly) symplectic form on Γ1(π). For further details of the constructions above
cf. [9]. This procedure is motivated by the fact that for a field theory on a bun-
dle τ : A → N over a globally hyperbolic Lorentzian manifold N , one can often
find a Cauchy correspondence of first order, i.e. a Frechet diffeomorphism between
the classical solutions and the values of the field up to first order of derivatives
on a Cauchy surface M with normal vector field ν, i.e. classical solutions can be
identified with sections of the bundle π = ν∗dτ : TA → M . Often A carries a
bilinear form by which TA can be identified with T ∗A, hence we have sections of a
symplectic fibre bundle.

Now we can state the results of this article:

Proposition 3 Let π : E → M be a symplectic fibre bundle. We consider the
Frechet manifolds Γn(π) equipped with the weakly symplectic structure Ω defined by
equation (2). We suppose (Γn(π),Ω) to be prequantizable. Then there is no nonzero
locally finite Borel measure µ on Γk(π), 1 ≤ k ≤ ∞ as subset of Γl(π), 0 ≤ l ≤ k
such that all operators Q(f̃), where f is a compactly supported function on E, are
Hermitean.

The proposition will be proved as corollary of the following proposition:

Proposition 4 Let π : E → M be a symplectic fibre bundle. We consider the
Frechet manifolds Γn(π) equipped with the weakly symplectic structure defined by
equation (2). There is no nonzero locally finite Borel measure µ on Γk(π) as subset
of Γl(π), l ≤ k ≤ ∞ which is invariant under the Hamiltonian flows of its smooth
L2-functions of the form f̃ , where f is a compactly supported smooth function on
E.

2 Proof of the propositions

The strategy of the proof is the following: We first pick a trivial neighborhood U
of the fibre bundle and consider the induced measure on sections over this neigh-
borhood which we consider in a trivialization adjusted to the symplectic struc-
ture in an open set V ⊂ π−1(U) (which then can be understood as U times a
subset of Euclidean R2n with its standard symplectic form) so that in this triv-
ialization Γ̃1(π|V ) = C1(U, V ). If we try to construct a measure on C1(U, V )
the first idea would be to take an image measure under the canonical embedding
P : V ↪→ C1(U, V ) whose image is the set of point maps which we denote by P . On
the elements of the subbasis it takes the form µ((C,O)) = L(O) where L denotes
the Lebesgue volume in V , and for every element (C,O) of the subbasis of the
compact-open topology defined above. Then we show that in this trivialization the
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measure would have to be an element of im(P). But if we change locally the trivi-
alization to get another adjusted trivialization, we get another map P and another
measure. This produces the contradiction.

Without restriction of generality we can consider the case l = 0, k = ∞. This
is because we have continuous embeddings of Γi(π) → Γ0(π) such that for every
measure on Γi(π) we can consider its image measure on Γ0(π).

Without restriction of generality let M be connected. Choose a section γ and an
open neighborhood of the form (M,B) of γ (where B is a neighborhood of the
image of γ) such that 0 < µ((M,B)) <∞ and such that the line bundle l is trivial
over (M,B). This exists because of local finiteness and as every open set in the
compact-open topology contains a ball w.r.t. the metric defined in equation (1).
Now pick a trivializing neighborhood U ⊂ M of π with compact closure U . Then
via the trivialization we have π−1(U) = U × F where the induced symplectic form
on this product depends as well on the footpoint in U as on the footpoint in F .
For every u ∈ U we choose an open neighborhood of γ(u) which has a Darboux
trivialization, i.e. a diffeomorphism mapping the neighborhood to an open set in
the standard symplectic space R2n. Because of compactness of U one can consider
this neighborhood N as one and the same subset of R2n with smoothly varying
symplectic structure. Then it is easy to show that one can choose the Darboux
trivialization as well smoothly depending on the footpoint u ∈ U using the following
lemma:

Lemma 5 (smooth Darboux coordinates) Let U be a compact manifold (with or
without boundary), let π : P → U be a symplectic fibre bundle, then for every
section γ of π there is a neighborhood V of γ(U) which is symplectomorphic to
U ×V where V is an open set in R2n with its standard symplectic structure. Under
this symplectomorphism, γ(U) corresponds to U × {0}.

Proof of the lemma. First note that the notion of symplectomorphism is not quite
correct here as the form is defined for vector fields along the fibre and is degenerate
when extended by zero on the whole tangent space of P . Take a tubular neigh-
borhood T of the image of the section γ. Then consider the proof of existence of
Darboux coordinates as given in [7], pp. 10-11. All constructions used there depend
smoothly on the given symplectic form, except the choice of the one-form λ. As
dλ is prescribed and as T is fibrewise simply-connected, the only freedom we have
over u ∈ U is adding the differential of a function on π−1(u) ∩ T , i.e. replacing
λ → λ + df , with f vanishing at zero without restriction of generality. So for a λ0

with dλ0 = ω − ω0 we define

A := {λ0 + df : f(0) = 0}

which is an affine subspace of Λ1(π−1(u) ∩ T ). Then define an arbitrary Rie-
mannian metric g on T and choose λ ∈ A such that it minimizes the functional
S(λ) =

∫
π−1(u)∩T g(λ, λ). This is a convex functional and hence fixes the choice of

λ. As all constructions depend smoothly on the basepoint, so does the resulting
diffeomorphism onto open sets in R2n containing 0 2

Therefore the restriction π|V ∩π−1(U) of the fibre bundle π is isomorphic to a trivial
bundle U × V → U via an isomorphism which preserves the symplectic structure.
Moreover, we can assume that U and V are simply connected. Then in V , the
symplectic form ω is exact, ω = dθ for a 1-form θ, and so for Θ := θ̃ we have

dΘ = dθ̃ = d̃θ = ω̃ = Ω,
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thus ~−1Θ is the connection 1-form with respect to this trivialization in the con-
ventions of the Woodhouse book ([14], pp. 155-162, 265-269). Therefore by using
the trivial derivative in this trivialization we can write

Q(f)(ψ) := −i~Xf (ψ)−Θ(Xf ) · ψ + f · ψ.

Thus restricted to the trivializing neighborhood the quantum operators in geometric
quantization are a sum of multiplication operators and a constant multiple of the
trivial derivation along a Hamiltonian vector field Xf . Therefore the requirement
of Hermiticity is equivalent to Hermiticity of Xf . If Xf has a flow, this is equivalent
to · ◦ FltXf

=: St to be a unitary operator in L2(µ) because the flow of Xf is its

exponential in the Hilbert space Hom(L2(µ), L2(µ)) = L2(µ)⊗ L2(µ)∗.

Now,

〈f, g〉 =

∫
Γ(π)

f(γ) · g(γ)dµ(γ),

〈Stf, Stg〉 =

∫
Γ(π)

f(FltXf
(γ)) · g(FltXf

(γ))dµ(γ) =

∫
Γ(π)

f(γ) · g(γ)d((FltXf
)∗µ)(γ)

and unitarity of St is equivalent to the invariance of µ under the flow of Hamiltonian
vector fields, Φ∗tµ = µ. Thus Hermiticity is equivalent to the statement that the
Lie derivative of the measure along Hamiltonian vector fields of functions on the
space of sections vanishes. We take functions of the form f̃ where f is a compactly
supported function on the total space of the bundle. Their Hamiltonian vector
fields Xf̃ = X̃f of course possess a local flow (here Xf are vertical vector fields by
definition). Thus Proposition 3 is implied by Proposition 4 which we are going to
prove now.

From the original measure µ on Γ0(π) we want to construct a finite measure µ′

on Γ̃0(π|V ∩π−1(U)). This is done by the following definition: Choose a sequence of
compact sets Ki ⊂ Ki+1 ⊂ M whose union is M , then (M,B) =

⋂
i∈N(Ki, B) ∈

B(Γ0(π)). Thus for A ∈ B(Γ̃0(π|V )) we can define

µ′(A) := µ(Ã ∩ (M,B))

where Ã := {γ ∈ Γ0(π) : γ|U ∈ A} which is a set in the Borel algebra as restriction
is a continuous operation in the compact-open topology. It is easily shown that µ′

is a measure.
Now for a dense sequence of points pi ∈ V define µ̃n, a finite sigma-subadditive
function on the open subsets of V n by

µ̃n(A1 × ...×An) := µ′(

n⋂
i=1

({pi}, Ai))

which can be extended to a finite and outer regular measure µn on V n by µn(A) :=
inf{µ̃n(W )|A ⊂ Wopen} (first, this gives only an outer measure which can then
be shown to be a Borel measure by use of Caratheodory’s Criterion, cf. [5]).

At this point, one would like to use transitivity of Hamiltonian flows on V n. Un-
fortunately, this transitivity does not hold on V n as a whole, as e.g. a point on
the diagonal (v, ...v) cannot be mapped outside the diagonal by a flow of the form
H ×H × ...×H. Therefore we consider V n, while itself a manifold, as stratified by
partitions of {1, ...n} in a natural way: if we have coordinates v1, ...vn, vi ∈ V , the
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stratum corresponding to the partition {(i11, ...i1k(1)), ...(i
J
1 , ...i

J
k(J))} (where J is the

number of the blocks) is the set

{(v1...vn) ∈ V n|vi11 = ... = vi1
k(1)

, ..., viJ1 = ... = viJ
k(J)
}.

Now we use a fact about Hamiltonian vector fields. A result of Boothby ([1]; [8],
Theorem 6.4., p.27) assures that for a symplectic manifold (S, ω), the compactly
supported flows of symplectic vector fields act N-transitive, i.e. for any 2n-tuple of
points in S, say (p1, ...pn, q1, ...qn), with pi 6= pj , qi 6= qj for i 6= j, we can find a
symplectomorphic flow mapping pi to qi for all i. On simply-connected manifolds
these flows are generated by Hamiltonian vector fields (cf. [8], Theorem 6.3. (p.
26)).

The N-transitivity of Hamiltonian flows H on V implies the transitivity of flows
of the form H × ... × H on every stratum of V n. On every stratum there is a
Lebesgue measure invariant as well under these flows. We want to show that on
every stratum µn is a multiple of the Lebesgue measure of this stratum. This will
be a very consequence from the following

Lemma 6 Let V be an open subset in R2n with its standard metric and symplectic
form. Let ν be an outer-regular, finite measure on an open subset Y = U1× ...×Uk
of (R2n)k (with the scalar product g = n1gU1 ⊕ n2gU2 ⊕ ... ⊕ nkgUk

and the Ui are
open subsets of V ) with ν(S) = 0 for every (2nk − 1)-sphere S in Y with radius
smaller than a pointwise bound R, L the Lebesgue measure on Y , let both ν and L
be invariant under the transitive action of diffeomorphisms of the form H×H...×H
where H is a Hamiltonian flow on V . Then ν is a multiple of L.

Proof. Pick an open subset Y ′ ⊂ Y with compact closure Y ′ ⊂ Y . First we show
that L is ν-continuous on Y ′. As ν is assumed to be outer-regular, the assumption
that L is not ν-continuous implies the existence of a sequence Wn of open subsets
with

ρ(Wm) :=
L(Wm)

ν(Wm)
> m.

Now to each Wm we can apply Vitali’s Covering Theorem ([11]): For every ε > 0,
there is a countable disjoint family of Euclidean balls Bi of radius < ε in Y with
L(Y \

⋃
i∈NBi) = 0. Now assume that ρ(A) > L and that there is a countable

disjoint family An ⊂ A with L(A\
⋃
i∈NAn) = 0. If there were no Ai with ρ(Ai) > L

we would have

L(A) = L(
⋃
i

Ai) =
∑
i

L(Ai) ≤ L
∑
i

ν(Ai) = Lν(
⋃
i

Ai) ≤ Lν(A)

which is in contradiction to the assumption ρ(A) > L. Therefore there is an Ai
with ρ(Ai) > L.

Now set B0(m) := Wm and choose with the Vitali step above inductively for any
k ∈ N balls Bk with radius < 1

k which are contained in each other and with
ρ(Bk) > m ∀k ∈ N. Then consider the diagonal sequence Bn := Bn(n). It is a
sequence of balls which converge to a point p ∈ Y ′ ⊂ Y because Y ′ is compact
and as the radii go to zero. Now use the transitivity to get such a sequence of
converging balls for every other point q 6= p of Y : Take a map G 3 H : p 7→ q. For
every n ∈ N consider H−1(B 1

n
(q)) which contains a ball Bn with ρ(Bn) > n. Then

H(Bn) is in general not a ball itself but contains a second ball Bqn (via the Vitali
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step above) which has ρ(Bqn) > n and for which the Euclidean distance to q satisfies
d(q,Bqn) < 1

n .

As neither ν nor L feel sufficiently small (l − 1)-spheres, ρ̃(p, r) := ρ(Br(p)) is a
continuous function in Y×]0, 1], therefore for every point q ∈ Y there is a sequence
of balls B′r(n)(q) around q with ρ(B′r(n)(q))→∞.

Now pick some open set A in Y ′ with ρ(A) <∞. Choose some K > ρ(A) ·N where
N is the constant depending only of the dimension of Y in the Besikovitch lemma
below. Then for all x ∈ A there is an r(x) > 0 such that Br(x)(x) ⊂ A and

L(Br(x)(x)) > K · ν(Br(x)(x))

and A =
⋃
x∈ABr(x)(x). The Besikovitch Covering Lemma ([5]) assures that this

contains N = N(dim(Y )) families of disjoint subcollections which together cover
the whole set A:

A =

N⋃
i=1

⋃̇
j

Brij (xij).

Thus, there is an i such that

1

N
ν(A) ≤

∑
j

ν(Brij (xij)) ≤ K ·
∑
j

L(Brij (xij)) ≤ KL(A),

thus we have ρ(A) ≥ N−1K which is a contradiction as we chose ρ(A)N < K in
the beginning (recall that N does only depend on the dimension of Y !). Therefore
L is continuous w.r.t. ν.

As ν is sigma-finite, L has the form L(A) =
∫
A
fdν for a measurable function

f : Y ′ → [0,∞]. We want to use the concept of approximate continuity, cf [5]), to
show that f is constant. First note that as ν is a Radon measure we know that
ν-almost everywhere we have

ρp(R) := ρ(BR(p)) =
1

ν(BR(p))

∫
BR(p)

fdν → f(p)

for R→ 0. Pick such a point p. Then construct Hamiltonian flows that map pi to qi
and which are isometric translations in small neighborhoods Ui 3 pi. This gives an
element in G which maps p to q and which is an isometry in a small neighborhood
of p. Therefore at every point of Y the limit of ρ(R) is the same. We conclude by
the Besikovitch argument above 2

We want to apply the lemma above to a stratum of V n. This is isometric to V k with
gV k = n1gV ⊕n2gV ⊕ ...⊕nkgV with

∑k
i=1 ni = n. And this in turn is isometric to

n1 ·V ×n2 ·V × ...×nk ·V as subset of Euclidean Rn·k. Recall that any open subset
of this stratum is an open subset in n1 ·V ×n2 ·V × ...×nk ·V disjoint from the fat
diagonal ∆ which consists of all points where two of the coordinates are identical.
Hence, it remains to show that

Lemma 7 Let ν be a measure on an open subset of n1 ·V ×n2 ·V ×...×nk ·V disjoint
from the fat diagonal ∆ and invariant under the k-fold product of the action of
Hamiltonian flows on V . Then sufficiently small spheres in n1 ·V ×n2 ·V ×...×nk ·V
(as subset of Euclidean Rn·k) are ν-null sets.
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Proof. Given a point p = (p1, ...pk), take R > 0 with S2R(p)∩∆ = ∅, i.e. B2R(pi)∩
B2R(pj) = ∅ for i 6= j. Now for every point s = (s1, ...sk) of S2R(p) choose a ball
with radius r < 1

2
√
n
R around s. We will consider the pieces T (s) cut out by these

balls on the sphere, T (s) := Br(s)∩SR(p) . For each such piece we will construct a
Hamiltonian vector field Xf on V for which X×kf generates infinitely many disjoint
copies of T (s) violating the finite measure condition if we assume that the piece has
nonzero measure. Given that it has zero measure we cover the whole sphere with
finitely many of these pieces and get that the sphere itself has zero measure. Now let
ρ be the radial vector field w.r.t. pj . As s ∈ SR(p), we know that sj ∈ BR(pj) ∀j.
Pick j0 with pj0 /∈ Br(sj0). As r < 1

2
√
n
R, there has to be such a j0. Set the function

f to be constructed equal to zero in V \BR(pj0). We want the Hamiltonian vector
field Xf to increase the distance to pj in the smaller ball Br(sj0), i.e. to flow
outwardly. At the same time, for sake of integrability of the gradient vector field we
want the gradient of f to point into radially outward direction as well. The almost
complex structure J is at each point a full-rank map of the tangent space without
an eigenvector, thus without an invariant (n − 1)-dimensional subspace. ρ defines
at every point q an allowed halfspace H in the tangent space TqB with a nonempty
intersection H ∩J−1H (as otherwise there would be a (n−1)-dimensional invariant
subspace). As H ∩ J−1H depends smoothly on the footpoint, there is a smooth
vector field in Br(sj0) contained pointwisely in this subspace. As Br(sj0) is simply
connected, the vector field (as pointing away from pj in Br(sj0)) is the gradient
of a function f in Br(sj0) which can be extended arbitrarily, but with support in
BR(pj0), to all of V . So we have a function whose Hamiltonian flow Ft increases the
distance to p = (p1, ...pk) in the chosen neighborhood of s. Therefore the images of
T (s) under Ft are all disjoint in a small neighborhood t ∈ [0, ε]:

Ft1(s1) 6= Ft2(s2)

because the opposite would mean that the orbits of s1 and s2 coincide (as Ft is a
local diffeomorphism). Thus we have infinitely many disjoint copies of T (s) with
the same measure, therefore T (s) has to be a zero set which implies that the whole
sphere does, because of its compactness 2

Now we apply the lemmata above to every stratum of V n and to the stratum-wise
transitive flows of the form Fl×iXf

for some i ∈ N and some Hamiltonian vector fields
Xf . If we use the lemmata above for every stratum of V n, we get that the measure
µn is of the form

µi =

i∑
j=1

Pij

with Pij being a measure on the j-th stratum and of the form

Pij(A) :=
∑
k∈Pi

j

ck · L(pr(B1(k))(A)) · L(pr(B2(k))(A)) · ... · L(pr(Bj(k))(A))

where the sum is over partitions k of {1, ...i} into j blocks B1(k), ...Bj(k), ck being
some nonnegative coefficients. The first observation is that for a set D ⊂ V

µi(D
×i) =

∑
i

(
∑
k∈Pi

j

ck)(L(A))j (3)
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so we define |Pij | :=
∑
k∈Pi

j
ck. Then we consider the two-dimensional pattern of

the |Pij |, each being the element in the i-th row and j-th column:

|P11| 0 0 0y≥ y y y
|P21| |P22| 0 0y≥ y y y
|P31| |P32| |P33| 0 ...y≥ y y y
|P41| |P42| |P43| |P44|y≥ y y y
... ... ... ...yi→∞ yi→∞ yi→∞

0 0 0

Then it is obvious that the elements of the first column decrease monotonously with
i while the elements in the other columns tend to zero for i→∞ for fixed j because
the values converge to the measure of the set of maps whose image consists of j
different points which is empty because M is connected.

We want to show that |PM1| · L(V ) = µM (V ×M ) for all M ∈ N. The trivial part is
|PM1| · L(V ) ≤ µM (V ×M ) (cf. equation (3)), the nontrivial part is |PM1| · L(V ) ≥
µM (V ×M ). We consider C ⊂ V with

L(V )

L(C)
= D > 1.

Now given a δ > 0, we take a k such that |µi(C×i) − µ((M,C))| ≤ δ for all i ≥ k
which exists because µi(C

×i)→ µ((M,C)) as this holds for all finite Borel measures
on C0(U, V ). Then assume that there is an S > i that

|PS1| · L(C) ≤ µS(C×S)− 4δ.

Then for all N ≥ S,

|PN1| · L(C) ≤ µN (C×N )− 2δ.

Now let w.r.o.g. be L < 1 and set y(B) :=
∑∞
i=2(L(B))i for a set B.

Given an n ∈ N, choose Z(n) ∈ N such that

|PN2|, |PN3|, ...|PNn| <
δ

y(C)
for all N ≥ Z(n).

This exists because of convergence of the columns in the diagram above. If we insert
this estimate into the equation (3), we get

µN (C×N ) ≤ |PN1| · L(C) + δ +

N∑
i=n+1

|PNi| · (L(C))i

and therefore
∑N
i=n+1 |PNi| · (L(C))i ≥ δ and

µN (V ×n) ≥
N∑

i=n+1

|PNi| · (L(V ))i ≥ (
L(V )

L(C)
)n+1

N∑
i=n+1

|PNi| · (L(C))i ≥ Dnδ

10



and by choice of a large n we can produce a contradiction as µN (V ×N )→ µ((U, V ))

as this holds for all finite Borel measures on C0(U, V ). Therefore |PM1| = µ((U,V ))
L(V )

for all M , i.e. the measure is concentrated on the first column which in the limit
represents the constant maps. Therefore µ is an image measure P∗ρ of a measure ρ
on V under the canonical embedding P : V ↪→ C0(U, V ) whose image is the set of
constant maps (to ρ we could again apply Lemma 6 to prove that it can only be a
multiple of the Lebesgue measure). So we have shown that for C∞(U, V ), at most
the measure µ = P∗ρ (a measure which only feels the constant maps) can satisfy
X∗
F̃

(µ) = µ for any smooth function F on U × V . Now we choose an arbitrary
smooth function F on U × V with compact support in U × V and consider the
Hamiltonian vector field XF̃ . Under its flow no constant map will be mapped to a
constant map, and we have a contradiction 2 2

To circumvent the problem described by the proposition above, one could think
about several loopholes for constructing appropriate measures: the choice of a po-
larization, of a linear functional instead of a Borel measure, or of a field theory where
the space of initial data is so restricted that it does not allow for an N-transitive
symmetry of the measure, which happens very likely in the case of many gauge
theories.

This work is part of my PhD thesis at the Max-Planck institute for mathematics
in the sciences in Leipzig under the supervision of Prof. Jürgen Jost. For inspiring
discussions, I want to thank Miroslav Chlebik and Arnold Waßmer.
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namics, Birkhäuser-Verlag, Basel 1994

[8] Shoshichi Kobayashi: Transformation groups in differential geometry, Springer-
Verlag (1995)

[9] Olaf Müller: Natural Geometric Quantization Of Field Theories, PhD thesis,
Universität Leipzig, 2003

[10] S.P.Novikov: The Hamiltonian formalism and a many-valued analogue of Morse
theory, Russian Math. Surveys 37:5 , pp. 1-56 (1982)

[11] Steven G. Krantz, Harold R. Parks: The Geometry of Domains in Space,
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