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Abstract. In this paper we introduce a framework to address filtering and smoothing with
mobile sensor networks for distributed parameter systems. The main problem is formulated as
the minimization of a functional involving the trace of the solution of a Riccati integral equation
with constraints given by the trajectory of the sensor network. We prove existence and develop
approximation of the solution to the Riccati equation in certain trace-class spaces. We also consider
the corresponding optimization problem. Finally, we employ a Galerkin approximation scheme and
implement a descent algorithm to compute optimal trajectories of the sensor network. Numerical
examples are given for both stationary and moving sensor networks.
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1. Introduction. State estimation problems in a distributed parameter setting
are a major source of engineering and applied science problems. In practice, almost all
sources of information of a process (the temperature distribution inside a room, the
concentration of a certain substance in the sea, etc.) are produced by devices capable
of measuring a magnitude (temperature, concentration of a toxin, etc.) whose location
is either a design variable or a known fact. We call sensors to these type of devices.

This research is motivated by applications to two distinct but related problem
areas: (1) Determining optimal sensor/actuator locations for complex hybrid spatial
systems to enhance tracking, estimation, information and effectiveness while limiting
energy consumption. This area includes the sensor placement problem for energy
efficient buildings. Here, the goal is to control room temperature and maximize so-
lar energy production based on continuous changing dynamics determined by the
weather, people inside the building and several sources of (stochastic) noise. The
control/actuators include mechanical systems that position photovoltaic cells per-
pendicular to the incoming light beams and rotate glass panels on outside walls for
capture (or deflection) of sunlight and heating and cooling systems inside the building.
Due to the constant dynamic changes on weather conditions and occupancy of the
building, feedback control based on sensor estimation is fundamental. Sensor tasks in
this problem include appropriate location of incoming light, determination of weather
conditions, temperature measurement and people location inside the building. (2)
The second area is focused on optimal design and control of dynamic sensor fleets
that include the dynamics of the mobile sensors. In this setting one must consider
sensor dynamics as a constraint in the problems of optimal estimation and allow for
information delays.

The first mathematically rigorous attempt to solve the optimal filtering problem
for a wide class of linear distributed parameter systems was given by Bensoussan (see
for example [7]). Also, this was the first attempt to provide a rigorous derivation of
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the Kalman-Bucy filter for linear distributed paramater systems (see Curtain’s paper
[16] for a detailed historical development of the optimal filtering problem).

In the case of finite dimensional systems, necessary conditions similar to those
obtained later for the optimal filtering problem in the infinite dimensional setting
were first developed by M. Athans ([2]) and these optimality conditions were obtained
through Pontryagin’s Maximum Principle.

A comprehensive treatment of the optimal sensor location problem was presented
by Bensoussan (see [6]) where necessary conditions similar to the ones given previously
by Athans (in [2]) were obtained for the infinite dimensional setting. Curtain obtained
a general form of the Kalman-Bucy filter in infinite dimensions for general bounded
generators of evolution operators (see [17]). Balakrishnan developed the Kalman-Bucy
filter equations in another approach using integral equation theory.

The positioning of fixed sensors in order to achieve “maximal observability”of
distributed parameters systems is fundamental for estimation and control. It should
be noticed, however, that even in finite dimensional systems the term “maximal ob-
servability” is not always precisely defined. In the 1990’s, Khapalov produced a series
of papers (focused on questions of observability) on the design of optimal mobile sen-
sors for a robust filtering problem and applied his results to parabolic and hyperbolic
systems (see [33, 34, 35, 36, 37]).

The paper is organized as follows. The optimal filtering problem with PDE con-
straints which constitutes our main problem is given in §2. In section §3 we provide
known results for the trace classes Ip(H ) and prove necessary results associated with
the Schatten classes Ip(X,H ) which are fundamental for the description of the map-
pings t 7→ B(t) and t 7→ C(t). Results concerning Bochner integrability of the maps
t 7→ BB∗(t) and t 7→ C∗C(t) are given in §4 together with results of compactness of
the set of maps t 7→ C∗C(t) = C∗C(t, x̄i(t)) with respect to the sensor trajectories
t 7→ x̄i(t) (or locations in case of stationary sensor networks). Existence of optimal
solutions to Problem (P) is established for a wide class of output mappings in §5.
Additionally, we also provide details on the existence and procedure to calculate the
gradient of the solution of the Riccati equation w.r.t. map t 7→ C∗C(t). This fact
makes it plausible to compute the gradient of the solution to the Riccati equation
w.r.t. the controls of the trajectories t 7→ x̄i(t, x̄

i
0, ui(·)). Finally, we develop a com-

putational scheme based on Galerkin type approximations and prove convergence of
this algorithm in§6 and provide numerical examples to illustrate the theoretical results
in §.

2. Problem Statement. Consider the convection-diffusion process in the n-
dimensional unit cube Ω = (0, 1)n ⊂ Rn defined by

∂

∂t
T = (c2∆ + a(x) · ∇)T + b(t, x)η(t), (2.1)

where ∆ =
∑n
i=1 ∂

2/∂x2
i is the n−dimensional Laplacian, a(x) ·∇ =

∑n
i=1 ai(x)∂/∂xi

is the convection operator and the functions x 7→ ai(x) are smooth on x ∈ Ω. Here η
is a real-valued Wiener process (a zero mean Gaussian process) and for each t ∈ [0, tf ]
the function b(t, ·) belongs to L2(Ω). We also assume boundary and initial conditions
are of the form

T (t, x)
∣∣∣
∂Ω

= 0, T (0, x) = T0(x) + ξ,

where T0(·) ∈ L2(Ω) and ξ is a L2(Ω)-valued gaussian random variable. Since the
boundary ∂Ω is of Lipschitz class, the natural state space for the problem is L2(Ω) and
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the domain of the differential operator A = (c2∆+a(x) ·∇) is D(A) = H2(Ω)∩H1
0 (Ω)

when c > 0.
Assume that one has p sensor-platforms (vehicles) moving in Ω, each with a sensor

capable of measuring an average value of T (t, x) within a fixed range of the location
of the platform. Let x̄i(t) ∈ Ω, i = 1, 2, ..., p denote the position of the ith sensor and
time t ∈ [0, tf ] and let

hi(t) =

∫
Ω

K(x, x̄i(t))T (t, x) dx+ νi(t) . (2.2)

denote the measured output which is the weighted average of the field T (t, x) with
weight K(x, x̄i(t)). Here, each ν = (ν1, ν2, . . . , νp) is a zero-mean white noise process
and is uncorrelated with the process disturbance η. Observe that this definition also
includes the one used by Khapalov (see [33], [34], [35], [36] and [37]) and offers a
certain structure that allows for rigorous analysis when the dynamics of the vehicle
network are included.

For a network of vehicle trajectories x̄i(t) ∈ Ω, i = 1, 2, ..., p, we define the output
map C(t) : L2(Ω)→ Rp by

C(t)ϕ = (C1(t)ϕ, C2(t)ϕ, C3(t)ϕ, . . . , Cp(t)ϕ)T ∈ Rp, (2.3)

where

Ci(t)ϕ :=

∫
Ω

K(x, x̄i(t))ϕ(x) dx. (2.4)

The previous definitions can be used to formulate an abstract (infinite dimensional)
model of the form

ż(t) = Az(t) +B(t)η(t) ∈ L2(Ω), (2.5)

with z(0) = z0 + ξ and measured output

h(t) = C(t)z(t) + ν(t). (2.6)

Here, the state of the distributed parameter system is z(t)(·) = T (t, ·) ∈ L2(Ω). We
will always assume that A is the infinitesimal generator of a C0-semigroup of operators
S(t) over L2(Ω). This is the standard abstract formulation of the convection-diffusion
equations as a distributed parameter control system. This abstract model can be
extended to include the case where η is a Wiener process with values in some separable
Hilbert space X and B(t) ∈ L (X,L2(Ω)) for each t ∈ [0, tf ]. This extension will be
important for the work presented here.

One approach to optimal estimation is to observe that the variance equation for
the optimal estimator is the (weak) solution to an infinite dimensional Riccati (partial)
differential equation of the form

Σ̇(t) = AΣ(t) + Σ(t)A∗ +BR2B
∗(t)− Σ(t)(C∗R−1

1 C)(t)Σ(t) , (2.7)

with initial condition Σ(0) = Σ0. The operators R1(·) and R2(·) are the incremental
covariances of the uncorrelated Wiener processes η and ν, respectively, and Σ0 is the
covariance operator of the L2(Ω)-valued Gaussian random variable ξ (see [16] and
[6]). The expected value of ‖z(t) − ẑ(t)‖2 is the trace of the solution to the infinite
dimensional Riccati equation at time t, i.e.,

E
{
‖z(t)− ẑ(t)‖2

}
= Tr Σ(t),
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where ẑ(·) is the stochastic L2(Ω)-valued process solution to the generalized Kalman-
Bucy filter (see [6] and [7]). Therefore, for a sensor network defined by t 7→ C(t), the
trace of the solution to the Riccati equation is a measure of error between the state
and the state estimator. We use this measure to define the optimal sensor location
problem.

In particular, we proceed as in [41] and consider the distributed parameter optimal
control problem of finding Copt(t) to minimize

J(C(·)) =

∫ tf

0

Tr Q(t) Σ(t) dt (2.8)

where Σ(·) is the mild solution of (2.7), C(·) is defined by (2.3)-(2.4), and for each
t ∈ [0, tf ], the operator Q(t) : L2(Ω) → L2(Ω) is a bounded linear operator. The
(time-varying) map Q(·) allows one to weigh significant parts of the state estimate.
For example, assume one has a control defined by a feedback operator G(t) : Z → Rm.
If a re-constructed state (observer) is to be used in a feedback controller, then one
might choose Q(t) = G∗(t)G(t), in effect minimizing the error in the control produced
by variance in the state estimate.

To complete the problem formulation for mobile sensors we include the sensor
dynamics. Consider the case where n = 3. In particular, let x̄i(t) denote the location
of the ith sensor platform at time t. The state of the sensor platform is defined by
position and velocity so that θ̄i(t) = [x̄i(t), ˙̄xi(t)]

T , where ˙̄xi(t) represents the velocity
of the sensor. The dynamics of the sensor are assumed to be governed by some
controlled ordinary differential equations in R6 given by

˙̄θi(t) = fi(t, θ̄i(t), ui(t)), (2.9)

θ̄i(0) = θ̄i0 = [x̄i0, ˙̄xi0]T (2.10)

where ui(·) belongs to some admissible control set U and the initial conditions θ̄i0
belong to some compact set Θ0 ⊂ R6. For this paper we focus only on the position
of the mobile sensor and observe that

x̄i(t) = [I 0] ˙̄θi(t) = [I 0]

[
x̄i(t)
˙̄xi(t)

]
=: M ˙̄θi(t) (2.11)

is the output to the controlled system (2.9) - (2.10). It should be noted, however, that
the theoretical results in this paper apply to the more general case. In particular,
the position of the sensor is assumed to be given by x̄i(t) = Mθ̄i(t) where M ∈ R3×6

is a constant matrix and θ̄i(t) ∈ R6 for each t ∈ [0, tf ]. Observe that initial condition
x̄i0 for x̄i(t) is given by x̄i0 = Mθ̄i0 so that X0 = MΘ0 ⊂ Ω is the set of possible initial
positions for the sensor location x̄i(t). Finally, the moving sensor problem, for one
sensor, is the following:

Problem (P): Find uopt(·) ∈ U and θ̄opt0 ∈ Θ0 that minimizes

J(θ̄0, u(·)) =

∫ tf

0

Tr (Q(t) Σ(t, x̄(t))) dt , (2.12)

on the set (Θ0,U), where t 7→ Σ(t, x̄(t)) is the solution to the con-
straint (2.7) and the output map t 7→ C(t) is of the form (2.4) and it
is determined by the trajectory t 7→ x̄(t) = Mθ̄(t, θ̄0, u).
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The generalization of Problem (P) for a finite number of sensors is straight-
forward and not stated here. Although, existence of solutions to this problem and
approximations for the minimizers are also given in this paper.

There are several technical and computational challenges that must be addressed
in order to solve Problem (P) above. We cite the following issues:

(1) Since the variance equation is infinite dimensional, one must prove that the
operator Σ(t) is of trace class and integrable so that the cost functional (2.12) is well
defined over the interval [0, tf ]. This can be a nontrival problem, but the results
in [18], [20], [27], [28], [40], and [46] provide a background to develop the necessary
structure.

(2) The approximation of the solution to the problem requires the introduction of
numerical schemes. The basic theory and approximation schemes developed in [11],
[13], [20], [27], [28], [32], [40], and [46] will be used as a starting points. We will
consider the Galerkin approximation as the main tool for this problem.

3. Preliminaries and Ip(X,H ) classes. Let X and H be separable complex
Hilbert spaces. The space of bounded linear operators from X to H is denoted by
L (X,H ) and by L (H ) if X = H . If A ∈ L (X,H ), then ‖A‖ denotes the usual
operator norm.

An operator A ∈ L (H ), is said to be non-negative if 〈Ax, x〉 ≥ 0 for all x ∈H ,
positive if 〈Ax, x〉 > 0 for all nonzero x ∈ H and strictly positive if there is a c > 0
such 〈Ax, x〉 ≥ c‖x‖2 for all x ∈ H . The notation A ≥ 0, A > 0 and A � 0
is standard for non-negative, positive and strictly positive operators, respectively. If
A ≥ 0, and that both {φn} and {ψn} are orthonormal bases of H , then it follows that∑
n 〈φn, Aφn〉 =

∑
n 〈ψn, Aψn〉 (we allow the case where both quantities are infinite).

This observation motivates the definition of trace of an operator.

Definition 3.1. If A ≥ 0, then the trace of A is defined by Tr (A) :=
∑∞
n=1〈φn, Aφn〉,

where {φn}∞n=1 is any orthonormal basis of H .

Each operator A ∈ L (H ) admits a polar decomposition (see for example [44])
analogous to the decomposition z = eiArg(z)|z| when z ∈ C. In particular, let |A|
be defined to be the unique non-negative operator such that A = U |A|, where U is
the unique partial isometry such Ker U = Ker |A|. Since |A| ≥ 0, then |A|p ≥ 0 for
any p ∈ N and applying standard continuous functional calculus we can prove that
|A|p ≥ 0 for any 1 ≤ p < ∞. Therefore, Tr (|A|p) is well defined and leads to the
following definition.

Definition 3.2. Let Ip(H ) for 1 ≤ p <∞ (or simply Ip when the space H is
understood) denote the set of all bounded operators over H such that Tr (|A|p) <∞.
If A ∈ Ip(H ), then the Ip-norm (or just the p-norm) of A is defined as ‖A‖p :=(
Tr (|A|p)

)1/p
<∞.

The subspace of compact bounded linear operators acting on H is denoted by
I∞(H ) and, when H is understood, we simply use I∞ for I∞(H ). The norm in
I∞ is taken to be the operator norm, that is, ‖A‖∞ := ‖A‖.

If H is a complex separable Hilbert space, then the linear space Ip, endowed
with the p-norm is a Banach space (see [45]). The classes I1 and I2 are called
the space of Trace Class (or Nuclear) operators and the space of Hilbert-Schmidt
operators, respectively. Actually, the space I2 is a Hilbert space under the inner
product 〈A,B〉I2

:=
∑∞
n=1 〈Aφn, Bφn〉H , where A,B ∈ I2 and {φn}∞n=1 is any

orthonormal basis of H . Note that 〈A,A〉I2
=
∑∞
n=1 〈φn, A∗Aφn〉H . The operator

|A| is given by |A| =
√
A∗A, and the continuous functional calculus implies that
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|A|2 = (
√
A∗A)2 = A∗A. Consequently 〈A,A〉I2

= Tr (|A|2) = ‖A‖22.
It is well known (see for example [45]), that for 1 ≤ p ≤ ∞, finite rank operators

are dense (in the p-norm) in Ip and that Ip is a two-sided ∗-ideal in the ring L (H ),
i.e., Ip is a vector space and;
1) If A ∈ Ip and B ∈ L (H ), then AB ∈ Ip and BA ∈ Ip.
2) If A ∈ Ip then A∗ ∈ Ip.
It is also well known (see [29] for a proof) that if 1 ≤ p1 < p2 ≤ ∞, and A ∈ Ip1 then
A ∈ Ip2 and ‖A‖p2 ≤ ‖A‖p1 . Therefore, we have the continuous embedding: Ip1 ↪→
Ip2 . As a result of this embedding, it follows by setting p2 =∞, that every operator
in Ip is compact (See [22], [29] or [45]) and that ‖A‖ ≤ ‖A‖p for all 1 ≤ p ≤ ∞. We
shall also need the following results (see [22], [29] and/or [45] for proof).

Lemma 3.3. If A ∈ Ip with 1 ≤ p ≤ ∞ and B ∈ Iq where 1/p+ 1/q = 1, then
AB,BA ∈ I1 and

‖AB‖1 ≤ ‖A‖p‖B‖q, ‖BA‖1 ≤ ‖A‖p‖B‖q. (3.1)

Moreover, ‖A‖p = ‖A∗‖p and for any positive integer r we have Ar ∈ Ip/r and
‖Ar‖p/r ≤ (‖A‖p)r.

The trace is a continuous linear functional over I1 (see [22]). Consequently, if
A ∈ I1, the value Tr (A) =

∑∞
n=1〈φn, Aφn〉 does not depend on the choice of the

orthonormal basis {φn}∞n=1. This result, combined with the previous Lemma, gives
a simple characterization to the dual spaces of Ip (see [29]) given by the following
proposition.

Proposition 3.4. Let ϕ be a continuous linear functional over Ip with 1 < p ≤
∞, then there is an operator A ∈ Iq with 1/p+ 1/q = 1 such that ϕ(X) = Tr (AX),
for all X ∈ Ip, and ‖ϕ‖L (X,C) = ‖A‖q. If ϕ is a bounded linear functional on I1,
then there is a bounded linear operator A ∈ L (H ) such that ϕ(X) = Tr (AX) for all
X ∈ I1 and ‖ϕ‖L (X,C) = ‖A‖.

The previous proposition implies that (Ip)
∗ ' Iq when when 1 < p ≤ ∞ and

then Ip is reflexive when 1 < p < ∞. Moreover (I1)∗ ' L (H ). If A ∈ I∞, then
it is well known (see [29]) that it has a norm convergent expansion given by A(·) =∑ω
n=1 sn(A)〈φn, ·〉ψn, with ω possibly infinite and {φn}ωn=1 and {ψn}ωn=1 orthonormal

sequences in H . The elements of the sequence {sn(A)}ωn=1 are uniquely determined
and called the singular values of A. In addition the singular values satisfy sn(A) ≥ 0
and s1(A) ≥ s2(A) ≥ · · · ≥ 0.

There are several equivalent ways to define the norm ‖A‖p for an A ∈ Ip. The
following result uses the singular values of A and the results of the dual space of Ip

to characterize ‖A‖p (see [22] and [45]).
Proposition 3.5. Let A ∈ Ip and {sj(A)}ωj=1 be its singular values and denote

by I 0 to the set of nonzero finite rank operators. Then, if 1
p + 1

q = 1, the norm ‖A‖p
satisfies

‖A‖p = sup
B∈I 0

|Tr (BA) |
‖B‖q

=
( ω∑
j=1

spj (A)
)1/p

. (3.2)

3.1. The Classes Ip(X,H ). We are interested in studying input mappings
of the form B : I → L (X,H ), for some real interval (commonly I = [0, τ ] or
I = R+ = [0,∞)) where X and H are complex separable Hilbert spaces. Since
X and H may not be the same, we need to define the spaces Ip for operators in
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L (X,H ). Some of the following results can be found on [52] but are included here
for the sake of completeness.

Similarly as with the L (H ) case, if A ∈ L (X,H ) then it has a polar decom-
position ([30]). That is, A can be written as A = U |A| where |A| ∈ L (X) and
U ∈ L (X,H ) are the unique operators such that |A| ≥ 0 and U is a partial isometry
with Ker U = Ker |A|. Since |A| ≥ 0, then for any 1 ≤ p < ∞ we observe that
|A|p ≥ 0. This follows by the functional calculus, σ(|A|) ⊂ [0,∞) then f(λ) = λp ≥ 0
defined as f : σ(|A|) → C satisfies f(λ) ≥ 0 and hence f(|A|) = |A|p ≥ 0. Therefore
Tr (|A|p) =

∑ω
n=1 〈φn, |A|pφn〉 ≥ 0, with ω ≤ ∞, is independent (and could be finite

or infinite) of the chosen orthonormal basis {φn}ωn=1 of X.
Definition 3.6. Let X and H be separable complex Hilbert spaces. The set of

all operators A ∈ L (X,H ) such that Tr (|A|p) <∞ is denoted by Ip(X,H ). That
is, A ∈ Ip(X,H ) if and only if |A| ∈ Ip(X).

For p = ∞ we denote by I∞(X,H ) the Banach space of compact operators in
L (X,H ) under the usual operator norm ‖A‖I∞(X,H ) = ‖A‖L (X,H ) = ‖A‖. The
sets Ip(X,H ) are linear vector spaces. In fact, they are Banach Spaces when one
uses Tr (|A|p) < ∞ to define a norm. Although this result seems to be well known,
we could not find a proof so we include the follow result for completeness.

Proposition 3.7. The space Ip(X,H ) with norm defined by

‖A‖Ip(X,H ) := ‖|A|‖Ip(X) =
(
Tr (|A|p)

)1/p
(3.3)

is a Banach Space.
Proof. First we establish Ip(X,H ) is a linear space. Let A1 and A2 be in

Ip(X,H ) and Ai = Ui|Ai| be their polar decompositions. It follows that |Ai| ∈
Ip(X). Let A1 + A2 = V |A1 + A2| be the polar decomposition of A1 + A2. Con-
sequently, |A1 + A2| = V ∗U1|A1| + V ∗U2|A2| and since V ∗U1 ∈ L (X) we have that
|A1 + A2| ∈ Ip(X). This implies that A1 + A2 ∈ Ip(X,H ). Also, if α ∈ C, then
|αA1| = |α||A1| ∈ Ip(X), which implies that αA1 ∈ Ip(X,H ) and this proves that
Ip(X,H ) is a linear space.

Next we establish that (3.3) defines a norm on Ip(X,H ). By definition we have
‖A‖Ip(X,H ) ≥ 0 and if ‖A‖Ip(X,H ) = 0, then |A| = 0 which yields A = 0. Also since
|αA| = |α||A| then it follows that ‖A‖Ip(X,H ) = |α|‖|A|‖Ip(X) = |α|‖A‖Ip(X,H ).
Finally, |A1 +A2| = V ∗U1|A1|+V ∗U2|A2| and each V,U1 and U2 is a partial isometry.
This implies that ‖V ∗Ui‖ ≤ 1 for i = 1, 2 and hence ‖|A1+A2|‖Ip(X) ≤ ‖|A1|‖Ip(X)+
‖|A2|‖Ip(X). We conclude that ‖A1 + A2‖Ip(X,H ) ≤ ‖A1‖Ip(X,H ) + ‖A2‖Ip(X,H )

and hence (Tr (|A|p))1/p defines a norm.
In order to establish completeness, assume that {An}∞n=1 is a Cauchy sequence

in Ip(X,H ). If Am − An = Vmn|Am − An| is the polar decomposition of Am − An,
then we have

‖Am −An‖L (X,H ) ≤ ‖Vmn‖L (X,H )‖|Am −An|‖L (X) ≤ ‖|Am −An|‖L (X)

≤ ‖|Am −An|‖Ip(X) = ‖Am −An‖Ip(X,H ).

Thus, {An}∞n=1 is a Cauchy sequence in L (X,H ) and since this space is complete, it
is convergent. Furthermore, since each An is compact, the limit is a compact operator,
i.e., limn→∞An = A ∈ I∞(X,H ) in operator norm. This implies that |An| → |A|
in operator norm as n → ∞. The same holds for |An|p → |A|p for p ∈ N and we
can use the continuous functional calculus to extend this to 1 ≤ p < ∞. All these
claims follow from the continuity of A 7→ f(A) when A ≥ 0 and f is continuous on
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the right hand complex semi-plane {z ∈ C : Re z ≥ 0} (see for example Halmos book
[30]). First consider f(λ) = λ1/2 and Bn = A∗nAn which is self-adjoint and clearly
Bn → B = A∗A if An → A and hence, f(Bn) = |An| → |A| = f(B). Secondly,
consider the continuous function g(λ) = λp on C for p ≥ 1; since |An| ≥ 0 and |A| ≥ 0
and |An| → |A| in norm, |An|p → |A|p in norm.

Therefore, for any φ ∈ H , 〈φ, |An|pφ〉 → 〈φ, |A|pφ〉 as n → ∞. Let {φn}ωn=1 be
some orthonormal basis of H . Since {An}∞n=1 is a Cauchy sequence in Ip(X,H ),
then for any N <∞,(

N∑
k=1

〈φk, |An|pφk〉

)1/p

≤ ‖|An|‖Ip(X) = ‖An‖Ip(X,H ) ≤M <∞,

where M := supn∈N ‖An‖Ip(X,H ) <∞. Taking the limit as n→∞, we have(
N∑
k=1

〈φk, |A|pφk〉

)1/p

≤M <∞,

for any N ∈ N. Therefore Tr (|A|p) <∞, i.e., A ∈ Ip(X,H ).
In the case in which X = H , we use Ip(H ) or Ip as usual when the space is

understood. We need to extend several previous results to the space Ip(X,H ).
Proposition 3.8. Let A ∈ Ip(X,H ) where X and H are separable complex

Hilbert spaces and 1 ≤ p ≤ ∞. Then A ∈ Ir(X,H ) for all p ≤ r ≤ ∞. Also A∗ ∈
Ip(H , X) and ‖A‖Ip(X,H ) = ‖A∗‖Ip(H ,X). If A ∈ I2p(X,H ) then AA∗ ∈ Ip(H )
and ‖AA∗‖Ip(H ) ≤ ‖A‖I2p(X,H )‖A∗‖I2p(H ,X).

Proof. If A ∈ Ip(X,H ), then |A| ∈ Ip(X). Hence |A| ∈ Ir(X) for any
p ≤ r ≤ ∞ and this implies A ∈ Ir(X,H )

Let A = U |A| ∈ L (X,H ) be the polar decomposition of A, then the po-
lar decomposition of the adjoint A∗ ∈ L (H , X) is given by A∗ = U∗|A∗| where
|A∗| = U |A|U∗ (for a proof see [23]). Since P1 = U∗U ∈ L (H ) is a projection onto
(KerU)⊥ = (Ker |A|)⊥ = (Range|A|) then U∗U |A| = |A| and hence |A∗|p = U |A|pU∗
for p ∈ N. By the continuous functional calculus |A∗|p = U |A|pU∗ holds for any
1 ≤ p <∞.

Now, let {φn}∞n=1 be the orthonormal basis of H given by eigenvectors of |A∗| ∈
L (H ). This is possible because |A∗| ≥ 0 is compact and self-adjoint since A∗ is
compact. Then {ψn}∞n=1 = {U∗φn}∞n=1 is an orthonormal set (not necessarily a
basis) in X. Since φn ∈ Range(|A∗|) and P2 = UU∗ ∈ L (X) is a projection onto
Range(|A∗|), we observe that 〈ψn, ψm〉X = 〈UU∗φn, φm〉H = 〈φn, φm〉H = δn,m.
Therefore,

Tr (|A∗|p) =
∑
n

〈φn, U |A|pU∗φn〉H =
∑
n

〈ψn, |A|pψn〉X ≤ Tr (|A|p) <∞.

Interchanging the roles of A and A∗ in the proof, we obtain the reverse inequality
Tr (|A|p) ≤ Tr (|A∗|p). This implies that ‖A‖Ip(X,H ) = ‖A∗‖Ip(H ,X).

Now suppose that A ∈ I2p(X,H ). We observe that |AA∗| = AA∗ = U |A|2U∗ ≥
0. Then |AA∗|p = U |A|2pU∗ for p ∈ N (since U∗U |A| = |A| as we used before) and
the continuous functional calculus extends this to any 1 ≤ p <∞. Therefore

Tr (|AA∗|p) =
∑
n

〈
φn, U |A|2pU∗φn

〉
H

=
∑〈

ψn, |A|2pψn
〉
X
≤ Tr (|A|2p) <∞.
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Finally, Tr (|A|2p) = ‖|A|p|A|p‖I1(X) ≤ ‖|A|p‖I2(X)‖|A|p‖I2(X) and using the previ-

ous identies we have ‖|A|p‖I2(X) = (Tr (|A|2p))1/2 = ‖A‖pI2p(X,H ) = ‖A∗‖pI2p(H ,X).

Therefore Tr (|AA∗|p) ≤ ‖A‖pI2p(X,H )‖A
∗‖pI2p(H ,X) or

‖AA∗‖Ip(H ) ≤ ‖A‖I2p(X,H )‖A∗‖I2p(H ,X).

4. The Input and Output Maps. In this section, we provide conditions on
the maps t 7→ B(t) and t 7→ C(t) so that the maps t 7→ BB∗(t) and t 7→ C∗C(t) are
Ip-valued, Bochner measurable and regular enough (in time) to guarantee existence
of σ, a Ip-valued solution to the Riccati equation. Additionally, we study compacity
properties of the sets {t 7→ C∗C(t, x̄i(t))} determined by the trajectories of the sensors
{t 7→ x̄i(t) : x̄i(t) = Mθ̄i(t, θ̄

i
0, ui(·))}.

4.1. The Input Map t 7→ B(t). Lemma 4.1. Let X and H be separable
complex Hilbert spaces, I be a real interval (bounded or unbounded) and let B : I →
I2p(X,H ) with 1 ≤ p ≤ ∞. Then,
i. If B(·) ∈ L2

loc(I; I2p(X,H )) then BB∗(·) ∈ L1
loc(I; Ip(H )).

ii. If B(·) ∈ C (I; I2p(X,H )), then BB∗(·) ∈ C (I; Ip(H )).
Proof. We first prove the measurability BB∗(·). Since B(t) ∈ I2p(X,H ) for each

t ∈ I, then B∗(t) ∈ I2p(H , X) and BB∗(t) := B(t)B∗(t) ∈ Ip(H ) by Proposition
3.8; then BB∗ : I → Ip(H ). Since B : I → I2p(X,H ) is measurable, there is a
sequence of simple I2p(X,H )-valued functions Bn(t) =

∑n
k=1 bk(n)χ

Ek(n)
(t) for t ∈ I

with bk(n) ∈ I2p(X,H ) and Ek(n) ⊂ I measurable sets for 1 ≤ k ≤ n ∈ N satisfying
‖(B−Bn)(t)‖I2p(X,H ) → 0 a.e. in t ∈ I as n→∞. Note that BnB

∗
n(t) := Bn(t)B∗n(t)

is a simple Ip(H )-valued function and

‖(BB∗ −BnB∗n)(t)‖Ip(H ) ≤ ‖B(B∗ −B∗n)(t)‖Ip(H ) + ‖(B −Bn)B∗n(t)‖Ip(H )

= ‖(B −Bn)B∗(t)‖Ip(H ) + ‖(B −Bn)B∗n(t)‖Ip(H )

≤ ‖(B −Bn)(t)‖I2p(X,H )

(
‖B∗(t)‖I2p(H ,X) + ‖B∗n(t)‖I2p(H ,X)

)
.

Hence ‖(BB∗ − BnB∗n)(t)‖Ip(H ) → 0 a.e. in t ∈ I as n → ∞ and this implies that
BB∗ : I → Ip(H ) is measurable.

We now turn the attention to i.. Note that if B(·) ∈ L2
loc(I; I2p(X,H )), then∫

C
‖B(t)‖2I2p(X,H ) dt < ∞, for any compact interval C ⊂ I. From Proposition 3.8,

we obtain ‖B(t)B∗(t)‖Ip(H ) ≤ ‖B(t)‖I2p(X,H )‖B∗(t)‖I2p(H ,X) = ‖B(t)‖2I2p(X,H ),

which implies that∫
C

‖BB∗(t)‖Ip(H ) dt ≤
∫
C

‖B(t)‖2I2p(X,H ) dt <∞.

Hence, BB∗(·) ∈ L1
loc(I; Ip(H )).

Let t and s belong to some compact interval C ⊂ I. It follows that

‖BB∗(t)−BB∗(s)‖Ip(H ) ≤ ‖B(t)(B∗(t)−B∗(s))‖Ip(H ) + ‖(B(t)−B(s))B∗(s)‖Ip(H )

≤ ‖(B(t)−B(s))B∗(t)‖Ip(H ) + ‖(B(t)−B(s))B∗(s)‖Ip(H )

≤ ‖B(t)−B(s)‖I2p(X,H )

(
‖B∗(t)‖I2p(H ,X) + ‖B∗(s)‖I2p(H ,X)

)
≤M‖B(t)−B(s)‖I2p(X,H ),
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where M = supt,s∈C

(
‖B∗(t)‖I2p(H ,X) + ‖B∗(s)‖I2p(H ,X)

)
< ∞. Hence, if B(·) ∈

C (I; I2p(X,H )), then BB∗(·) ∈ C (I; Ip(H )), hence ii. is proven.
In many realistic control problems the number of inputs and sensed outputs are

typically finite (and often small in numbers). In this case, the previous results become
stronger when X is finite dimensional.

Proposition 4.2. Let X is a finite dimensional complex Hilbert space and H a
separable complex Hilbert space. If A ∈ L (X,H ), then A ∈ I1(X,H ).

Proof. If A = U |A| is the polar decomposition of A, then |A| ∈ L (X). Since X
is finite dimensional, |A| ∈ I1(X) and this implies that A ∈ I1(X,H ).

As expected, for the same X and H as above, the same result holds for any
operator A ∈ L (H , X). In this case A ∈ I1(H , X), since A is of finite rank.

Lemma 4.3. Let X be a finite dimensional complex Hilbert space, H be a sepa-
rable complex Hilbert space and I be a real interval (bounded or unbounded).
i. If B(·) ∈ L2

loc(I; L (X,H )), then BB∗(·) ∈ L1
loc(I; I1(H )).

ii. If B(·) ∈ C (I; L (X,H )), then BB∗(·) ∈ C (I; I1(H )).
Proof. We first prove that for each 1 ≤ p < ∞ there is an c > 0 such that

‖A‖Ip(X,H ) ≤ c‖A‖L (X,H ) for each A ∈ L (X,H ). Since all norms are equiva-
lent in finite dimensions and L (X) is finite dimensional there is a c > 0 such that
‖|A|‖Ip(X) ≤ c‖|A|‖L (X) since |A| ∈ L (X). Since U∗A = |A| (where A = U |A|
is the polar decomposition of A), then ‖|A|‖L (X) ≤ ‖A‖L (X,H ) this implies that
‖|A|‖Ip(X) ≤ m‖A‖L (X,H). By definition ‖A‖Ip(X,H ) = ‖|A|‖Ip(X), the claimed
result follows.

Proposition 4.2 implies that B(·) is I1(X,H )-valued and hence also I2(X,H )-
valued, since I1(X,H ) ↪→ I2(X,H ). We now proveB(·)is measurable as a I2(X,H )-
valued function. Since B : I → L (X,H ) is Bochner measurable, then there is a se-
quence of simple functions Bn : I → L (X,H ) such that ‖B(t)−Bn(t)‖L (X,H ) → 0
a.e. in t ∈ I as n→∞. Since ‖B(t)− Bn(t)‖I2(X,H ) ≤ c‖B(t)− Bn(t)‖L (X,H ) for
some c > 0, we observe that ‖B(t) − Bn(t)‖I2(X,H ) → 0 a.e. in t ∈ I as n → ∞.
This implies B : I → I2(X,H ) is Bochner measurable.

If B(·) ∈ L2
loc(I; L (X,H )), since ‖B(t)‖I2(X,H ) ≤ c‖B(t)‖L (X,H ) for each

t ∈ I, then it follows that B(·) ∈ L2
loc(I; I2(X,H )). Therefore, by Lemma 4.1 we

observe that BB∗(·) ∈ L1
loc(I; I1(H )) and i. is proven.

We now turn the attention to ii.. IfB(·) ∈ C (I; L (X,H )), since ‖B(t)‖I2(X,H) ≤
c‖B(t)‖L (X,H) for some c > 0 and for each t ∈ I, we observe thatB(·) ∈ C (I; I2(X,H ))
and this implies by Lemma 4.1 that BB∗(·) ∈ C (I; I1(H )).

4.2. The Output Map t 7→ C(t). For the case of p sensors, the operator C(t)
in (2.3) is given by

C(t)ϕ := (C1(t)ϕ, C2(t)ϕ, . . . , Cn(t)ϕ)T

for ϕ(·) ∈ L2(Ω), where

Ci(t)ϕ :=

∫
Ω

Ki(t, x)ϕ(x) dx,

for kernels Ki : I × Ω → C, for i = 1, 2, . . . ,m. We assume that Ki(t, ·) ∈ L2(Ω) for
each t ∈ I, so that Ci(t) ∈ L (L2(Ω),C) and C(t) ∈ L (L2(Ω),Cp) for each t ∈ I.

Proposition 4.4. If the map t 7→ Ki(t, ·) belongs to L∞loc(I;L2(Ω)) for i =
1, 2, . . . , p where I is a real (bounded or unbounded) interval, then it follows that
(C∗C)(·) ∈ L∞loc(I; I1(L2(Ω))).
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Proof. Suppose I is a bounded interval. Since t 7→ Ki(t, ·) ∈ L∞(I;L2(Ω)), there
is 0 < M < ∞ such that ess supt∈I ‖Ki(t, ·)‖L2(Ω) < M for all i. Also, there are se-

quences
{
Kk
i

}∞
k=1

of simple L2(Ω)-valued functions Kk
i (t, x) =

∑k
j=1 P

j
i (k, x)χIji (k)(t)

that converge point-wise a.e. to Ki with P ji (k, ·) ∈ L2(Ω) for 1 ≤ i ≤ n and 1 ≤ j ≤ k.
Define the sequence

{
Cki (·)

}∞
k=1

by

(Cki (t)ϕ) =

∫
Ω

Kk
i (t, x)ϕ(x) dx =

k∑
j=1

(∫
Ω

P ji (k, x)ϕ(x) dx

)
χIji (k)(t),

for ϕ(·) ∈ L2(Ω). For each i, t 7→ Cki (t) is a simple L (L2(Ω),C)-valued function and
satisfies

|
(
Ci(t)− Cki (t)

)
ϕ| ≤

∫
Ω

|Ki(t, x)−Kk
i (t, x)||ϕ(x)| dx

≤ ‖Ki(t, ·)−Kk
i (t, ·)‖L2(Ω)‖ϕ‖L2(Ω).

Therefore, ‖Ci(t)− Cki (t)‖L (L2(Ω),C) ≤ ‖Ki(t, ·)−Kk
i (t, ·)‖L2(Ω) and hence each t 7→

Ci(t) is a Bochner measurable L (L2(Ω,C))-valued function with domain I. The
same inequality shows that Ci(·) ∈ L∞(I,L (L2(Ω);C)). This implies that C(·) ∈
L∞(I,L (L2(Ω);Cp)) and C∗(·) ∈ L∞(I,L (Cp;L2(Ω))). In case I is unbounded, the
above holds for each I ∩ [α, β] and then in any case C(·) ∈ L∞loc(I,L (L2(Ω);Cp)) and
C∗(·) ∈ L∞loc(I,L (Cp;L2(Ω))).

Since C∗(·) ∈ L∞loc(I,L (Cp;L2(Ω))) and Cp is finite dimensional we have that
C∗(·) ∈ L2

loc(I,L (Cn;L2(Ω))). If [a, b] ⊂ I, then∫
[a,b]

‖C∗(t)‖2L (Cn;L2(Ω)) dt ≤ (b− a)
(

ess sup
t∈[a,b]

‖C∗(t)‖L (Cn;L2(Ω))

)2

.

Therefore, C∗(·) ∈ L2
loc(I,L (Cp;L2(Ω))) and Lemma 4.3 implies that C∗C(·) ∈

L∞loc(I; I1(L2(Ω))).

4.2.1. The Stationary Network Case. Assume that one has p sensor-platforms
fixed in Ω compact, each with a sensor capable of measuring a weighted average value
of the process of interest. We will denote the position of a sensor with a “bar” on top
of the variable. For example, the position of the first sensor we will be denoted by
“x̄1”. We consider two important examples.

Example 1. Let x̄i ∈ Ω and suppose the sensor measures an average value of
each ϕ(·) ∈ L2(Ω) within a fixed radius δ > 0 of the location x̄i ∈ Ω. In this case

Ci(x̄i)ϕ =

∫
Ω

χ
δ
(x, x̄i)ϕ(x) dx,

where χ
δ
(x, y) = 1 if ‖x− y‖Rn < δ and χ

δ
(x, y) = 0 otherwise.

Example 2. Let x̄i ∈ Ω, k > 0 and K(x) = e−k‖x−x̄i‖
2
Rn , so that

Ci(x̄i)ϕ =

∫
Ω

e−k‖x−x̄i‖
2
Rnϕ(x) dx.

Here Ci(x̄i) is a Gaussian-type kernel sensor.
The general form of the output operator when p sensors are placed in Ω is given

by

C(t, x̄1, x̄2, . . . , x̄p)ϕ = (C1(t, x̄1)ϕ, C2(t, x̄2)ϕ, . . . , Cn(t, x̄p)ϕ)T (4.1)



12 J. A. BURNS AND C. N. RAUTENBERG

for ϕ(·) ∈ L2(Ω), with

Ci(t, x̄i)ϕ =

∫
Ω

Ki(t, x, x̄i)ϕ(x) dx. (4.2)

In applications, if the sensor is moved from the position x̄i to a position x̄i+∆x̄i with
‖∆x̄i‖Rn << 1 we expect that the measurement at x̄i is close to the one in x̄i + ∆x̄i.
This motivates the following definition.

Definition 4.5 (Continuity w.r.t. Location). Let I be a real interval and
C : I ×Ω

p → L (L2(Ω);Cp), be of the form (4.1). We say that C is continuous with
respect to location if there is a continuous function g : R+ → R+ such that g(0) = 0
and

‖Ki(t, ·, y)−Ki(t, ·, z)‖L2(Ω) ≤ g(‖y − z‖Rn), ∀t ∈ I ∀y, z ∈ Ω,

and for i = 1, 2, . . . , p. Here, t 7→ Ki(t, ·, x) ∈ L2
loc(I;L2(Ω)) for i = 1, 2, . . . , p and

for each x ∈ Ω, Ki is the kernel of the integral representation for Ci in (4.2).
Since the solution of Riccati equation can be regarded a function of the mapping

t 7→ C∗C(t, x̄1, x̄2, . . . , x̄p) we are interested in properties of the set
{t 7→ C∗C(t, x̄) : for x̄ = (x̄1, x̄2, . . . , x̄p) ∈ Xp

0}, where X0 is some compact set of
interest that belongs to Ω. Since the stationary sensor network is just an example of
the moving sensor network, the proof is provided in what follows on Lemma 4.6.

The condition (Definition 4.5) that states that there exist a continuous g : R+ →
R+ satisfying g(0) = 0 and ‖Ki(t, ·, y)−Ki(t, ·, y)‖L2(Ω) ≤ g(‖y − z‖Rn), for all t ∈ I
and all y, z ∈ Ω is satisfied by the kernels we considered in the Examples 1 and 2 as
we now prove.

Consider the sensor in Example 1 and let y, z ∈ Ω. Then∫
Rn
|χ
δ
(x, y)− χ

δ
(x, z)| dx =

∫
Rn
|χ
δ
(x, 0)− χ

δ
(x, z − y)| dx = 2m {Bδ(z − y) \Bδ(0)} ,

where m refers to the Lebesgue measure in n dimensions and Bδ(x) is the closed
n−dimensional ball of radius δ centered at x. The function Ω 3 w 7→ m {Bδ(w) \Bδ(0)}
depends only on the norm of w, i.e., G(‖w‖Cn) = 2m {Bδ(w) \Bδ(0)}. The function
G is clearly monotonically increasing and satisfies G(0) = m∅ = 0. The continuity of
x 7→ G(x) can be easily checked using the Lebesgue Dominated Convergence Theorem
on the integral representation above. Since |χ

δ
(x, y)−χ

δ
(x, z)|2 = |χ

δ
(x, y)−χ

δ
(x, z)|,

then
∫

Ω
|χ
δ
(x, y)− χ

δ
(x, z)| dx ≤ m(Ω)(

∫
Rn
|χ
δ
(x, y)− χ

δ
(x, z)| dx)1/2 which yields∫

Ω

|χ
δ
(x, y)− χ

δ
(x, z)|2 dx ≤ m(Ω)

(
G(‖y − z‖Rn)

)1/2
.

For the sensor in the Example 2 we consider K(x, x̄i) = e−k‖x−x̄i‖
2
Rn for some

k > 0. Since t 7→ e−kt : [0,∞)→ [0, 1] is Lipschitz continuous, it follows that

|K(x, y)−K(x, z)| ≤ C
∣∣∣‖x− y‖2Rn − ‖x− z‖2Rn∣∣∣.

The Law of Cosines yield

‖x− y‖2Rn − ‖x− z‖2Rn = ‖y − z‖2Rn − 2‖y − z‖Rn‖x− z‖Rn cos(θz),

for some θz ∈ [−π, π] and since diam(Ω) = supv,w∈Ω ‖v − w‖Rn < ∞, it follows that
|‖x− y‖2Rn − ‖x− z‖2Rn | ≤ 3 diam(Ω)‖y − z‖Rn . Thus, we have∫

Ω

|K(x, y)−K(x, z)|2 dx ≤
(

9C2 (diam(Ω))2m(Ω)
)
‖y − z‖2Rn .
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4.2.2. The Moving Network Case. Here, we assume that I = [0, τ ] for some
fixed τ > 0 and that that Ω ⊂ R3 is open and bounded. Thus, Ω is compact. Let
x̄i(t) ∈ Ω for each t ∈ I be the position of the ith sensor at time t. In this case the
general form of the output map for a moving sensor platform is given by

Ci(t, x̄i(t))ϕ =

∫
Ω

Ki(t, x, x̄i(t))ϕ(x) dx, (4.3)

where Ki : I ×Ω×Ω→ R. For every continuous curve t 7→ x̄i(t) in Ω we will assume
that the map t 7→ Ki(t, ·, x̄i(t)) is Bochner measurable as a L2(Ω)-valued map on
the interval I = [0, τ ] and also essentially bounded, i.e., t 7→ Ki(t, ·, x̄i(t)) belongs to
L∞(I;L2(Ω)).

As noted previously, in real problems, trajectories are determined by vehicles
that are often governed by nonlinear controlled ordinary differential equations. We
will assume that each of the vehicles satisfy the following hypotheses.

The sensor trajectories t 7→ x̄(t) are given by x̄(t) = Mθ̄(t) where M ∈ R3×6 is a
constant matrix, θ̄(t) ∈ R6 for each t ∈ [0, τ ]. Also, the maps t 7→ θ̄(t) are outputs to
a system of controlled ordinary differential equations

˙̄θ(t) = f(t, θ̄(t), u(t));

θ̄(0) = θ̄0;

with f ∈ C1(R1+6+q;R6), θ̄0 ∈ Θ0 with Θ0 compact and MΘ0 = X0 ⊂ Ω and
u(·) ∈ U , where

U = {u : u is measurable and u(t) ∈ Γ ⊂ Rq for all t ∈ I = [0, τ ]},

and Γ is compact. We make the following standard assumptions.

Ha) The response satisfies θ̄(t, θ̄0, u) ∈ Θ1, with Θ1 compact and MΘ1 = Ω, for all
u(·) ∈ U , θ̄0 ∈ Θ0 and all t ∈ I = [0, τ ].

Hb) The set V (θ, t) = {f(t, θ, u) : u ∈ Γ} is convex for each fixed (θ, t).

The previous hypotheses are the usual hypotheses required for the attainability set
to be compact (see [39]) and to vary continuously with respect to t ∈ [0, τ ]. Note also
that Ha implies that θ̄(t, θ̄0, u) is uniformly bounded in ([0, τ ],Θ0,U). This condition
implies that there is an m > 0 such that f(t, θ̄(t, θ̄0, u), u) ≤ m for t ∈ [0, τ ], θ̄0 ∈ Θ0

and u ∈ U for any fixed τ > 0.
Since we have p sensors, we denote x̄(t, θ̄0,u(·)) as the p-dimensional vector with

x̄i(t, θ̄
i
0, ui(·)) for i = 1, 2, . . . , p as elements, where θ0 = (θ̄1

0, θ̄
2
0, . . . , θ̄

p
0) ∈ Θp

0, and
u(·) = (u1(·), u2(·), . . . , up(·)) such that ui(·) ∈ U for i = 1, 2, . . . , p. We suppose
that each t 7→ x̄i(t, θ̄

i
0, ui(·)) is defined x̄i(t, θ̄

i
0, ui(·)) = Mθ̄i(t, θ̄

i
0, ui(·)) where θ̄i a

solution to a controlled differential equation of the type described above and with
initial conditions θ̄i(0) = θ̄i0. Then, we have

(C(t, x̄(t, θ̄0,u(·)))ϕ) =


(C1(t, x̄1(t, θ̄1

0, u1(·)))ϕ)
(C2(t, x̄2(t, θ̄2

0, u2(·)))ϕ)
...

(Cp(t, x̄p(t, θ̄
p
0 , up(·)))ϕ)

 ∈ Cp, (4.4)

with

Ci(t, x̄i(t, θ̄
i
0, ui(·)))ϕ =

∫
Ω

Ki(t, x, x̄i(t, θ̄
i
0, ui(·)))ϕ(x) dx. (4.5)
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We denote x̄(t, θ̄0,u(·)) = M θ̄(t, θ̄0,u(·)), where M θ̄(t, θ̄0,u(·)) is shorthand for
{Mθ̄i(t, θ̄

i
0, ui(·))}

p
i=1.

Lemma 4.6. Let I = [0, τ ] and suppose that C is continuous with respect to
location (see definition 4.5). Then, the set F defined by

F =
{
C∗C(·,M θ̄(·, θ̄0,u)) ∈ L∞(I; I1(L2(Ω))) : for θ̄0 ∈ Θp

0 and u ∈ Up
}
,

is compact in L∞([0, τ ]; I1(L2(Ω))).
If the kernels Ki do not depend explicitly on t, so that Ki(·, y) ∈ L2(Ω) for each

y ∈ Ω, then the set F defined as

F =
{
C∗C(M θ̄(·, θ̄0,u)) ∈ C (I; I1(L2(Ω))) : for θ̄0 ∈ Θp

0 and u ∈ Up
}
,

is compact in C ([0, τ ]; I1(L2(Ω))).
Proof. We present a proof for the case of one moving sensor. The generaliza-

tion to multiple sensors is straightforward. For any sequence of θ̄k(·, θ̄k0 , uk(·)) with
(θ̄k0 , uk(·)) ∈ (Θ0,U), there is a subsequence (that we will also call θ̄k(·, θ̄k0 , uk(·)))
such that

sup
t∈[0,τ ]

‖θ̄(t, θ̄0, u(·))− θ̄k(t, θ̄k0 , uk(·))‖R6 → 0, (4.6)

as k →∞, for some θ̄0 ∈ Θ0 and some u(·) ∈ U (for a proof when see [39]).
Let x̄(t) = x̄(t, θ̄0, u(·)) and x̄k(t) = x̄k(t, θ̄k0 , uk(·)) for k ∈ N. Also, since C is

continuous with respect to location on Ω, we have

|(C(t, x̄(t))− C(t, x̄k(t)))ϕ| ≤
∫

Ω

|K(t, x, x̄(t))−K(t, x, x̄k(t))||ϕ(x)| dx

≤ ‖K(t, ·, x̄(t))−K(t, ·, x̄k(t))‖L2(Ω)‖ϕ(·)‖L2(Ω)

≤ g(‖x̄(t)− x̄k(t)‖Cp)‖ϕ(·)‖L2(Ω).

Equivalently,

|(C(t, x̄(t))− C(t, x̄k(t)))ϕ| ≤ g(‖M(θ̄(t)− θ̄k(t))‖Rn)‖ϕ(·)‖L2(Ω), (4.7)

which implies that ‖(C(t, x̄(t)) − C(t, x̄k(t)))‖L (L2(Ω),C) → 0 for any t ∈ I and that

‖(C(·, x̄(·))−C(·, x̄k(·)))‖L∞(I;L (L2(Ω),C)) → 0 because g is continuous with g(0) = 0
and by (4.6).

We also know that there is c > 0 such that ‖C(t, x̄(t))−C(t, x̄k(t))‖I1(L2(Ω),C) ≤
c‖C(t, x̄(t))−C(t, x̄k(t))‖L (L2(Ω),C) (see the proof of Lemma 4.3 and Proposition 3.8).
Hence

‖C(·, x̄(·))− C(·, x̄k(·))‖L∞(I;I1(L2(Ω),C)) → 0,

as k →∞ since t 7→ C(t, x̄) is also I1(L2(Ω),C)-valued and measurable
Clearly (C∗C)(·, x̄(·)) ∈ F and by the properties of Proposition 3.8, we have

‖(C∗C)(t, x̄(t))− (C∗C)(t, x̄k(t))‖I1(L2(Ω)) ≤
‖C∗(t, x̄(t))‖I1(C,L2(Ω))‖C(t, x̄(t))− C(t, x̄k(t))‖I1(L2(Ω),C)+

‖C(t, x̄k(t))‖I1(L2(Ω),C)‖C∗(t, x̄(t))− C∗(t, x̄k(t))‖I1(C,L2(Ω)).
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Therefore,

‖(C∗C)(t, x̄(t))− (C∗C)(t, x̄k(t))‖I1(L2(Ω)) ≤(
‖C(t, x̄(t))‖I1(L2(Ω),C) + ‖C(t, x̄k(t))‖I1(L2(Ω),C)

)
‖C(t, x̄(t))− C(t, x̄k(t)‖I1(L2(Ω),C).

Taking the ess supt∈I we observe that the term in the parentheses is uniformly bounded
in n ∈ N and hence we have

‖(C∗C)(·, x̄(·))− (C∗C)(·, x̄k(·))‖L∞(I;I1(L2(Ω))) → 0,

which proves the compactness of F .
If the kernel K does not depend explicitly on t, then the inequality ‖K(·, y) −

K(·, z)‖L2(Ω) ≤ g(‖y − z‖Rn) for any y, z ∈ Ω implies that t 7→ C(x̄(t)) is continuous
as we now prove. It follows that

|(C(x̄(t))− C(x̄(s)))φ(·)| ≤ ‖K(·, x̄(t))−K(·, x̄(s))‖L2(Ω)‖ϕ(·)‖L2(Ω)

≤ g(‖M(θ̄(t)− θ̄(s))‖Rn)‖ϕ(·)‖L2(Ω),

which implies ‖C(x̄(t)) − C(x̄(s))‖L (L2(Ω),C) ≤ g(‖M(θ̄(t) − θ̄(s))‖Rn). Since C is
finite dimensional we have that

‖C(x̄(t))− C(x̄(s))‖I1(L2(Ω),C) ≤ cg(‖M(θ̄(t)− θ̄(s))‖Rn)

for some constant c > 0 (see the proof of Lemma 4.3), independent of t, s ∈ I. Since
t 7→ θ̄(t) is a continuous trajectory, this implies that C(x̄(·)) ∈ C (I; I1(L2(Ω),C))
and the same inequalities as before prove the compactness of F in this topology.

5. Minimizers of Problem (P) and Optimality Conditions. Several results
and assumptions should be considered before proving existence for the minimization
problem of interest. Recall, that we have assumed that A, the operator associated with
the dynamics of the process in 2.5, is the infinitesimal generator of a C0-semigroup
S(t) over L2(Ω). For a general C0-semigroup over a separable complex Hilbert space
H , we have the following result for solutions of the integral Riccati equation which
we state without proof for the sake of brevity (for a proof see [43] or [15]).

Theorem 5.1. Let H be a separable complex Hilbert space, I = [0, τ ] or I = R+,
S(t) be a C0-semigroup on H , and suppose that
(i) Σ0 ∈ Ip and Σ0 ≥ 0;
(ii) BB∗(·) ∈ L1

loc(I; Ip), with BB∗(t) ≥ 0 for t ∈ I;
(iii) C∗C(·) ∈ L∞loc(I; L (H )), with C∗C(t) ≥ 0 for t ∈ I.
Then, the equation

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
BB∗ − Σ(C∗C)Σ

)
(s)S∗(t− s) ds, (5.1)

where the integral is a Bochner integral, has a unique solution in the space L2
loc(I; I2p),

and even more the solution belongs to C (I; Ip) and is point-wise self-adjoint and non-
negative.

Suppose that BB∗(·) ∈ C ([0, τ ]; Ip) and that C∗C(·) ∈ C ([0, τ ]; L (H )), then
there is a unique solution Σ(·) in C ([0, τ ]; Ip) for (5.1). Since H is reflexive, S∗(t) is
a C0-semigroup with generator A∗ (see [42]). Let x, y ∈ D(A∗), and then Σ(·) satisfies

〈Σ(t)x, y〉 = 〈Σ0S
∗(t)x, S∗(t)y〉+

∫ t

0

〈(
BB∗ − Σ(C∗C)Σ

)
(s)S∗(t− s)x, S∗(t− s)y

〉
ds.
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Therefore, t 7→ 〈Σ(t)x, y〉 is differentiable and a simple computation with the Leibniz
integral rule (see [8] for a proof when BB∗ and C∗C are constant mappings) shows
that

d

dt
〈Σ(t)x, y〉 = 〈A∗y,Σ(t)x〉+ 〈Σ(t)y,A∗x〉+ 〈BB∗(t)x, y〉 − 〈Σ(t)(C∗C)(t)Σ(t)x, y〉,

with 〈Σ(0)x, y〉 = 〈Σ0x, y〉. Therefore, any solution in C ([0, τ ]; Ip) of the integral
Riccati equation is a weak solution of the differential equation

Σ̇(t) = AΣ(t) + Σ(t)A∗ +BB∗(t)− Σ(t)(C∗C)(t)Σ(t) , (5.2)

with initial condition Σ(0) = Σ0. Conversely, any weak solution to this equation can
be proven to be a mild solution to the integral Riccati equation (5.1) (See [8] for a proof
for constant mappings BB∗ and C∗C. The extension for BB∗(·) ∈ C ([0, τ ]; Ip) and
C∗C(·) ∈ C ([0, τ ]; L (H )) is straightforward). Since the unique solution of this latter
equation in the space C ([0, τ ]; Ip) is also a mild solution, these two are equivalent.
Therefore, under the hypotheses of Theorem 5.1 and when BB∗(·) ∈ C ([0, τ ]; Ip)
and C∗C(·) ∈ C ([0, τ ]; L (H )), any weak solution to (5.2) is Ip-valued continuous
solution of the integral Riccati equation (5.1).

We additionally require an approximation result for solutions (5.2) that is not
only used to prove existence of solutions to Problem (P) but also for the numerical
scheme that will be implemented to approximate solutions. The proof of the following
result can also be found in [43] or [15].

Theorem 5.2. Suppose that S(t) is a C0-semigroup of linear operators over H ,
and that {Sn(t)} is a sequence of uniformly continuous semigroups over the same
Hilbert space H that satisfy, for each x ∈H ,

‖S(t)x− Sn(t)x‖ → 0 and ‖S∗(t)x− S∗n(t)x‖ → 0,

as n→∞, uniformly in compact intervals. Suppose also the following.
(i) Σ0 ≥ 0 and the sequence {Σn0}∞n=1 are in Ip, Σn0 ≥ 0 for all n ∈ N and ‖Σ0 −

Σn0‖p → 0 as n→∞.
(ii) BB∗(·) and the sequence {Dn(·)}∞n=1 are in L1

loc(R
+; Ip), BB∗(t) ≥ 0 and

Dn(t) ≥ 0 for all t ∈ R+ and all n ∈ N and satisfy∫ τ

0

‖BB∗(t)−Dn(s)‖p ds→ 0,

for any fixed τ > 0 and as n→∞.
(iii) C∗C(·) and the sequence {En(·)}∞n=1 are in L∞(R+; L (H )), C∗C(t) ≥ 0 and

En(t) ≥ 0 for all t ∈ R+ and all n ∈ N and satisfy

ess sup
t∈[0,τ ]

‖C∗C(t)− En(t)‖ → 0,

for any fixed τ > 0 and as n→∞.
Then, if Σ(·) ∈ C ([0, a],Ip) is a solution of

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
BB∗ − Σ(C∗C)Σ

)
(s)S∗(t− s) ds,

for some a > 0 and if Σn(·) ∈ C (R+,Ip) is the sequence of solutions of

Σn(t) = Sn(t)Σn0S
∗
n(t) +

∫ t

0

Sn(t− s)
(
Dn − ΣnEnΣn

)
(s)S∗n(t− s) ds,
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we observe that

sup
t∈[0,a]

‖Σ(t)− Σn(t)‖p → 0,

as n→∞.
We are now in shape to prove that Problem (P), described in the introduction

of this work, has a solution. We present the proof for the mobile sensor network which
also includes the solution for the stationary sensor networks. We assume throughout
this section that H = L2(Ω).

Theorem 5.3. Consider the case of a moving sensor network of p sensors
with trajectories given by x̄(·, θ̄0,u(·)) =

{
x̄i(·, θ̄i0, ui(·))

}p
i=1

, where x̄i(t, θ̄
i
0, ui(·)) =

Mθ̄i(t, θ̄
i
0, ui(·)) for all t ∈ [0, τ ] and t 7→ θ̄i(t, θ̄

i
0, ui(·)) is a solution to a controlled

ordinary differential equation of the type described in Section 4.2.2. Suppose that the
initial set Θ0 and the admissible control set U are also of the type described in Section
4.2.2.

Suppose that the output map (t, θ̄0,u(·)) 7→ C(t,x(t, θ̄0,u(·))) satisfies the condi-
tions of Lemma 4.6. Also assume that BB∗(·) ∈ L1([0, τ ]; I1) with BB∗(t) ≥ 0 for
t ∈ [0, τ ], S(t) is a C0-semigroup, 0 ≤ Σ0 ∈ I1 and that (t, θ̄0,u(·)) 7→ Σ(t, θ̄0,u(·))
is the unique solution in C ([0, τ ]; I1) to

Σ(t, θ̄0,u(·)) = S(t)Σ0S
∗(t)+ (5.3)∫ t

0

S(t− s)
(
BB∗(s)−

(
Σ(C∗C)Σ

)
(t, θ̄0,u(·))

)
S∗(t− s) ds,

for each (θ̄0,u(·)) ∈ Θp
0×Up. In addition, let Q(·) ∈ L∞([0, τ ]; L (H )) with Q(t) ≥ 0

for t ∈ [0, τ ] and J : Θp
0 × Up → R be defined as

J(θ̄0,u(·)) =

∫ τ

0

Tr (Q(t)Σ(t, θ̄0,u(·))) dt.

Then, there is (θ̄
min
0 ,umin(·)) ∈ Θp

0 × Up such that

inf
θ̄0∈Xp0 ,u(·)∈Up

J(θ̄0,u(·)) = J(θ̄
min
0 ,umin(·)),

i.e., Problem (P) has a solution.
Proof. The set

F =
{
C∗C(·,M θ̄(·, θ̄0,u(·))) ∈ L∞([0, τ ]; I1) : θ̄0 ∈ Θp

0 and u(·) ∈ Up
}
,

is compact in L∞([0, τ ]; I1) by Lemma 4.6, where M θ̄(·, θ̄0,u(·)) is shorthand for the
set
{
Mθ̄i(·, θ̄i0, ui(·))

}p
i=1

=
{
x̄i(·, θ̄i0, ui(·))

}p
i=1

, hence M θ̄(·, θ̄0,u(·)) = x̄(·, θ̄0,u(·)).
Theorem 5.2 implies that the map t 7→ Σ(t, θ̄0,u(·)) varies continuously in the

supt∈[0,τ ] I1-norm with respect to C∗C(·,M θ̄(·, θ̄0,u(·)) ∈ F . If Σ1(·),Σ2(·) ∈
C ([0, τ ]; I1), then we have the inequality∣∣∣∣∣
∫ τ

0

Tr (Q(t)Σ1(t)) dt−
∫ τ

0

Tr (Q(t)Σ2(t)) dt

∣∣∣∣∣ ≤
τ‖Q(·)‖L∞([0,τ ];L (H )) sup

t∈[0,τ ]

‖(Σ1 − Σ2)(t)‖1.
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Which implies that the map Σ(·) 7→
∫ τ

0
Tr (Q(t)Σ(t)) dt is uniformly continuous

in C ([0, τ ]; I1). Since, by Theorem 5.1, 0 ≤ Σ(t, θ̄0,u(·)) ∈ I1 we have that
then Q(t)Σ(t, θ̄0,u(·)) ∈ I1 and Tr (Q(t)Σ(t,x)) is well defined. It is also a non-
negative since Q(t) and Σ(t, θ̄0,u(·)) are non-negative (see [29] for a proof). Therefore
J(θ̄0,u(·)) is well defined over Θp

0 × U and by composition of continuous mappings,
the map

C∗C(·, x̄(·, θ̄0,u(·)) 7→
∫ τ

0

Tr (Q(t)Σ(t, x̄(t, θ̄0,u(·)))) dt

is continuous over the compact set F . Then, the result follows.

5.1. The Gradient of Σ w.r.t. the Map t 7→ C∗C(t). We are interested in
using a gradient type algorithm over the trajectories of the sensors. For this matter,
we will first prove that the solution of the integral Riccati equation, as a function of
the mapping t 7→ C∗C(t), is Fréchet differentiable. We first need a lemma.

Lemma 5.4. Let H be a complex separable Hilbert space and S(t) be a C0-
semigroup over H . Suppose that G(·) and Σ(·) belong to X = C ([0, τ ]; I1). Then
the equation Λ = γ̂(Λ) has a unique solution in L (X), where γ̂ : L (X) → L (X)
and is defined by

(
γ̂(Λ)K

)
(t) = −

∫ t

0

S(t− s)((ΛK)GΣ + ΣG(ΛK) + ΣKΣ)(s)S∗(t− s) ds, (5.4)

for all K(·) ∈ X.

Proof. We will use the re-normalization technique first described in [9]. Define
Xλ (with λ > 0) to be the set of all trace class continuous mappings t 7→ F (t) and
domain [0, τ ] with the norm |‖ · ‖|1,λ defined as

|‖F (·)‖|1,λ = sup
t∈[0,τ ]

e−λt‖F (t)‖1.

Note that X has norm given by |‖F (·)‖|1 = supt∈[0,τ ] ‖F (t)‖1. It is obvious that X
and Xλ coincide element-wise, and one can prove that they coincide topologically.
Observe the equivalency of the norms of Xλ and X:

e−λτ |‖F (·)‖|1 ≤ |‖F (·)‖|1,λ ≤ |‖F (·)‖|1.

Moreover, the spaces L (Xλ) and L (X) are topologically equivalent and

e−λτ‖Λ‖L (X) ≤ ‖Λ‖L (Xλ) ≤ eλτ‖Λ‖L (X).

If Λ ∈ L (X), then it follows immediately that γ̂(Λ) is also a linear operator

acting on X. Also, let ‖S(t)‖ ≤Mτ for t ∈ [0, τ ], and m = max
(
|‖G(·)‖|1, |‖Σ(·)‖|1

)
.

Then

|‖
(
γ̂(Λ)K

)
(·)‖|1 ≤ τM2

τm
2|‖K(·)‖|1

(
2‖Λ‖L (X) + 1

)
.

Hence γ̂(Λ) ∈ L (X).
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Let Λ1,Λ2 ∈ L (X) and K(·) ∈ X. Then by the definition of the norm |‖ · ‖|1,λ
we observe∥∥((γ̂(Λ1)− γ̂(Λ2)

)
K
)

(t)
∥∥

1
≤ 2M2

τm
2

∫ t

0

‖
(
(Λ1 − Λ2)K

)
(s)‖1 ds

≤ 2M2
τm

2

∫ t

0

‖
(
(Λ1 − Λ2)K

)
(s)‖1e−λseλs ds

≤ 2M2
τm

2|‖
(
(Λ1 − Λ2)K

)
(·)‖|1,λ

∫ t

0

eλs ds

≤ 2M2
τm

2

λ
|‖
(
(Λ1 − Λ2)K

)
(·)‖|1,λ eλt

≤ 2M2
τm

2

λ
‖Λ1 − Λ2‖L (Xλ)|‖K(·)‖|1,λ eλt

since
∫ t

0
eλs ds = eλt−1

λ < eλt

λ for λ > 0. Therefore

e−λt
∥∥((γ̂(Λ1)− γ̂(Λ2)

)
K
)

(t)
∥∥

1
≤ 2M2

τm
2

λ
‖Λ1 − Λ2‖L (Xλ)|‖K(·)‖|1,λ,

which implies by taking the sup over t ∈ [0, τ ] that

∣∣∥∥((γ̂(Λ1)− γ̂(Λ2)
)
K
)

(·)
∥∥∣∣

1,λ
≤ 2M2

τm
2

λ
‖Λ1 − Λ2‖L (Xλ)|‖K(·)‖|1,λ.

Finally

∥∥(γ̂(Λ1)− γ̂(Λ2)
)∥∥

L (Xλ)
≤ 2M2

τm
2

λ
‖Λ1 − Λ2‖L (Xλ). (5.5)

Suppose that λ > 2M2
τm

2. Then from Equation 5.5, we satisfy that the mapping
γ̂ : L (Xλ) → L (Xλ) is a contraction, and by the contraction mapping principle
there is a unique solution to Λ = γ̂(Λ) in L (Xλ). Since ‖ · ‖L (X) and ‖ · ‖L (Xλ) are
equivalent norms, Λ = γ̂(Λ) has only one solution in in L (X).

We now prove that the solution of the integral Riccati equation Σ(·) is Fréchet
differentiable with respect to the mapping t 7→ C∗C(t).

Theorem 5.5. Let H be a complex separable Hilbert space and S(t) be a C0-
semigroup over H . Suppose that 0 ≤ Σ0 ∈ I1 and F (·) ∈ L1([0, τ ]; I1). Let D be an
open set of X = C ([0, τ ]; I1), then Σ(·, G) ∈ X the unique solution of

Σ(t, G) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
F − Σ(G)GΣ(G)

)
(s)S∗(t− s) ds, (5.6)

with t ∈ [0, τ ] is Fréchet differentiable with respect to G(·) ∈ D. The Fréchet derivative
of Σ(·;G) with respect to G is denoted by Λ(G) ∈ L (X) and is equal to the unique
solution of

(
Λ(G)h

)
(t) = −

∫ t

0

S(t− s)
((

Λ(G)h
)
GΣ(G) + Σ(G)G

(
Λ(G)h

)
+

Σ(G)hΣ(G)
)

(s)S∗(t− s) ds, (5.7)

for all h(·) ∈ X and all t ∈ [0, τ ]
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Proof. If F (·) ∈ X, we define |‖F (·)‖|1 = supt∈[0,τ ] ‖F (t)‖1. By the continuity

of the map G 7→ Σ(·, G) obtained in Theorem 5.2, we know that
∣∣∥∥Σ(·, G + h) −

Σ(·, G)
∥∥∣∣

1
= O

(
|‖h(·)‖|1

)
, and therefore

a(G, h) :=
∣∣∥∥(Σ(G+ h)hΣ(G+ h)− Σ(G)hΣ(G)

)
(·)
∥∥∣∣

1
= O

(
|‖h(·)‖|21

)
.

Also since Λ(G) ∈ L (X), we satisfy that

b(G, h) :=
∣∣∥∥((Σ(G+ h)− Σ(G)

)
G
(
Λ(G)h

))
(·)
∥∥∣∣

1
= O

(
|‖h(·)‖|21

)
.

By direct calculation we observe that

Σ(t, G+ h)− Σ(t, G)− (Λ(G)h)(t) =

−
∫ t

0

S(t− s)
[
Σ(G+ h)(G+ h)Σ(G+ h)− Σ(G)GΣ(G)+

−
(
Λ(G)h

)
GΣ(G)− Σ(G)G

(
Λ(G)h

)
− Σ(G)hΣ(G)

]
(s)S∗(t− s) ds,

and that

Σ(t, G+ h)− Σ(t, G)− (Λ(G)h)(t) =

−
∫ t

0

S(t− s)
[(

Σ(G+ h)− Σ(G)− (Λ(G)h)
)
GΣ(G)+

Σ(G+ h)G
(

Σ(G+ h)− Σ(G)− (Λ(G)h)
)

+(
Σ(G+ h)− Σ(G)

)
G
(
Λ(G)h

)
+

Σ(G+ h)hΣ(G+ h)− Σ(G)hΣ(G)
]
(s)S∗(t− s) ds.

Therefore if z(t, G, h) = ‖Σ(t, G+ h)− Σ(t, G)− (Λ(G)h)(t)‖1, then

z(t, G, h) = 2M2
τ ρ|‖G(·)‖|1

∫ t

0

z(s,G, h) ds+ τM2
τ

(
a(h,G) + b(h,G)

)
.

By the Grönwall’s Lemma we observe that

|‖Σ(·, G+ h)− Σ(·, G)− (Λ(G)h)(·)‖|1 ≤ τM2
τ

(
a(h,G) + b(h,G)

)
e2τM2

τ ρ|‖G(·)‖|1 ,

i.e.,

|‖Σ(·, G+ h)− Σ(·, G)− (Λ(G)h)(·)‖|1
|‖h(·)‖|1

= O(|‖h(·)‖|1),

since a(h,G) + b(h,G) = O(|‖h(·)‖|21). This implies, as claimed, that Σ′(G) = Λ(G),
where the derivative is taken in the Fréchet sense.

The previous result proves that the Fréchet derivative of Σ with respect to the
mapping t 7→ C∗C(t) exists. We now show that in the case with moving sensors, we
can take the derivative with respect to the controls.

We will denote a position at time t with input control u as x̄(t, u). Then we can
regard x̄ as a mapping from L2([0, τ ];R) to C ([0, τ ]; Ω). Let

x̄(t, u) = eAtx̄0 +

∫ t

0

eA(t−s)bu(s) ds.
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Then the Fréchet derivative of x̄ with respect to u satisfies

Dux̄ ∈ L
(
L2([0, τ ];R),C ([0, τ ]; Ω)

)
and it’s given by

(Dux̄h)(t) =

∫ t

0

eA(t−s)bh(s) ds.

Also, let G(t, x̄(t)) = C∗C(t, x̄(t)) where the output map comes from one moving
sensor. G is a mapping from C ([0, τ ]; Ω) to C ([0, τ ]; I1(L2(Ω))). Then,

G(t, x̄(t))ϕ(·) = K(t, x, x̄(t))

∫
Ω

K(t, y, x̄(t))ϕ(y) dy,

and the regularity of x̄(t) 7→ G(t, x̄(t)) is guaranteed by the smoothness of K, in which
case, following the chain rule, we can compute DuΣ(·, G(·, x̄(t, u))).

6. A Galerkin Approximation Scheme. In this section, we discuss the ap-
proximation of Ip-valued solutions to the integral Riccati equation. We will make
use of previous results by [19], [20] and [27]. Although, these references treat Hilbert-
Schmidt operators or bounded operators, we will extend these results to Ip for
1 ≤ p ≤ ∞.

Let, for each n ∈ N, Pn be the projection from our initial Hilbert space H onto
a finite dimensional Hilbert space Vn such that Vn ⊂ H and Vn ⊂ D(A), where
the sequence P ∗nPn converges strongly to the identity and [N (Pn)]⊥ ⊂ D(A) for each
n ∈ N. Since Pn are projections onto Vn ⊂H , the norm ‖Pn‖ is uniformly bounded.

Then An = PnAP
∗
n is a bounded linear operator and the infinitesimal generator of

the uniformly continuous semigroup Sn(t) = eAnt on H where A is the infinitesimal
generator of a semigroup S(t) on H . Consider the conditions:
H1) There are M ≥ 1 and ω ∈ R such that ‖Sn(t)‖ ≤Meωt.
H2) There is a dense subset D ⊂ H such that D ⊂ D(A) and if x ∈ D, then

Anx → Ax as n → ∞ and there is a complex number λ0, with Re λ0 > ω
such that (λ0 −A)D = H .

If H1 and H2 are satisfied, then

‖S(t)x− Sn(t)x‖ → 0, (6.1)

for each x ∈H as n→∞ and uniformly on compact intervals in t by an application
of Trotter-Kato Theorem (see [5] and [42]).

A particular case is when Pn is an orthogonal projection, in which case P ∗n = Pn
and Pn → I strongly. In this case, we observe the following result.

Proposition 6.1. Let {Pn}∞n=1 be a sequence of orthogonal projectors over a
complex separable Hilbert space H that converge strongly to the identity, 0 ≤ Σ0 ∈ Ip,
F (·) ∈ L1(I; Ip) and G(·) ∈ C (I; I1) where I = [0, τ ] for some τ > 0. Then
i. PnΣ0Pn ∈ Ip and ‖Σ0 − PnΣ0Pn‖p → 0 as n→∞.
ii. The map t 7→ PnF (t)Pn belongs to L1(I; Ip) and∫

I

‖(F − PnFPn)(s)‖p ds→ 0,

as n→∞.
iii. The map t 7→ PnG(t)Pn belongs to C (I; I1) and

sup
t∈I
‖(G− PnGPn)(t)‖1 → 0,

as n→∞.
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Proof. i. Let Σ0 ≥ 0 be of rank one, so Σ0x = 〈ϕ, x〉ϕ and define ϕn = Pnϕ.
Then PnΣ0Pnx = 〈ϕn, x〉ϕn since P ∗n = Pn, for all x ∈H . Then, (Σ0−PnΣ0Pn)x =
〈ϕ, x〉ϕ− 〈ϕn, x〉ϕn = 〈ϕ− ϕn, x〉ϕ+ 〈ϕn, x〉 (ϕ− ϕn), and then

|Tr (B(Σ0 − PnΣ0Pn)) | ≤
∞∑
k=1

| 〈ϕ− ϕn, φk〉 || 〈φk, Bϕ〉 |+ | 〈ϕn, φk〉 || 〈φk, B(ϕ− ϕn)〉 |

≤ ‖ϕ− ϕn‖‖Bϕ‖+ ‖ϕn‖‖B(ϕ− ϕn)‖

≤ ‖B‖p
(
‖ϕ− ϕn‖‖ϕ‖+ ‖ϕn‖‖ϕ− ϕn‖

)
.

Therefore, defining I 0 to be the set of non-zero finite rank operators, we have

‖Σ0 − PnΣ0Pn‖p = sup
B∈I 0

|Tr (B(Σ0 − PnΣ0Pn)) |
‖B‖q

≤ ‖ϕ− ϕn‖‖ϕ‖+ ‖ϕn‖‖ϕ− ϕn‖.

Then ‖Σ0 − PnΣ0Pn‖p → 0 as n → ∞, since ϕn → ϕ. If Σ0 is of finite rank, the
same result follows easily. If 0 ≤ Σ0 ∈ Ip, there is a sequence of finite rank operators
{Σm0 }

∞
m=1 such that ‖Σ0 − Σm0 ‖p → 0 as m→∞, then

‖Σ0 − PnΣ0Pn‖p ≤ ‖Σ0 − Σm0 ‖p + ‖Σm0 − PnΣm0 Pn‖p + ‖Pn(Σ0 − Σm0 )Pn‖p
≤ 2‖Σ0 − Σm0 ‖p + ‖Σm0 − PnΣm0 Pn‖p,

taking then lim supn→∞ ‖Σ0−PnΣ0Pn‖p ≤ 2‖Σ0−Σm0 ‖p and hence ‖Σ0−PnΣ0Pn‖p →
0 as n→∞ since ‖Σ0 − Σm0 ‖p → 0 as m→∞.

ii. Since Pn is not time dependent, it is elementary to check that PnF (·)Pn ∈
L1(I; Ip). Let F (t) be a step function F (t) =

∑q
k=1 fkχIk (t), then∫

I

‖(F − PnFPn)(t)‖p dt ≤
q∑

k=1

‖fk − PnfkPn‖pm(Ik),

and from the previous result we observe that
∫
I
‖(F − PnFPn)(t)‖p → 0 as n → ∞.

Since, step functions are dense in L1(I; Ip) the result will follows for any F (·) ∈
L1(I; Ip). Let {Fm(·)}∞m=1 be a sequence of step functions in L1(I; Ip) such that
‖(F − Fm)(·)‖L1(I;Ip) → 0 as m→∞. Also,

(F − PnFPn)(t) = (F − Fm)(t) + Pn(F − Fm)(t)Pn + (Fm − PnFmPn)(t),

and then

‖(F − PnFPn)(t)‖p ≤ 2‖(F − Fm)(t)‖p + ‖(Fm − PnFmPn)(t)‖p, (6.2)

for t ∈ I, since ‖Pn‖ ≤ 1. Hence,∫
I

‖(F − PnFPn)(t)‖p dt ≤ 2‖(F − Fm)(·)‖L1(I;Ip) +

∫
I

‖(Fm − PnFmPn)(t)‖p dt.

Therefore, limn→∞
∫
I
‖(F − PnFPn)(t)‖p dt ≤ 2‖(F − Fm)(·)‖L1(I;Ip), but ‖(F −

Fm)(·)‖L1(I;Ip) → 0 as m→∞ from which the result follows.
iii. The continuity of the map t 7→ PnG(t)Pn follows immediately. Since I =

[0, τ ] is compact, step functions are dense in C (I; Ip). So if G(·) is a step function
G(t) =

∑q
k=1 gkχIk (t), then

sup
t∈I
‖(G− PnGPn)(t)‖p ≤

q∑
k=1

‖gk − PngkPn‖p,
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and hence from i. it follows that supt∈I ‖(G − PnGPn)(t)‖p → 0 as n → ∞. The
density of step functions in C (I; Ip) implies that there is a sequence of step functions
{Gm(·)}∞m=1 in C (I; Ip), such that supt∈I ‖(G − Gm)(t)‖p → 0 as m → ∞. The
inequality in (6.2), shows that

sup
t∈I
‖(G− PnGPn)(t)‖p ≤ 2 sup

t∈I
‖(G−Gm)(t)‖p + sup

t∈I
‖(Gm − PnGmPn)(t)‖p.

Then, limn→∞ supt∈I ‖(G−PnGPn)(t)‖p ≤ 2 supt∈I ‖(G−Gm)(t)‖p. Since supt∈I ‖(G−
Gm)(t)‖p → 0, the initial claim follows.

6.1. The Convection-Diffusion Operator Case. Let Ω ⊂ Rn be an open
bounded domain with boundary ∂Ω of Lipschitz class (for example, the open unit
cube in Rn has Lipschitz class boundary). Consider the differential operator of order
2

A(x,D) = −ε2∆−
∑
|α|≤1

aα(x)Dα, (6.3)

with ε > 0 and where ∆ = D(2,0,0,...,0) + D(0,2,0,...,0) + · · · + D(0,0,...,0,2) =
∑n
k=1

∂2

∂x2
k

is the Laplacian operator on Ω and the functions x 7→ aα(x) are smooth complex
values functions on Ω. Since ε2 > 0, A(x,D) is strongly elliptic of order 2 (see [49]
or [42]). We define A as Ax = A(x,D)x for each x ∈ H2(Ω) ∩ H1

0 (Ω) and denote
D(−A) = H2(Ω)∩H1

0 (Ω) (Note that A in this section corresponds to −A in the rest of
the paper, this change is preferred since it simplifies some proofs). The operator −A
generates a C0-semigroup S(t) = e−At over L2(Ω) (see [49]) and the unique solution
to

∂u(t, x)

∂t
+A(x,D)u(t, x) = 0, for t > 0 and x ∈ Ω

u(t, x) = 0, for t ≥ 0 and x ∈ ∂Ω

u(0, x) = u0(x), for u0(·) ∈ L2(Ω),

is given by u(t, x) = (S(t)u0)(x).
It is a well know fact that the Laplacian defined as ∆ : H2(Ω)∩H1

0 (Ω)→ L2(Ω),
has eigenvalues {λk}∞k=1 that can be arranged in decreasing order 0 ≥ λ1 ≥ λ2 ≥ · · ·
such λk → −∞ as k → ∞. Also, the eigenspaces are finite-dimensional and we can
choose the eigenfunctions {φk(·)}∞k=1 to be an orthonormal basis of L2(Ω) and they
are of class C∞(Ω).

Define then

Vn = span {φ1, φ2, . . . , φn} ,

and let Pn be the orthogonal projector from L2(Ω) to Vn. Clearly, Vn ∈ D(−A) and
P ∗nPn = P 2

n = Pn → I strongly as n→∞ since

‖(I − Pn)ψ‖2 =

∞∑
k=n+1

| 〈φk, ψ〉 |2 → 0, as n→∞,

and(
N (Pn)

)⊥
=
(
span {φn+1, φn+2, . . .}

)⊥
= span {φ1, φ2, . . . , φn} = Vn ⊂ D(−A).



24 J. A. BURNS AND C. N. RAUTENBERG

A well known result states that there is a λ̂0 ≥ 0 (given by the G̊arding’s inequality)

such that −Aλ̂0
= −(A + λ̂0I) is the infinitesimal generator of a C0-semigroup of

contractions in L2(Ω) (see [42]), i.e., −Aλ̂0
∈ G(1, 0) (recall that by definition A ∈

G(M,ω) means A is an infinitesimal generator of a C0-semigroup S(t) such that

‖S(t)‖ ≤ Meωt for t ≥ 0). Then −A = −Aλ̂0
+ λ̂0I and since λ̂0I is a bounded

operator and ‖λ̂0I‖ = λ̂0, −A ∈ G(1, λ̂0). Therefore, since Vn ∈ D(A), An = PnAPn
satisfies −An ∈ G(1, λ̂0) (see [5] for a proof). This implies that the hypothesis H1 is
satisfied, since

‖Sn(t)‖ ≤ eλ̂0t for all n ∈ N and all t ≥ 0,

where Sn(t) is the uniformly continuous semigroup generated by −An. Even more

‖S(t)‖ ≤ eλ̂0t for all t ≥ 0 where S(t) is the semigroup generated by −A.
We are now left to prove the Hypothesis H2. Let D be given by finite linear

combinations of the {φk}∞k=1; that is

D = span{φ1, φ2, . . .}.

Since {φk}∞k=1 is an orthonormal basis of L2(Ω), D is dense in L2(Ω). Let x ∈ D,

then x =
∑N
k=1 〈φk, x〉φk for some N <∞. Now let n ≥ N . Then

‖Ax−Anx‖ ≤
N∑
k=1

| 〈φk, x〉 |‖Aφk −Anφk‖ ≤
N∑
k=1

| 〈φk, x〉 |‖Aφk − PnAφk‖ → 0

as n → ∞ since Pn → I strongly as n → ∞ and N < ∞. Since −A ∈ G(1, λ̂0), the

last condition of H2 states that there is a complex number λ0 with Re λ0 > λ̂0 such
that (λ0 +A)D = L2(Ω). We follow almost word for word to Pazy’s analysis (see
[42]) on Parabolic Equations. We observe that A(x,D) is strongly elliptic of order 2
with smooth coefficients x 7→ aα(x) on Ω. If we integrate by parts, we see that for
every λ ∈ C, 〈(λ+A(x,D))u, v〉0 can be extended to a continuous sesquilinear form

(u, v) 7→ B(u, v) on H1
0 (Ω) × H1

0 (Ω). If Re λ ≥ λ̂0, then it follows from Garding’s
inequality that this form is coercive. We can then apply the Lax-Milgram lemma to
derive the existence of a unique solution u(·) ∈ H1

0 (Ω) (it can actually be proven that
u(·) ∈ H2(Ω)) of the boundary value problem

(λ+A(x,D))u = f,

for every f(·) ∈ L2(Ω) and Re λ ≥ λ̂0. Hence, given any f(·) ∈ L2(Ω) there is
a u ∈ H1

0 (Ω) such that B(u, v) = 〈f, v〉0 for all v(·) ∈ H1
0 (Ω). Since D is dense

in L2(Ω), there is a sequence un ∈ D such that un → u in H1
0 (Ω) sense. Hence

B(un, v)→ 〈f, v〉 as n→∞ for any v(·) ∈ H1
0 (Ω), i.e.,

(λ+A)D = L2(Ω),

for any λ ∈ C with Re λ ≥ λ̂0.
Since H1 and H2 are satisfied, we observe that

‖S(t)x− Sn(t)x‖ → 0

as n → ∞ for each x ∈ L2(Ω) and uniformly in compact intervals where S(t) is the
C0-semigroup generated by −A and Sn(t) are the uniformly continuous semigroup
generated by Pn(−A)Pn for n = 1, 2, . . ..
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Since A(x,D) = −ε2∆ +
∑
|α|≤1 aα(x)Dα, its formal adjoint A∗(x,D) is defined

(see [42]) by

A∗(x,D)u = −ε2∆u−
∑
|α|≤1

Dα
(
aα(x)u

)
,

and it is also strongly elliptic of order 2. Since the infinitesimal generator of our
semigroup −A is defined as Ax = A(x,D)x for each x ∈ H1

0 (Ω) ∩H2(Ω), its adjoint
can be proven to be A∗x = A∗(x,D)x for each x ∈ H1

0 (Ω) ∩H2(Ω) (for a proof, see
Pazy’s book [42]). Therefore, exactly the same analysis that was carried out before
can be applied to this case to imply that

‖S∗(t)x− S∗n(t)x‖ → 0

as n→∞, for each x ∈ L2(Ω) and uniformly in compact intervals where S∗(t) is the
C0-semigroup generated by −A∗ and S∗n(t) are the uniformly continuous semigroup
generated by Pn(−A∗)Pn for n = 1, 2, . . ..

A similar approach, for a much wider class of parabolic systems and for a general
abstract approximation framework, was first developed by Banks and Kunisch in [4].
This approach satisfies the hypotheses, in most cases, of the finite element approach.
Finally we can prove convergence of the approximation scheme.

Theorem 6.2. Let X be a complex separable Hilbert space and let Y be a complex
finite dimensional Hilbert space. Let S(t) be the C0-semigroup over H = L2(Ω)
generated by the strongly elliptic operator −A previously described and let Sn(t) be
the sequence generated by −An = Pn(−A)Pn. Suppose also that
(i) 0 ≤ Σ0 ∈ Ip(H ).
(ii) B(·) ∈ L2([0, τ ]; I2p(X,H )).
(iii) C(·) ∈ C ([0, τ ]; L (H , Y )).
Then, Σ(·) ∈ C ([0, τ ]; Ip(H )), the unique solution of

Σ(t) = S∗(t)Σ0S(t) +

∫ t

0

S∗(t− s)(BB∗ − Σ(s)(C∗C)(s)Σ(s))S(t− s) ds,

and the sequence of solutions Σn(·) ∈ C ([0, τ ]; Ip(H )) of

Σn(t) = S∗n(t)
(
PnΣ0Pn

)
Sn(t)+∫ t

0

S∗n(t− s)
((
PnBB

∗Pn
)
− Σn

(
PnC

∗CPn
)
Σn

)
(s)Sn(t− s) ds,

satisfy

sup
t∈[0,τ ]

‖Σ(t)− Σn(t)‖p → 0 (6.4)

as n→∞.
Proof. Hypothesis (ii) and (iii) imply that BB∗(·) ∈ L1([0, τ ]; Ip(H )) and

that C∗C(·) ∈ C ([0, τ ]; I1(H )) by Lemma 4.1 and Lemma 4.3. The existence and
uniqueness of the mappings t 7→ Σ(t) and t 7→ Σn(t) are given by the Theorem 5.1.

Proposition 6.1 implies that ‖Σ0−PnΣ0Pn‖p → 0, ‖(BB∗−PnBB∗Pn)‖L1([0,τ ];Ip) →
0 and ‖(C∗C − PnC∗CPn)‖C ([0,τ ];I1) → 0 as n → ∞. These are the hypotheses re-
quired by Theorem 5.2 which implies the claimed result.
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Finally, we have to address conditions on the sequence {Qn(·)}∞n=1 and Q(·) under
which we can observe that

∫ τ
0

Tr (QnΣn) (t) dt→
∫ τ

0
Tr (QΣ) (t) dt.

Corollary 6.3. Assume the hypotheses of Theorem 6.2 with p = 1 and suppose
that the sequence {Qn(·)}∞n=1 and Q(·) are in L∞([0, τ ]; L (H )). Let {Σn(·)}∞n=1 and
Σ(·) be the ones in the aforementioned Theorem. Therefore,∫ τ

0

Tr (QnΣn) (t) dt→
∫ τ

0

Tr (QΣ) (t) dt,

if ‖(Q−Qn)(·)‖L∞([0,τ ];L (H )) → 0 as n→∞.
Proof. We observe the inequality

‖(QΣ−QnΣn)(t)‖1 ≤ ‖Q(t)‖‖(Σ− Σn)(t)‖1 + ‖Σn(t)‖1‖(Q−Qn)(t)‖.

The initial hypotheses imply that supt∈[0,τ ] ‖(Σ−Σn)(t)‖1 → 0 and ‖(Q−Qn)(t)‖L∞([0,τ ];L (H ))

as n→∞. Also supt∈[0,τ ] ‖Σn(t)‖1 ≤ c for some c > 0 uniformly in n ∈ N, therefore∣∣∣∣∣
∫ τ

0

Tr (QΣ) (t) dt−
∫ τ

0

Tr (QnΣn) (t) dt

∣∣∣∣∣ ≤
τ
(
‖Q(·)‖L∞([0,τ ];L (H )) sup

t∈[0,τ ]

‖(Σ− Σn)(t)‖1 + c‖(Q−Qn)(·)‖L∞([0,τ ];L (H ))

)
,

and the claimed result follows.

7. Numerical Implementation. We consider problems with the domain Ω =
(0, 1) × (0, 1) or Ω = (0, 1) × (0, 1) × (0, 1) and with a convection-diffusion opera-
tor A of the form (6.3) and with constant a = {aα}α. In 2D, the orthonormal set
of eigenfunctions of the Laplacian ∆ in the unit square are given by ψm,n(x, y) =
2 sin(πmx) sin(πny). We order them using only one parameter first according to its
associated eigenvalue λm,n = −π2(m2 + n2). In the case of two functions sharing
the same eigenvalue (e.g. ψ1,3 and ψ3,1), we put the one with the highest m first.
Therefore, we define the sequence {φn}∞n=1 as ψ1,1, ψ2,1, ψ1,2, ψ2,2, . . .. In 3D, the
orthonormal set of eigenfunctions of the Laplacian ∆ in the unit cube is given by
ψl,m,n(x, y, z) = 23/2 sin(πlx) sin(πmy) sin(πnz). We order them using only one pa-
rameter first according to its associated eigenvalue λl,m,n = −π2(l2 + m2 + n2). In
the case of two functions sharing the same eigenvalue (e.g. ψ1,3,1 and ψ3,1,1), we put
first the one with the highest l. In the case, they share the same l, we order them
according to the greater m and so on. Therefore, we define the sequence {φn}∞n=1 as
ψ1,1,1, ψ2,1,1, ψ1,2,1, ψ1,1,2, ψ2,2,1, . . ..

Let Pn be the orthogonal projector onto span{φ1, φ2, · · · , φn}. Since 〈φi, φj〉 =
δij , then the matrix representation [An] ∈ Rn×n of the approximation An = PnAPn
is given by

[An]ij = ε2 〈φi,∆φj〉L2(Ω) + a · 〈φi,∇φj〉L2(Ω),

where [An]ij is the i row and j column element of [An] and each one of these can be
computed exactly.

The output map, for one sensor, is defined C(t) : L2(Ω)→ R is given by C(t)ϕ =∫
Ω
c(t, x)ϕ(x) dx, where c(t, x) = K(x − x̄(t)) and x̄(t) is the position of the sensor.

at time t. The approximation Cn(t) of C(t), is going to be computed as

Cn(t)φ =

∫
Ω

c(t, x)(Pnϕ)(x) dx.
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Therefore, its matrix representation is given by

[Cn](t) =
( ∫

Ω
c(t, x)φ1(x) dx

∫
Ω
c(t, x)φ2(x) dx · · ·

∫
Ω
c(t, x)φn(x) dx

)
Since C∗(t) : R → L2(Ω) is given by C∗(t)a = ac(t, x), it is elementary to observe
that (C∗nCn)(t) = Pn(C∗C)(t)Pn.

The input map is defined as B : R→ L2(Ω) and given by Ba = b(x)a. Then, its
adjoint, B∗, satisfies B∗ : L2(Ω) → R and it is given by B∗ϕ =

∫
Ω
b(x)ϕ(x) dx. The

matrix representation of the approximation (BB∗)n = PnBB
∗Pn is then given by

[(BB∗)n] =


f(1, 1) f(2, 1) · · · f(1, n)
f(2, 1) f(2, 2) · · · f(2, n)

...
...

. . .
...

f(n, 1) f(n, 2) · · · f(n, n)

 ,

where

f(i, j) =
(∫

Ω

b(x)φi(x) dx
)(∫

Ω

b(x)φj(x) dx
)
.

The approximation to the (weak) solution of

Σ̇ = AΣ + ΣA∗ +BB∗ − ΣC∗CΣ,

is provided by solving the differential matrix Riccati equation

d

dt
[Σn] = [An][Σn] + [Σn][An]∗ + [(BB∗)n]− [Σn][Cn]∗[Cn][Σn]. (7.1)

Although one now has the option of selecting many possible quadrature rules to nu-
merically integrate this equation, we used an implicit Euler method since we observed
convergence using a relatively large time step. In particular,

[Σk+1
n ]− [Σkn]

h
= [An][Σk+1

n ] + [Σk+1
n ][An]∗ + [(BB∗)n]− [Σk+1

n ][Cn]∗[Cn][Σk+1
n ],

where h > 0 is the time step and Σkn ' Σn(kh). Rearranging terms, we observe that(
h[An]− 1

2

)
[Σk+1
n ] + [Σk+1

n ]
(
h[An]− 1

2

)∗
− [Σk+1

n ](
√
h[Cn])∗(

√
h[Cn])[Σk+1

n ]+

+

(
h[(BB∗)n] + [Σkn]

)
= 0.

Thus, the approximation in each time step is reduced to the resolution of an algebraic
Riccati equation with initial condition Σ0

n = 0.

In both problems we use the objective functionals J(Σ) =
∫ τ

0
Tr (Σ(t)) dt, where

τ = 1 in the stationary sensor problem and τ = 10 in the moving sensor network.
The approximation to the objective functional is accomplished by simple quadratures
on
∫ τ

0
Tr (Σ)(t) dt '

∑
k h(Tr

(
[Σk]

)
.
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7.1. 3D One Stationary Sensor. We consider ε2 = 0.01, the kernel of the

sensor is of the form K(x) = 10e−|x|
2
R3 and we consider different configurations of a

and x 7→ b(x) that determines B : R → L2(Ω) as Ba = b(x)a. The time step for the
Euler’s method is taken as h = 0.1 and the maximum number of eigenfunctions used
is 33 although, the number in which computations stabilize is lower and different for
each a and x 7→ b(x).

We consider b(x) = 100 and ax = ay = az = 0. Discrepancies of results between
11 and 33 eigenfunctions are negligible. The integrals involved in the matrix approx-
imates [(BB∗)n] and [Cn] are computed with relative tolerances of 10−6 and 10−3

respectively. The minimizer in this case is found exactly at the point (0.5, 0.5, 0.5)
and is given by J(0.5, 0.5, 0.5) ' 12. The value of the functional increases with the
distance respect to the minimizer and hence the maximum value of the functional is
attained in all vertices and it is approximately 20.

We use b(x, y, z) = 1+20 exp(−5|x−y0|2R2) with y0 = (0.2, 0.2, 0.2) and ax = ay =
az = 0; that is, the intensity of the noise is higher on the point y0 = (0.2, 0.2, 0.2) and
there is no convection. As in the previous case, discrepancies of results between 11 and
33 eigenfunctions are negligible. The integrals involved in the matrix approximates
[(BB∗)n] and [Cn] are computed with relative tolerances of 10−7 and 10−3 respec-
tively. The minimizer in this case is found approximately in the point (0.4, 0.4, 0.4)
and has value J(0.4, 0.4, 0.4) ' 1 and the values of the functional increases with the
distance with respect to the point (0.4, 0.4, 0.4). The highest value attained by the
functional is approximately 2. Note that the minimizer has been displaced from the
center towards the location of the “noisiest” place in the cube. . Note that in this
case we have increased the accuracy of the integrals of the approximation [(BB∗)n]
from 10−6 to 10−7, due to the rapid decay of the function b.

We use b(x, y, z) = 100 and ax = ay = az = 20. The number of modes used is 33,
however the results using 28 up to 33 eigenfunctions show no significative difference.
The integrals involved in the matrix approximates [(BB∗)n] and [Cn] are computed
with relative tolerances of 10−6 and 10−4 respectively. Several isosurfaces for this
problem are shown on Figure 7.1. The minimizer in this case is found approximately
in the point (0.65, 0.65, 0.65) and has value J(0.65, 0.65, 0.65) ' 42. The highest value
attained by the functional is approximately 177 and located at the origin. Note that
the minimizer has been displaced from the center to a location upstream. In this case
with a non-zero convective term, we require more eigenfunctions than in the previous
ones (with a zero convective term) to observe convergence.

7.2. 2D Three Mobile Sensor Network. We use ε2 = 0.01 and the kernel of
the sensor is of the form K(x) = e−20|x|2

R2 We will consider 3 sensors located initially
at the points (0.6, 0.4), (0.5, 0.5) and (0.4, 0.6) and their trajectories are given by the

integral equations x̄i(t, u) = (x0
i , y

0
i )T +

∫ t
0
eA(t−s)bui(s) ds where A =

(
−1 0.3
0 −1

)
and b = (1.5,−1)T . We assume that the initial conditions are fixed and are not a
design variable.

The functional to minimize is in this case is J(u1, u2, u3) =
∫ 10

0
Tr(Σ(u1,u2,u3)(t))dt,

where Σ(u1,u2,u3) refers to the solution of the Riccati equation where the output map is
determined by the moving sensors with controls (u1, u2, u3) ∈ L2([0, 1])×L2([0, 1])×
L2([0, 1]).

In order to approximate a local minimizer we will use a gradient descent method
for this problem:

1. Start with the control with some choice u0(t) = (u0
1(t), u0

2(t), u0
2(t)).
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(a) Isosurface for J(x) ' 43
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(b) Isosurface for J(x) ' 50
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(c) Isosurface for J(x) ' 61
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(d) Isosurface for J(x) ' 74
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(e) Isosurface for J(x) ' 87
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(f) Isosurface for J(x) ' 118

Fig. 7.1. Isosurfaces of J(x) for b = 100 and ax = ay = az = 20.
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2. Update the control as follows

uj+1(t) = uj(t)− αjJ ′(uj)(t),

where J ′(u) is the gradient of J at u and αn is chosen if possible as αj =
arg minαJ(uj −αJ ′(uj)), and stop if J(uj+1) is not decreased by at least 2%
with respect to J(uj).

The termination condition for the algorithm does not involve any decrease con-
dition on the gradient J ′. This is because, in this case, there are no conditions that
ensure that J ′(uj)→ 0 as j →∞. The computation of αj = arg minαJ(uj−αJ ′(uj)),
is done using “brute force”.

The approximation to the solution of the Riccati equation t 7→ Σn(t) is given by
(7.1) The approximation to the derivative DC∗CΣ is computed using the sensitivity
equation

d

dt
[Λn] = [An][Λn] + [Λn][An]∗ − [Λn][Cn(t)]∗[Cn(t)][Σn(t)]− [Σn(t)][Σn(t)]

− [Σn(t)][Cn(t)]∗[Cn(t)][Λn],

where Λn(0) = 0, [An] and t 7→ [Cn(t)] are the matrix representations of the approxi-
mations to the operators A and the operator valued function t 7→ C(t), respectively.

The Fréchet derivative of x̄(t, u) with respect to u is given by (Dux̄h)(t) =∫ t
0
eA(t−s)bh(s) ds, for each h ∈ L2([0, τ ]) and Dux̄ ∈ L (L2([0, τ ]),C ([0, τ ]; Ω)). The

map C∗C : C ([0, τ ]; Ω)→ C ([0, τ ]; I1), is given by

(C∗Cϕ)(x) = K(x− x̄(t))

∫
Ω

K(y − x̄(t))ϕ(y) dy.

Since, we use K(x) = aeb‖x‖
2
Rn for some a > 0 and b > 0, then Dx̄K(x− x̄(t)) is well

defined as a Fréchet derivative. Therefore, Dx̄iC
∗C ∈ L (C ([0, τ ]; Ω),C ([0, τ ]; I1))

is well defined as the Fréchet derivative of C∗C with respect to x̄. Consequently,
DuC

∗C(x̄(t, u)) ∈ L (L2([0, τ ]); C ([0, τ ]; I1)) is well defined. If we define H(u) =
DuC

∗C(x̄(t, u)), for h(·) ∈ L2([0, τ ]), the matrix form elements [Hn(u)h]ij of the
approximation to H(u)h are given by

〈φi, (H(u)h)φj〉 (t) =

=

∫ t

0

2b

[(∫
Ω

K(x− x̄(t))(x− x̄(t))T eAtφi(x) dx

)(∫
Ω

K(y − x̄(t))φj(y) dy

)
+

(∫
Ω

K(x− x̄(t))φi(x) dx

)(∫
Ω

K(y − x̄(t))(y − x̄(t))T eAtφj(y) dy

)]
e−Asbh(s) ds.

For the case of one sensor, J(u) =
∫ τ

0
Tr (Σ(t)) dt has a Fréchet derivative J ′(u) ∈

L (L2([0, τ ]);R) and it is given by

J ′(u)h =

∫ τ

0

Tr (Λ(t) ◦H(u)(t)h) dt.

Hence, its approximation (J ′(u))n, is calculated as (J ′(u))nh =
∫ τ

0
Tr(Λn(t)◦Hn(u)(t)h)dt.

and after a tedious algebraic manipulation, we obtain (J ′(u))nh =
∫ τ

0
Tr(Rn(t))h(t)dt,

for some Rn(t). We identify (J ′(u))n with Tr (Rn(t)). The generalization for the case
of three sensors is natural.
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7.2.1. Case 1. We use b(x, y) = 10 and ax = ay = 0. The number of modes
used is 16 and after 15 iterations the terminal condition is met. The initial and final
controls are shown on Figure 7.2(a) and 7.2(c), respectively. The initial and final
trajectories are shown in Figure 7.2(b) and Figure 7.2(d), respectively. Note that the
initial position of the sensors is marked by a small circumference. Based on previous
numerical results, in the case of one stationary sensor, the global minimizer is on the
point (0.5, 0.5). We should notice that the sensor with initial position in the center
of the square, remains in this point for all t as we can observe on Figure 7.2(d). The
other two trajectories, as we may expect, try to reach the center of the square.

7.2.2. Case 2. We use b(x) = 10 + 10 exp(−5|x − (0.1, 0.9)|2
R2) so that the

“nosiest” point on the domain is (0.1, 0.9). The number of modes used is 16 and it
takes 12 iterations until the termination criteria is met. The initial and final controls
are shown on Figure 7.2(a) and 7.2(e), respectively. The initial and final trajectories
are shown in Figure 7.2(b) and Figure 7.2(f), respectively. Note again that the initial
position of the sensors is marked by a small circumference.

Based on previous numerical results, in the case of one stationary sensor, the
global minimizer is on a the point in between (0.5, 0.5) and (0.1, 0.9) (the “noisiest”
place in the square). We observe that trajectories tend to a region in between these
two points (see Figure 7.2(f)).
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(a) Initial constant controls (u0
1(t), u0

2(t), u0
3(t)) (b) Initial sensor trajectories.

(c) Final controls for Case 1 (d) Final sensor trajectories for Case 1

(e) Final controls for Case 2 (f) Final sensor trajectories for Case 2

Fig. 7.2. Sensor Controls and Trajectories


