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Abstract. In this paper, we present conditions that ensure the existence of Bochner integrable
solutions of infinite dimensional Riccati integral equations. In particular, we focus on Ip-valued
continuous solutions. We formulate an optimal sensor location problem that is based on optimal
filtering and show that when the underlying system is of convection-diffusion type the Riccati integral
equation has Bochner integrable solutions. We use these results to approximate the sensor placement
problem by using a simple quadrature rule. A numerical example is given to illustrate the results.
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1. Introduction and Notation. The infinite dimensional Riccati equation is
a fundamental topic of optimal control and optimal state estimation and filtering
(see, for example [22] and [20] and the references therein). It is known that in some
theoretical frameworks (see [20] and [8, 10], for example) it is required that the solution
to the Riccati equation is trace class-valued. A comprehensive study for trace class
solutions was taken by Bensoussan in [8] and some applications of earlier results can
be traced back to [7]. Some fundamental results in Hilbert spaces on problems arising
on optimal control were given by Gibson in [36]. The approximation and existence of
solutions considering Hilbert-Schmidt valued solutions was considered in [24] and [35],
and further fundamental results concerning approximation procedures can be found
in [49], [41] and [56].

A main goal of this paper is to establish conditions that imply the existence of
Bochner integrable solutions of infinite dimensional Riccati integral equations with
values in the Schatten p-classes. This work is motivated by the observation that if
the Riccati integral equation can be interpreted as a Bochner integral equation, then
simple numerical quadratures can be employed to approximate the equations.

1.1. A Motivating Example and Challenges. In order to motivate the the-
oretical developments included here we consider the following convection-diffusion
process in the n−dimensional unit cube Ω = (0, 1)n ⊂ Rn given by

∂

∂t
T = (c2∆ + a(x) · ∇)T + b(t, x)η(t), (1.1)

where ∆ =
∑n
i=1 ∂

2/∂x2
i is the Laplacian, a(x) · ∇ =

∑n
i=1 ai(x)∂/∂xi is the con-

vection operator and the maps x 7→ ai(x) are regular for x ∈ Ω. We assume η is a
real-valued Wiener process (a zero mean Gaussian process) and b(t, ·) ∈ L2(Ω) for
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each t ∈ [0, tf ]. The map b(·, ·) determines different noise intensities in different re-
gions of the domain and at different times. The boundary and initial conditions are
determined by

T (t, x)
∣∣∣
∂Ω

= 0, T (0, x) = T0(x) + ξ,

where T0(·) ∈ L2(Ω) and ξ is a L2(Ω)-valued gaussian random variable. The differen-
tial operator A := (c2∆ + a(x) · ∇), for c > 0, has a domain D(A) = H2(Ω) ∩H1

0 (Ω)
and the state space for the problem is L2(Ω) since the boundary ∂Ω is Lipschitz.

We assume that measurements are carried out through p sensor-platforms in Ω,
each with a sensor that measures an average value of T (t, x) within an effective range
from the location of the platform. Let x̄i ∈ Ω, i = 1, 2, ..., p denote the position of the
ith sensor and let hi denote the measured output which is given by

hi(t) =

∫
Ω

K(t, x, x̄i)T (t, x) dx+ νi(t) . (1.2)

Here, the kernel K is a weight and each ν = (ν1, ν2, . . . , νp) is a zero-mean white
noise process and is uncorrelated with η in (1.1). The time dependence of the map K
allow us to take into account effects like degradation of the sensor quality and other
time dependent effects. This setting includes the outputs considered by Khapalov (see
[42], [43], [44], [45] and [46]) and provides a structure that allows for a mathematically
rigorous analysis.

A sensor network x̄i ∈ Ω, i = 1, 2, ..., p, induces the output map C(t) : L2(Ω) →
Rp given by

C(t)ϕ = (C1(t)ϕ, C2(t)ϕ, C3(t)ϕ, . . . , Cp(t)ϕ)T ∈ Rp, (1.3)

with each Ci defined as

Ci(t)ϕ :=

∫
Ω

K(t, x, x̄i)ϕ(x) dx. (1.4)

Based on the previous development, we can formulate the abstract (infinite dimen-
sional) model

ż(t) = Az(t) +B(t)η(t), (1.5)

h(t) = C(t)z(t) + ν(t), (1.6)

where z(0) = z0 + ξ and the state is z(t)(·) = T (t, ·) ∈ L2(Ω). In general, we
assume that A is the infinitesimal generator of a C0-semigroup of operators S(t)
over L2(Ω). This standard abstract formulation allows the extension to include the
case where η is an X-valued Wiener process for some separable Hilbert space X and
B(t) ∈ L (X,L2(Ω)) for each t ∈ [0, tf ].

In order to provide criteria for optimal estimation we observe that the variance
equation for the optimal estimator is the (weak) solution to an infinite dimensional
Riccati (partial) differential equation of the form

Σ̇(t) = AΣ(t) + Σ(t)A∗ +BR2B
∗(t)− Σ(t)(C∗R−1

1 C)(t)Σ(t) , (1.7)

with initial condition Σ(0) = Σ0 which, under certain regularity conditions on the
maps B(·) and C(·), it can be proven (see the remark at the end of section 3.3) is also
the solution to

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)(BR2B
∗ − Σ(s)(C∗R−1

1 C)(s)Σ(s))S∗(t− s) ds.
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The operators R1(·) and R2(·) are the incremental covariances of the uncorrelated
Wiener processes η and ν, respectively, and Σ0 is the covariance operator of the L2(Ω)-
valued Gaussian random variable ξ (see [20] and [7]). If ẑ(·) is the stochastic L2(Ω)-
valued process solution to the generalized Kalman-Bucy filter (see [7] and [8, 10]),
then the expected value of ‖z(t) − ẑ(t)‖2 is the trace of the solution to the infinite
dimensional Riccati equation at time t, i.e.,

E
{
‖z(t)− ẑ(t)‖2

}
= Tr Σ(t).

It follows that for a sensor network defined by {x̄i}pi=1, the trace of the solution to
the Riccati equation is an indicator of the error between the state and the state esti-
mator. In particular, this can be used to define the optimal sensor location problem:
Proceeding as in [50], we consider the distributed parameter optimal control problem
of finding the locations {x̄i}pi=1 to minimize

J(x̄1, x̄1, · · · , x̄p) =

∫ tf

0

Tr Q(t) Σ(t) dt (1.8)

where Σ(·) is the mild solution of (1.7) and for each t ∈ [0, tf ], the operator Q(t) :
L2(Ω) → L2(Ω) is a bounded linear operator. The (time-varying) map Q(·) allows
one to weigh significant parts of the state estimate.

Several technical and computational challenges must be addressed in order prove
that (1.8) is well-posed. In general, all obstacles in this problem involve the study of
solutions Σ(·) of the Riccati equation (its regularity, range space, etc), its stability
with respect to perturbations on A,B,C and approximation schemes for solutions.
Note that, the variance equation is posed in infinite dimensions, then it must be
proven that the map Q(·)Σ(·) is point-wise of trace class and integrable so that the
cost functional in (1.8) is well-defined. Provided that Q(t) ∈ Iq (the Schatten q-class,
see Definition 1.3) , this implies to obtain that Σ(t) ∈ Ip, where 1/q+1/p = 1, for all
t. This can be a nontrivial problem, but foundational results in [22], [24], [35], [36],
[49], and [56] provide a background towards obtaining solutions in Schatten p-classes.
The solution to the problem requires the introduction of approximations and numer-
ical algorithms with appropriate convergence. The basic theory and approximation
schemes developed in [14], [16], [24], [35], [36], [41], [49], and [56] determine starting
points to overcome this obstacle.

We provide in this paper a general theoretical framework to deal with solutions
of the Riccati equation not only of trace class, but on all Schatten p-classes. We
consider an approach based on approximations that can be used not only for theo-
retical purposes but also for approximation schemes that are suitable of numerical
implemention.

1.2. Notation and preliminaries. Let H be a separable complex Hilbert
space. The space of bounded linear operators from H to H is denoted by L (H ).
If A ∈ L (H ), then ‖A‖ denotes the usual operator norm. The subspace of compact
bounded linear operators acting on H is denoted by I∞(H ) and, when H is un-
derstood, we simply use I∞ for I∞(H ). It is well known (see for example [53]) that
I∞ is a two-sided ∗-ideal in the ring L (H ), i.e., I∞ is a vector space and;

1) If A ∈ I∞ and B ∈ L (H ), then AB ∈ I∞ and BA ∈ I∞.
2) If A ∈ I∞ then A∗ ∈ I∞.
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Also, finite rank operators are dense (in the operator norm) in I∞ and if An ∈ I∞
for each n ∈ N and ‖An −A‖ → 0 as n→∞, then A ∈ I∞.

Definition 1.1. An operator A ∈ L (H ), is said to be non-negative if 〈Ax, x〉 ≥
0 for all x ∈ H , positive if 〈Ax, x〉 > 0 for all nonzero x ∈ H and strictly positive
if there is a c > 0 such 〈Ax, x〉 ≥ c‖x‖2 for all x ∈H .

It should be noted that since H is a complex Hilbert space a non-negative (pos-
itive, or strictly positive) operator is self-adjoint (see VI.4 in [53]).

The notation A ≥ 0, A > 0 and A� 0 is standard for non-negative, positive and
strictly positive operators, respectively. Suppose that A ≥ 0, and that both {φn} and
{ψn} are orthonormal bases of H , then it follows that

∑
n 〈φn, Aφn〉 =

∑
n 〈ψn, Aψn〉

(we allow the case where both quantities are infinite). This observation motivates the
definition of trace of an operator.

Definition 1.2. If A ≥ 0, then the trace of A is defined by

Tr (A) :=

∞∑
n=1

〈φn, Aφn〉,

where {φn}∞n=1 is any orthonormal basis of H .
Each operator A ∈ L (H ) admits a polar decomposition (see for example VI.4

in [53] or 3.9 in [19]) analogous to the decomposition z = eiArg(z)|z| when z ∈ C. In
particular, let |A| be defined to be the unique non-negative operator ( and hence
self-adjoint) such that A = U |A|, where U is the unique partial isometry such
Ker U = Ker |A|. It can be shown that |A| =

√
A∗A (some authors define |A|

like this) which is proven to be well-defined by the continuous functional calculus
since A∗A ≥ 0. Furthermore, a constructive sequential monotone approach can be
considered to obtain

√
A∗A (see for example chapter VII in [54]) . Since |A| ≥ 0, then

|A|p ≥ 0 for any p ∈ N and applying standard continuous functional calculus we can
prove that |A|p ≥ 0 for any 1 ≤ p < ∞. Hence the quantity Tr (|A|p) is well defined
and leads to the following definition.

Definition 1.3. Let Ip(H ) for 1 ≤ p <∞ (or simply Ip when the space H is
understood) denote the set of all bounded operators over H such that Tr (|A|p) <∞.
If A ∈ Ip(H ), then the Ip-norm (or just the p-norm) of A is defined as ‖A‖p :=(
Tr (|A|p)

)1/p
<∞.

If H is a complex separable Hilbert space, then the linear space Ip, endowed with
the p-norm is a Banach space (see [55]). We focus on the spaces I1 and I2 in order to
develop a proper framework in which to study the solutions of the Riccati equation.
The classes I1 and I2 are called the space of Trace Class (or Nuclear) operators
and the space of Hilbert-Schmidt operators, respectively. Actually, the space I2 is a
Hilbert space under the inner product

〈A,B〉I2
=

∞∑
n=1

〈Aφn, Bφn〉H ,

where A,B ∈ I2 and {φn}∞n=1 is any orthonormal basis of H . Note that 〈A,A〉I2
=∑∞

n=1 〈φn, A∗Aφn〉H . The operator |A| is given by |A| =
√
A∗A, and the continuous

functional calculus implies that |A|2 = (
√
A∗A)2 = A∗A. Consequently 〈A,A〉I2

=

Tr (|A|2) = ‖A‖22.
It is also well known that Ip is a two-sided ∗-ideal in the ring L (H ) (see [37]

for a proof) and that if 1 ≤ p1 < p2 ≤ ∞, and A ∈ Ip1
then A ∈ Ip2

and ‖A‖p2
≤
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‖A‖p1
. Therefore, we have the continuous embedding: Ip1

↪→ Ip2
. As a result of this

embedding, it follows by setting p2 = ∞, that every operator in Ip is compact (See
[30], [37] or [55]) and that ‖A‖ ≤ ‖A‖p for all 1 ≤ p ≤ ∞. We shall also need the
following results (see [30], [37] and/or [55] for proof).

Lemma 1.4. If A ∈ Ip with 1 ≤ p ≤ ∞ and B ∈ Iq where 1/p+ 1/q = 1, then
AB,BA ∈ I1 and

‖AB‖1 ≤ ‖A‖p‖B‖q, ‖BA‖1 ≤ ‖A‖p‖B‖q. (1.9)

Moreover, ‖A‖p = ‖A∗‖p and for any positive integer r we have Ar ∈ Ip/r and
‖Ar‖p/r ≤ (‖A‖p)r.

The trace is a continuous linear functional over I1 (see [30]). Consequently, if
A ∈ I1, the value Tr (A) =

∑∞
n=1〈φn, Aφn〉 does not depend on the choice of the

orthonormal basis {φn}∞n=1. This result, combined with the previous Lemma, gives
a simple characterization to the dual spaces of Ip (see [37]) given by the following
Proposition.

Proposition 1.5. Let ϕ be a continuous linear functional over Ip with 1 < p ≤
∞, then there is an operator A ∈ Iq with 1/p+ 1/q = 1 such that ϕ(X) = Tr (AX),
for all X ∈ Ip, and ‖ϕ‖L (X,C) = ‖A‖q. If ϕ is a bounded linear functional on I1,
then there is a bounded linear operator A ∈ L (H ) such that ϕ(X) = Tr (AX) for all
X ∈ I1 and ‖ϕ‖L (X,C) = ‖A‖.

The previous proposition implies that (Ip)
∗ ' Iq when when 1 < p ≤ ∞ and

then Ip is reflexive when 1 < p <∞. Moreover (I1)∗ ' L (H ). If A ∈ I∞, then it
is well known (see [37]) that it has a norm convergent expansion given by

A(·) =

ω∑
n=1

sn(A)〈φn, ·〉ψn,

with ω possibly infinite and {φn}ωn=1 and {ψn}ωn=1 orthonormal sequences in H . The
elements of the sequence {sn(A)}ωn=1 are uniquely determined and called the singular
values of A. In addition the singular values satisfy sn(A) ≥ 0 and s1(A) ≥ s2(A) ≥
· · · ≥ 0.

There are several equivalent ways to define the norm ‖A‖p for an A ∈ Ip. The
following result uses the singular values of A and the results of the dual space of Ip

to characterize ‖A‖p (see [30] and [55]).
Proposition 1.6. Let A ∈ Ip and {sj(A)}ωj=1 be its singular values and denote

by I 0 to the set of nonzero finite rank operators. Then, if 1
p + 1

q = 1, the norm ‖A‖p
satisfies

‖A‖p = sup
W∈I 0

|Tr (WA) |
‖W‖q

=
( ω∑
j=1

spj (A)
)1/p

. (1.10)

Suppose that I is a real interval (bounded or unbounded) and that X is a Banach
space. We define the space C (I;X) by

C (I;X) =
{
F : I → X : t 7→ F (t) is continuous in ‖ · ‖X

}
.

If I is closed, then C (I;X) is a Banach space under the usual sup norm; ‖F (·)‖C (I;X) =
supt∈I ‖F (t)‖X . If 1 ≤ p1 < p2 ≤ ∞, then the continuous embedding Ip1

↪→ Ip2
,

implies that C (I; Ip1
) ↪→ C (I; Ip2

) and since Ip ↪→ L (H ) for any 1 ≤ p ≤ ∞, it
follows that C (I; Ip) ↪→ C (I; L (H )).
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1.3. Properties of Ip-valued Mappings. We are interested in mappings of
the form f : I → X, where I is an interval (bounded or unbounded) in R and X
is a complex Banach space, and more specifically a space of operators over some
Hilbert space H . For this matter, we make use of the Bochner integral, its associated
concept of measurability and we refer the reader to [1] and [39] for further definitions
and elementary properties of the Bochner integral.

A function f : I → X is called simple if it is of the form f(t) =
∑n
r=1 xrχ∆r

(t) for
some n ∈ N, xr ∈ X and Lebesgue measurable sets ∆r. Here, the measure of ∆r is
denoted by m(∆r) and χ∆r

is the characteristic function of the set ∆r. The function
f is called a step function if each ∆r can be chosen to be an interval.

Recall that a function is called Bochner measurable (or simply measurable) if
there is a sequence of simple functions fn : I → X such that f(t) = limn→∞ fn(t),
a.e. for t ∈ I. If X is an operator space, for example X = L (H ) for some Hilbert
space H , then we can define a weaker form of measurability. We say that a map
T : I → L (H ) is strongly measurable, if for any x ∈ H , the map t 7→ T (t)x is
Bochner measurable as an H -valued function. The differences between these two
definitions of measurability play an important role in defining solutions to Riccati
equations and the way we approximate these equations. For example, let S(t) be a
C0-semigroup over H , then t 7→ S(t)x is norm continuous for every x ∈ H , which
implies that the map S : I → L (H ) is strongly measurable. However, t 7→ S(t) is
Bochner measurable if and only if t 7→ S(t) is norm continuous for t > 0 (see Hille
and Phillips book [39]). Therefore, if t 7→ S(t) is not norm continuous for t > 0, then
the mapping t 7→ S(t) is not Bochner measurable and hence the Bochner integral∫ 1

0
S(t) dt is not well-defined. However, one can define a bounded linear operator by

V x =

∫ 1

0

S(t)x dt

for each x ∈ H , since ‖S(t)‖ is uniformly bounded on t ∈ [0, 1]. This is often called
the strong Bochner integral.

We recall the definitions of the standard Banach spaces Lp(I;X). For 1 ≤ p <∞
the space Lp(I;X) is defined to be the space of (equivalence classes) of measurable
functions f : I → X such that ‖f‖Lp(I;X) = (

∫
I
‖f(t)‖pX dt)1/p < ∞, and L∞(I;X)

is define to be the space of (equivalence classes) of measurable functions such that
‖f‖L∞(I;X) = ess supt∈I ‖f(t)‖X <∞. When I is unbounded, then we can define the
spaces Lploc(I;X) as all (equivalence classes) of measurable functions such that their
restriction to any compact interval [a, b] ⊂ I belongs to Lp(I;X), i.e., f(·) ∈ Lploc(I;X)
if (fχ

[a,b]
)(·) ∈ Lp(I;X) for any [a, b] ⊂ I where χ

[a,b]
is the characteristic function of

the set [a, b].
Let I be a compact interval. Since Ip1 ↪→ Ip2 for 1 ≤ p1 ≤ p2 ≤ ∞, it follows

that C (I; Ip1
) ↪→ C (I; Ip2

). Then, C (I; Ip1
) ↪→ Lp(I; Ip2

) for all 1 ≤ p ≤ ∞, and(∫
I

‖f(t)‖pp2
dt

)1/p

≤ (m(I))1/p sup
t∈I
‖f(t)‖p1

.

Also, if f(·) ∈ Lp(I; Ir) and g(·) ∈ Lq(I; Is), where 1/p+1/q = 1 and 1/r+1/s = 1,
then (fg)(·) and (gf)(·) map I to I1 and they are Bochner measurable. This follows
immediately by considering step functions fn and gn that converge point-wise a.e. to
f and g in their respective norms. Since fngn and gnfn are simple I1-valued and
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converge point-wise a.e. to fg and gf respectively. Finally, we note that

∫
I

‖(fg)(t)‖1 dt ≤
∫
I

‖f(t)‖r‖g(t)‖s dt ≤

(∫
I

‖f(t)‖pr dt

)1/p(∫
I

‖g(t)‖qs dt

)1/q

,

and the same bound holds for t 7→ (gf)(t).

2. Smoothing Results. In this section we will study how multiplication of
continuous mappings with values in Ip improve the continuity of strongly continuous
L (H )-valued mappings. Throughout this section we assume that R+ = [0,∞), H
is a complex separable Hilbert space, T : R+ → L (H ) is strongly continuous (but
not necessarily a C0-semigroup of bounded linear operators) and that I 0 is the set
of nonzero finite rank operators.

Proposition 2.1. Let T : R+ → L (H ) be a strongly continuous mapping and
let K ∈ C (R+; Ip), for some 1 ≤ p ≤ ∞. Then, t 7→ T (t)K(t) and t 7→ K(t)T ∗(t)
belong to C (R+; Ip).

Proof. Suppose first that K(t) is constant, i.e., K(t) = K ∈ Ip for t ∈ R+

and consider the case where t ∈ [0, τ ] for a fixed finite τ > 0. Since K ∈ Ip and
T (t) ∈ L (H ), it follows that T (t)K ∈ Ip for each t ∈ [0, τ ].

We now prove that t 7→ T (t)K is Ip-norm continuous when K is a rank one
operator. If K be defined as Kx = 〈ψ, x〉ϕ for some fixed ψ,ϕ ∈H , and all x ∈H ,
then T (t)Kx = 〈ψ, x〉T (t)ϕ. Let t and t0 be in [0, τ ] and {φn}∞n=1 an orthonormal
basis of H . Then, for W 6= 0 in L (H ) of finite rank, the Cauchy-Schwartz inequality
and Lemma 1.4 imply

|Tr (W (T (t)K − T (t0)K)) | ≤
∞∑
n=1

| 〈φn,W (T (t)− T (t0))Kφn〉 |

=

∞∑
n=1

| 〈ψ, φn〉 | | 〈(φn,W (T (t)− T (t0))ϕ〉 |

≤
( ∞∑
n=1

| 〈ψ, φn〉 |2
)1/2( ∞∑

n=1

| 〈(φn,W (T (t)− T (t0))ϕ〉 |2
)1/2

= ‖ψ‖‖W
(
T (t)ϕ− T (t0)ϕ

)
‖ ≤ ‖ψ‖‖W‖q‖T (t)ϕ− T (t0)ϕ‖,

for any 1 ≤ q ≤ ∞. Therefore, by Proposition 1.6, we have

‖T (t)K − T (t0)K‖p = sup
W∈I 0

|Tr
(
W
(
T (t)K − T (t0)K

))
|

‖W‖q
≤ ‖ψ‖‖T (t)φ− T (t0)φ‖,

(2.1)

and hence ‖T (t)K−T (t0)K‖p → 0 as t→ t0 because t 7→ T (t) is strongly continuous
on R+. Therefore, t 7→ T (t)K is Ip-norm continuous on [0, τ ] when K is of rank one.
We now use induction to establish the same result when K has finite rank.

Let K = K0 + K1 where the mapping t 7→ T (t)K0 continuous in the Ip-norm
and K1 is of rank one. Since

‖T (t)K − T (t0)K‖p ≤ ‖T (t)K0 − T (t0)K0‖p + ‖T (t)K1 − T (t0)K1‖p,

it follows that t 7→ T (t)K is continuous in the Ip-norm. Therefore, for any finite rank
operator K, the map t 7→ T (t)K is Ip-norm continuous on [0, τ ].
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Now we extend this result for any K ∈ Ip. Let K ∈ Ip and {Kn}∞n=1 be a
sequence of finite rank operators such that Kn → K in the Ip-norm (note that finite
rank operators are dense in Ip, in the corresponding norm). The triangle inequality
implies

‖T (t)K − T (t0)K‖p ≤ ‖T (t0)(K −Kn)‖p + ‖T (t)(K −Kn)‖p + ‖T (t)Kn − T (t0)Kn‖p,

and the Uniform Boundedness Theorem yields ‖T (t)‖ ≤Mτ for some Mτ > 0 and for
any t ∈ [0, τ ]. It now follows from Lemma 1.4 that

‖T (t)K − T (t0)K‖p ≤ 2Mτ‖K −Kn‖p + ‖T (t)Kn − T (t0)Kn‖p.

For any ε > 0, there is anN(ε) such that ‖K−Kn‖p < ε/4Mτ for n ≥ N(ε). Since each
Kn is of finite rank, for a fixed n, there is a δ > 0 such that for t ∈ (t0−δ, t0 +δ)∩ [0, τ ]
we observe ‖T (t)Kn − T (t0)Kn‖p < ε/2. Hence, it follows that for each ε > 0

‖T (t)K − T (t0)K‖p < ε,

for t ∈ (t0 − δ, t0 + δ) ∩ [0, τ ] for some δ = δ(ε). Therefore, if K ∈ Ip, the map
t 7→ T (t)K is Ip-norm continuous on [0, τ ]. Moreover, since τ > 0 was arbitrary,
t 7→ T (t)K is Ip-norm continuous on R+.

Finally, if K ∈ Ip, then K∗ ∈ Ip and T (·)K∗ ∈ C ([0, τ ]; Ip). Hence KT ∗(·) ∈
C (R+; Ip) since ‖T (t)K∗ − T (t0)K∗‖p = ‖KT ∗(t) −KT ∗(t0)‖p and this completes
the proof for the case when K(t) is constant.

Suppose now that K ∈ C (R+; Ip). If t and t0 are in [0, τ ] with τ > 0 arbitrary,
then T (t)K(t) and T (t0)K(t0) belong to Ip. Again, the triangle inequality yields

‖T (t)K(t)− T (t0)K(t0)‖p ≤ ‖T (t)‖‖K(t)−K(t0)‖p + ‖T (t)K(t0)− T (t0)K(t0)‖p.

Since K(·) ∈ C (R+; Ip) and t 7→ ‖T (t)‖ is uniformly bounded in [0, τ ] (by the
Uniform Boundedness Principle), the first term in the right hand side goes to zero,
as t → t0. The second term goes to zero since K(t0) ∈ Ip. Also, since ‖K∗(t)‖p =
‖K(t)‖p the mapping t 7→ K∗(t) belongs to C (R+; Ip) and hence t 7→ T (t)K∗(t) and
t 7→ K∗(t)T ∗(t) are both Ip-norm continuous on [0, τ ]. Since τ > 0 is arbitrary, the
result holds on R+.

If the mapping t 7→ T (t) does not satisfy some additional property (for example,
the semigroup property T (t + s) = T (t)T (s) for t, s > 0 and T (0) = I) “strong
continuity” can not be replaced by “weak continuity” in the previous proposition (for
a counterexample check [52]). If the semigroup property and T (0) = I are satisfied,
then the strong continuity is implied by the weak continuity (for a proof, see [39] and
[51]).

The previous propositions have stronger conclusions in the case where t 7→ T (t)
is not just a strongly continuous mapping but a C0-semigroup of linear operators
over some Hilbert space H . In this case, both t 7→ T (t) and t 7→ T ∗(t) are strongly
continuous. In fact, T ∗(t) is also a C0-semigroup of linear operators over H as we
can see in [51]. We summarize this in the following proposition.

Proposition 2.2. Let S(t) be a C0-semigroup and let K ∈ C (R+; Ip), for some
1 ≤ p ≤ ∞. Then, the mappings: t 7→ S(t)K(t), t 7→ S∗(t)K(t), t 7→ K(t)S(t) and
t 7→ K(t)S∗(t) belong to C (R+; Ip).

Proof. Since S(t) is a C0-semigroup over a Hilbert space, both mappings t 7→
S(t) and t 7→ S∗(t) are strongly continuous. The conclusion follows directly from
Proposition 2.1.
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The next step is to show that multiplication by operators in Ip improves the
convergence properties of approximating semigroups. In particular, we consider a
sequence {Sn(t)} of C0-semigroups converging strongly (as n→∞) to a C0-semigroup
S(t) uniformly on [0, τ ]. The following Lemma was proven for the case p = 2 by A.
Germani, et al. in [35]. We will extend the results to any p satisfying 1 ≤ p ≤ ∞ and
to an arbitrary strongly continuous mapping t 7→ T (t).

Lemma 2.3. Let {Tn(t)} be a sequence of strongly continuous L (H )-valued
functions and strongly convergent to t 7→ T (t) uniformly in t ∈ [0, τ ] (i.e., the mapping
t 7→ Tn(t)x is continuous for each n ∈ N and each x ∈H , and ‖Tn(t)x−T (t)x‖ → 0
uniformly in t ∈ [0, τ ] as n→∞). Assume that 1 ≤ p ≤ ∞. If K is a compact set in
Ip, then

sup
t∈[0,τ ]

‖Tn(t)K − T (t)K‖p → 0, and sup
t∈[0,τ ]

‖KT ∗n(t)−KT ∗(t)‖p → 0,

both uniformly in K ∈ K, as n→∞.
Proof. The Uniform Boundedness Principle implies that ‖Tn(t)‖ ≤ M for some

M > 0 and for all n ∈ N and t ∈ [0, τ ]. This in turn also implies that ‖T (t)‖ ≤ M .
For each t ∈ [0, τ ] we have that ‖T (t)x‖ ≤ supn∈N ‖Tn(t)x‖ ≤ M‖x‖ and hence
‖T (t)‖ ≤ supn∈N ‖Tn(t)‖ ≤M .

If K ∈ Ip, for each t ∈ [0, τ ] and n ∈ N, then Tn(t)K and T (t)K belong to Ip

since the latter space is a double-sided ideal on L (H ). We bound their difference by

‖Tn(t)K − T (t)K‖p ≤ ‖Tn(t)K‖p + ‖T (t)K‖p ≤ 2M‖K‖p.

Since K ∈ K and K is compact, it is bounded. Therefore, ‖Tn(t)K − T (t)K‖p is
uniformly bounded for all t ∈ [0, τ ] and all K ∈ K.

Define the functionals Jn : K → R by

Jn(K) := sup
t∈[0,τ ]

‖(Tn − T )(t)K‖p,

which are uniformly bounded in n ∈ N and K ∈ K.
Each mapping t 7→ Tn(t) is strongly continuous and hence t 7→ T (t) is strongly

continuous since it is the strong limit of {Tn(·)} uniformly in t ∈ [0, τ ]. This follows
from the inequality

‖T (t)x− T (s)x‖ ≤ ‖T (t)x− Tn(t)x‖+ ‖T (s)x− Tn(s)x‖+ ‖Tn(t)x− Tn(s)x‖,

and the fact that each t 7→ Tn(t)x is continuous in [0, τ ] and ‖T (t)x−Tn(t)x‖ → 0 as
n→∞, uniformly in t ∈ [0, τ ].

Proposition 2.1 implies that t 7→ (Tn−T )(t)K is Ip-norm continuous if K ∈ Ip.
For the sake of brevity, we define |‖F (·)‖|p = supt∈[0,τ ] ‖F (t)‖p, for F ∈ C ([0, τ ]; Ip).
Thus, if K1 and K2 are arbitrary elements of K, we have that

|Jn(K1)− Jn(K2)| =
∣∣|‖(Tn − T )(·)K1‖|p − |‖(Tn − T )(·)K2‖|p

∣∣
≤ |‖(Tn − T )(·)(K1 −K2)‖|p ≤ 2M‖K1 −K2‖p.

Hence, for each n ∈ N, K 7→ Jn(K) is a uniformly continuous mapping on the compact
set K and therefore attains its maximum over K, i.e., supK∈K Jn(K) = Jn(K̂n), for

some K̂n ∈ K.
Since Jn is uniformly bounded in K, define ε := limn→∞(supK∈K Jn(K)) =

limn→∞ Jn(K̂n), where {K̂n}∞n=1 is the sequence of maximizers defined above. Then,
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there is a subsequence Jnj (K̂
nj ) for such that Jnj (K̂

nj ) → ε as j → ∞. Without

loss of generality, suppose that ε = limn→∞ Jn(K̂n). Also, since K is compact, the
sequence {K̂n}∞n=1 contains a convergent subsequence, and for the sake of brevity
suppose K̂n → K̂ as n→∞, for some K̂ ∈ K. Since we have already established the
inequality |Jn(K̂n)−Jn(K̂)| ≤ 2M‖K̂n−K̂‖p, then it follows that ε = limn→∞ Jn(K̂).

Now we prove that ε = 0. Assume first that K̂ is of rank one, defined by K̂x =
〈ψ, x〉φ (for some ψ and φ, and all x in H ). If {φn}∞n=1 is an orthonormal basis of
H and I 0 is the set of nonzero finite rank operators, we have

Jn(K̂) = sup
t∈[0,τ ]

‖(Tn − T )(t)K̂‖p

= sup
t∈[0,τ ]

(
sup
W∈I 0

|Tr(W (Tn − T )(t)K̂)|
‖W‖q

)

≤ sup
t∈[0,τ ]

(
sup
W∈I 0

∑∞
n=1 |〈φn,W (Tn − T )(t)K̂φn〉|

‖W‖q

)

= sup
t∈[0,τ ]

(
sup
W∈I 0

∑∞
n=1 | 〈ψ, φn〉 | | 〈φn,W (Tn − T )(t)ϕ〉 |

‖W‖q

)

≤ sup
t∈[0,τ ]

(
sup
W∈I 0

(∑∞
n=1 | 〈ψ, φn〉 |2

)1/2(∑∞
n=1 | 〈φn,W (Tn − T )(t)ϕ〉 |2

)1/2

‖W‖q

)

= sup
t∈[0,τ ]

(
sup
W∈I 0

‖ψ‖‖W (Tn − T )(t)ϕ‖
‖W‖q

)

≤ ‖ψ‖ sup
t∈[0,τ ]

(
sup
W∈I 0

‖W‖q‖(Tn − T )(t)ϕ‖
‖W‖q

)
≤ ‖ψ‖ sup

t∈[0,τ ]

‖(Tn − T )(t)φ‖.

This implies Jn(K̂)→ 0 as n→∞ because Tn(t)φ→ T (t)φ uniformly in t ∈ [0, τ ] as
n→∞. Next, suppose that K̂ = K1 +K2, such that limn→∞ Jn(K1) = 0 and K2 is of
rank one. Since Jn(K1 +K2) ≤ Jn(K1)+Jn(K2), we observe that limn→∞ Jn(K̂) = 0
and hence this is valid for all K̂ of finite rank. Finally, suppose that K̂ ∈ Ip. Then,

there is a sequence {Km}∞m=1 of finite rank operators such that ‖K̂ −Km‖p → 0 as
m→∞, and

Jn(K̂) ≤ Jn(K̂ −Km) + Jn(Km) ≤ 2M‖K̂ −Km‖p + Jn(Km).

Hence limn→∞Jn(K̂) ≤ 2M‖K̂−Km‖p, for anym ∈ N and therefore ε = limn→∞ Jn(K̂) =

0 for any K̂ ∈ Ip. Thus we have proven that

ε = lim
n→∞

sup
K∈K

Jn(K) = lim
n→∞

sup
K∈K

‖Tn(t)K − T (t)K‖p = 0.

In order to prove the second part of the initial statement, define K∗ = {K∗ : K ∈
K}. Then K∗ is also a compact subset of Ip. Therefore, ‖Tn(t)K∗ − T (t)K∗‖p →
0 uniformly in K ∈ K and t ∈ [0, τ ], but ‖Tn(t)K∗ − T (t)K∗‖p = ‖(Tn(t)K∗ −
T (t)K∗)∗‖p = ‖KT ∗n(t)−KT ∗(t)‖p and so sup[0,τ ] ‖KT ∗n(t)−KT ∗(t)‖p → 0 uniformly
in K ∈ K. This completes the proof.
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It is well known that if {Tn(t)} is a sequence of strongly continuous L (H )-valued
functions and strongly convergent to t 7→ T (t) uniformly in t ∈ [0, τ ], this does not
imply (in general) that the sequence of mappings {T ∗n(t)} is strongly convergent to
t 7→ T ∗(t) uniformly in t ∈ [0, τ ]. This assertion even fails in the case of C0-semigroups
(see [12] for a counterexample). However, in the case where one has convergence of
the dual maps, we have the following result.

Lemma 2.4. Let {Tn(t)} and {T ∗n(t)} be sequences of L (H )-valued functions,
strongly continuous and strongly convergent to the maps t 7→ T (t) and t 7→ T ∗(t),
respectively and uniformly in t ∈ [0, τ ]. Suppose also that 1 ≤ p ≤ ∞ and let K be a
compact set in Ip. Then as n→∞,

sup
K∈K

(
sup
t∈[0,τ ]

‖Gn(t, T,K)‖p
)
→ 0,

where Gn(t, T,K) is any of the following: t 7→ (Tn(t)K − T (t)K), t 7→ (KT ∗n(t) −
KT ∗(t)), t 7→ (KTn(t)−KT (t)) or t 7→ (T ∗n(t)K − T ∗K(t)).

Proof. The proof follows by the application of the previous lemma.

3. The Integral Riccati Equation. In this section we focus on the Riccati
integral equation

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)(BB∗ − Σ(s)(C∗C)(s)Σ(s))S∗(t− s) ds, (3.1)

where its integral term will be shown to be well-defined as a Bochner integral in The-
orem 3.1 . Unlike much of the existing literature in which this equation is considered
in the mild sense, we shall interpret (3.1) by employing the Bochner integral with
operator-valued integrand. This is suitable for our applications. The advantage of
considering the integrand in equation (3.1) as Bochner integrable is that it can be
approximated by step functions. Therefore, its integral (for a fixed t) can be uni-
formly approximated by finite sums of operators and this could be applied to the
development of numerical methods.

In general, the integral term in (3.1) is not Bochner integrable due to the fact
that the map t 7→ S(t) is not necessarily norm continuous (see section 1.3). However,
here is where compactness plays a key role: the results of section 2 imply that the
strong measurability t 7→ S(t) is enough to determine that t 7→ S(t)K, t 7→ S∗(t)K,
t 7→ KS(t) and t 7→ KS∗(t) belong to C (R+; Ip) if K ∈ Ip. This is the key result
to improve the measurability of the integrand in (3.1).

Throughout this section we assume that H be a separable complex Hilbert space,
I = [0, τ ] or I = R+ = [0,∞) and 1 ≤ p ≤ ∞. For the sake of brevity, we define the
mappings F and G by

F (·) := BB∗(·) and G(·) := C∗C(·),

and study properties of (3.1) from properties of F and G. The motivation of consid-
ering these maps as time dependent can be seen in the motivating example in section
1.1.

3.1. Properties of the Mapping γ. We will define the right hand side of (3.1)
as γ(Σ(·)) and hence fixed points of γ are solutions to the integral Riccati equation.
We will now prove that γ is a well defined function in the appropriate spaces.

Theorem 3.1. Let S(t) be a C0-semigroup over H , and suppose that
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(i) Σ0 ∈ Ip

(ii) F (·) ∈ L1
loc(I; Ip)

(iii) G(·) ∈ L∞loc(I; L (H ))
If Σ(·) ∈ L2

loc(I; I2p), then for all t ∈ I the mapping

s 7→ S(t− s)
(
F − ΣGΣ

)
(s)S∗(t− s) (3.2)

is Bochner integrable as a Ip-valued mapping on [0, t] and γ(Σ)(·) defined by

γ(Σ(·))(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
F − ΣGΣ

)
(s)S∗(t− s) ds, (3.3)

is a well defined function γ : L2
loc(I; I2p)→ C (I; Ip). Moreover, since γ(L2

loc(I; I2p)) ⊂
C (I; Ip), it follows that C (I; Ip) is an γ-invariant subspace of L2

loc(I; I2p).
If instead of (iii), G(·) satisfies the stronger condition

(iii’) G(·) ∈ L∞loc(I; Ip),
and Σ(·) ∈ L2

loc(I; L (H )), then (3.2) is again Bochner integrable as a Ip-valued
mapping on [0, t] and γ(Σ)(·) ∈ C (I; Ip). In this case, γ(L2

loc(I; L (H ))) ⊂ C (I; Ip),
and C (I; Ip) is a γ-invariant subspace of L2

loc(I; L (H )).
Observe that since Ip ⊂ I2p ⊂ I∞ for any 1 ≤ p ≤ ∞, we observe that

C (I; Ip) ⊂ L2
loc(I; I2p). For p = 1 this implies that C (I; I1) is continuously embed-

ded in L2(I; I2) (with I compact) and the latter is a Hilbert space. Therefore, if we
can find a locally square integrable, Hilbert-Schmidt valued solution of the Riccati
equation, that function is trace class-valued and continuous in trace norm. The other
very important feature to observe is that if (iii) holds, then it is not possible to define
γ over L2

loc(I; L (H )). The reason for this is that S(t) is a general C0-semigroup (and
not necessarily norm continuous for t > 0). That is, t 7→ S(t) is Bochner measurable
as a L (H )-valued mapping if and only if it is operator-norm continuous for t > 0
(see [39]).

Proof. [Proof of Theorem 3.1] Since S(t) is a C0-semigroup of linear operators on
the Hilbert space H , then S∗(t) is also a C0-semigroup on the same Hilbert space
H and the map t 7→ S∗(t) is strongly continuous. Since Σ0 ∈ Ip, we have S(·)Σ0 ∈
C (I; Ip), and since t 7→ S∗(t) is strongly continuous it follows that S(·)Σ0S

∗(·) ∈
C (I; Ip) by Proposition 2.2.

Suppose that t ∈ I is fixed. We begin by proving that the mapping s 7→
S(t − s)F (s)S∗(t − s) is Bochner measurable on [0, t]. Suppose first that F (·) is
a characteristic function, i.e., F (s) = f χ

E
(s) with f ∈ Ip and E ⊆ [0, t] measurable.

Hence, S(t− s)F (s)S∗(t− s) = S(t− s)fS∗(t− s) χ
E

(s) is Bochner measurable (for
s ∈ [0, t]) since it is the product of a Ip-valued continuous function and a scalar mea-
surable function (see [1]). By linearity, s 7→ S(t − s)F (s)S∗(t − s) is measurable for
any F : [0, t] 7→ Ip which is simple. If F (·) ∈ L1(I; Ip), it is measurable and there is
a sequence of simple functions Fn(·) such that ‖F (s)− Fn(s)‖p → 0 a.e. for s ∈ [0, t]
as n → ∞. Since S(t) is a C0-semigroup, there is an Mt such that ‖S(t − s)‖ ≤ Mt

for all s ∈ [0, t] and we have

‖S(t− s)F (s)S∗(t− s)− S(t− s)Fn(s)S∗(t− s)‖p ≤M2
t ‖F (s)− Fn(s)‖p.

Therefore, we conclude that s 7→ S(t−s)F (s)S∗(t−s) is Bochner measurable on [0, t]
as a Ip-valued function, for any Bochner measurable function F : I → Ip since is
the sequence of measurable functions s 7→ S(t− s)Fn(s)S∗(t− s).
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Suppose again that t ∈ I is fixed and that (iii) holds. Based on the above
paragraph, to prove that the mapping s 7→ S(t− s)Σ(s)G(s)Σ(s)S∗(t− s) is Bochner
measurable for s ∈ [0, t] as a Ip-valued function, we only need to prove that s 7→
Σ(s)G(s)Σ(s) is Bochner measurable for Σ(·) ∈ L2

loc(I; I2p) (or Σ(·) ∈ L2
loc(I; L (H ))

when (iii’) holds). First consider σ1, σ2 ∈ I2p, c ∈ L (H ) and E1, E2, E3 measurable
subsets of [0, t], then(

σ1χE1
(s)
)(
cχ

E3
(s)
)(
σ2χE4

(s)
)

= (σ1cσ2) χ⋂3
i=1

Ei
(s)

is Bochner measurable as a Ip-valued function. We conclude this because σ1cσ2 ∈ Ip

(σ1 ∈ I2p, we have σ1c ∈ I2p and hence (σ1c)σ2 ∈ Ip, since σ2 ∈ I2p by Lemma
1.4) and E1 ∩ E2 ∩ E3 is measurable (the same holds if σi ∈ L (H ) and c ∈ Ip).
By the distributive law, s 7→ Σ(s)G(s)Σ(s) is Ip-valued, Bochner measurable when
s 7→ Σ(s) is a simple I2p−valued, and s 7→ G(s) is a simple L (H )-valued (or
when s 7→ Σ(s) is simple L (H )-valued, and s 7→ G(s) is simple Ip−valued). If
Σ(·) ∈ L2

loc(I; I2p) and G(·) ∈ L∞loc(I; L (H )) there are sequences of simple functions
Σn(·) and Gn(·), I2p-valued and L (H )-valued respectively, that converge point-wise
a.e. in s ∈ [0, t] (in the corresponding norm) to Σ(·) and G(·). For each s ∈ [0, t], we
have Σ(s)G(s)Σ(s) ∈ Ip, hence (suppressing “(s)” for the sake of brevity) from the
equality

ΣGΣ− ΣnGnΣn = (Σ− Σn)GΣ + Σn

(
G(Σ− Σn) + (G−Gn)Σn

)
it follows that

‖(ΣGΣ− ΣnGnΣn)(s)‖p ≤

‖(Σ− Σn)(s)‖2p
(
‖G(s)‖‖Σ(s)‖2p + ‖Σn(s)‖2p‖G(s)‖

)
+ ‖(G−Gn)(s)‖‖Σn(s)‖22p.

If (iii’) holds instead, for Σ(·) ∈ L2
loc(I; L (H )) and G(·) ∈ L∞loc(I; Ip) there are

sequences of simple functions Σn(·) and Gn(·), L (H )-valued and Ip-valued respec-
tively, that converge point-wise a.e. in s ∈ [0, t] (in the corresponding norm) to Σ(·)
and G(·). In this case, we obtain the inequality

‖(ΣGΣ− ΣnGnΣn)(s)‖p ≤

‖(Σ− Σn)(s)‖
(
‖G(s)‖p‖Σ(s)‖+ ‖Σn(s)‖‖G(s)‖p

)
+ ‖(G−Gn)(s)‖p‖Σn(s)‖2.

Hence, we have that s 7→ Σ(s)G(s)Σ(s) is a Ip-valued, Bochner measurable function
since it is the point-wise limit a.e. of measurable functions when (iii) or (iii’) hold.
Therefore, s 7→ S(t − s)Σ(s)G(s)Σ(s)S∗(t − s) is Ip-valued (with fixed t ∈ I) and
Bochner measurable for s ∈ [0, t] by the results of the previous paragraph.

We have proven that the integrand in the definition of the operator γ is Bochner
measurable. Now we prove that the integrand is locally Bochner integrable (note that
for Banach space X, f ∈ L1(I;X) iff f is Bochner measurable and

∫
I
‖f(t)‖X dt <∞,

see [1]). Recall that if A1 ∈ Ip, A2 ∈ I2p and A ∈ L (H ), this implies that
AiA,AAi ∈ Iip for i = 1, 2 and ‖AiA‖ip and ‖AAi‖ip are bounded above by
‖A‖‖Ai‖ip (see Lemma 1.4). By using these properties of Ip and I2p, we obtain
the inequality∫ t

0

‖S(t− s)F (s)∗S(t− s)‖p ds ≤M2
t

∫ t

0

‖F (s)‖p ds = M2
t ‖F (·)‖L1([0,t];Ip).
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If case (iii) holds and Σ(·) ∈ L2
loc(I; I2p), then we have∫ t

0

‖S(t− s)
(
ΣGΣ

)
(s)S∗(t− s)‖p ds ≤M2

t

∫ t

0

‖
(
ΣGΣ

)
(s)‖p ds

≤M2
t

∫ t

0

‖G(s)‖‖Σ(s)‖22p ds

≤M2
t ‖G(·)‖L∞([0,t];L (H ))‖Σ(·)‖2L2([0,t];I2p),

and if (iii’) holds and Σ(·) ∈ L2
loc(I; L (H )), then∫ t

0

‖S(t− s)
(
ΣGΣ

)
(s)S∗(t− s)‖p ds ≤M2

t

∫ t

0

‖
(
ΣGΣ

)
(s)‖p ds

≤M2
t

∫ t

0

‖G(s)‖p‖Σ(s)‖2 ds

≤M2
t ‖G(·)‖L∞([0,t];Ip)‖Σ(·)‖2L2([0,t];L (H )).

This implies the local Bochner integrability of the integrands in any case.
We have established the local integrability of the integrand in the definition (3.3)

of γ. Now we prove that the integral defines a continuous Ip-valued function. Assume
that I = [0, τ ] with τ > 0 arbitrary. Define H : I × I → Ip by

H(t, s) = χ
[0,t)

(s)
(
S(t− s)

(
F − ΣGΣ

)
(s)S∗(t− s)

)
,

so that

H(t, s) =

{
S(t− s)

(
F − ΣGΣ

)
(s)S∗(t− s), 0 ≤ s < t ≤ τ ;

0, 0 ≤ t ≤ s ≤ τ .

We have that γ(Σ)(t) = S(t)Σ0S
∗(t) +

∫ τ
0
H(t, s) ds when t ∈ [0, τ ].

It follows from above that for each fixed t ∈ I = [0, τ ], the mapping s 7→ H(t, s)
is Bochner measurable in [0, τ ]. In addition, we have the bound

‖H(t, s)‖p ≤M2
τ ‖
(
F − ΣGΣ

)
(s)‖p.

Thus, the right hand side is integrable and independent of t. In order to complete the
proof we show that

lim
tn→t

‖H(tn, s)−H(t, s)‖p = 0,

a.e. in s ∈ [0, τ ]. To prove this, select a fixed s ∈ (0, τ) and observe
(
F −ΣGΣ

)
(s) ∈

Ip. Hence t 7→ S(t − s)
(
F − ΣGΣ

)
(s)S∗(t − s) is Ip-continuous for t ∈ (s, τ) by

Proposition 2.1 and then t 7→ H(t, s) is Ip-continuous for t ∈ (s, τ). If t ∈ (0, s), then
H(t, s) = 0. Hence, H(tn, s)→ H(t, s) as tn → t a.e. in s ∈ [0, τ ]. Finally let tn → t,
by Dominated Convergence Theorem we observe that

∫ τ
0
H(tn, s) ds→

∫ τ
0
H(t, s) ds,

i.e., the mapping

t 7→
∫ t

0

S(t− s)
(
F − ΣGΣ

)
(s)S∗(t− s) ds,

is continuous in Ip-norm on t ∈ [0, τ ] with τ > 0 arbitrary.
We have proven that if Σ(·) ∈ L2([0, τ ]; I2p) when (iii) holds (or if Σ(·) ∈

L2([0, τ ]; L (H )) when (iii’) holds), we conclude that γ(Σ)(·) ∈ C ([0, τ ]; Ip). Since
τ > 0 is arbitrary, the conclusion of the theorem follows.
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3.2. Uniformly Continuous Semigroups and Approximations. We will
prove in this section that there are solutions to Σ = γ(Σ) in the case when S(t) is a
uniformly continuous semigroup. We require the following definition of monotonically
increasing operator valued mappings.

Definition 3.2. Let t 7→ T (t) be a point-wise non-negative (and hence self-
adjoint) mapping defined as T : I → L (H ), where I ⊂ R is some interval and H
is a Hilbert space. We say that t 7→ T (t) is monotonically increasing if T (t1) ≤ T (t2)
(that is T (t2)− T (t1) ≥ 0) whenever t1 ≤ t2 and t1, t2 ∈ I.

We rely on the following result whose proof is provided in Appendix B.

Lemma 3.3. Suppose that E(·) ∈ L∞loc(R
+; L (H )), D(·) ∈ C (R+; Ip), and

also that both are point-wise non-negative. In addition, suppose that t 7→ D(t) is
monotonically increasing. Then there is a unique solution of

Σ(t) = D(t)−
∫ t

0

Σ(s)E(s)Σ∗(s) ds, (3.4)

in C (R+; L (H )) which also belongs to C (R+; Ip). Even more, the solution t 7→ Σ(t)
satisfies that Σ∗(t) = Σ(t) ≥ 0 for all t ∈ R+ and

sup
t∈[0,τ ]

‖Σ(t)‖p ≤ ‖D(τ)‖p, (3.5)

for any τ > 0.

Although, we are still several steps away of being able to consider the general
case, Lemma 3.3 can be apply to some Riccati equations. For example, consider

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
BB∗ − Σ(C∗C)Σ

)
(s)S∗(t− s) ds,

with S(t) = I. Then, the previous equation is

Σ(t) =

(
Σ0 +

∫ t

0

(BB∗)(s) ds

)
−
∫ t

0

(Σ(C∗C)Σ∗)(s) ds. (3.6)

If Σ∗0 = Σ0 ≥ 0 (and Σ0 ∈ Ip), BB
∗(·) ∈ L1

loc(R
+; Ip) and C∗C(·) ∈ L∞(R+; L (H ))

(with BB∗(·) and C∗C(·) point-wise non-negative), then t 7→ Σ0 +
∫ t

0
(BB∗)(s) ds is

a monotonically increasing non-negative mapping and hence we observe a unique so-
lution t 7→ Σ(t) of the Riccati equation (3.6) in C (R+; Ip). In addition, Σ(·) is
point-wise self-adjoint, non-negative, and bounded on compact intervals [0, τ ] by

sup
t∈[0,τ ]

‖Σ(t)‖ ≤ ‖Σ0‖p + ‖BB∗(·)‖L1([0,τ ];Ip).

Now, we need to turn our attention to the case then S(t) is a different semigroup of
linear operators than the identity. We can prove the following.

Theorem 3.4. Let S(t) be a uniformly continuous semigroup on H such that
‖S(t)‖ ≤Meωt for t ∈ R+. Additionally, suppose that

(i) Σ0 ∈ Ip and Σ0 ≥ 0.
(ii) F (·) ∈ L1

loc(R
+; Ip), where t 7→ F (t) is point-wise non-negative.

(iii) G(·) ∈ L∞loc(R+; L (H )), with t 7→ G(t) is point-wise non-negative.
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Then, the equation

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
F − ΣGΣ

)
(s)S∗(t− s) ds,

has a unique solution in L2
loc(R

+; I2p), which verifies also to belong to C (R+; Ip)
and Σ∗(t) = Σ(t) ≥ 0 for t ∈ R+. More over, we have

‖Σ(t)‖p ≤M2e2ωt

(
‖Σ0‖p +M2e2ωt

∫ t

0

‖F (s)‖p ds

)
,

for t ∈ R+.

Proof. Since S(t) is uniformly continuous, S(t) = eAt for some A ∈ L (H ), which
implies that we can embed S(t) and S∗(t) in groups of linear operators. So S(t) = eAt

and S∗(t) = eA
∗t for t ∈ R. Then the maps t 7→ S(t) and t 7→ S∗(t) have R as domain,

are continuous in operator norm and satisfy the group property: S(t)S(s) = S(t+ s)
and S∗(t)S∗(s) = S∗(t+ s) for all −∞ < s, t <∞.

Since F (·) ∈ L1
loc(R

+; Ip), then F̂ (t) := S(−t)F (t)S∗(−t) for t ∈ R+, satisfies

that F̂ (·) ∈ L1([0, τ ]; Ip) for any τ > 0. The measurability follows immediately since
t 7→ S(−t) and t 7→ S∗(−t) are norm continuous, and the local integrability follows
from the bound ‖F̂ (t)‖p ≤M2e2ωt‖F (t)‖p. Similarly, since G(·) ∈ L∞loc(R+; L (H )),

then Ĝ(t) := S(t)G(t)S∗(t) for t ∈ R+ satisfies that Ĝ(·) ∈ L∞([0, τ ]; L (H )) for
arbitrary τ > 0. We also observe that F̂ ∗(t) = F̂ (t) ≥ 0 and Ĝ∗(t) = Ĝ(t) ≥ 0.
Hence, the equation

Π(t) =

(
Σ0 +

∫ t

0

F̂ (s) ds

)
−
∫ t

0

Π(s)Ĝ(s)Π∗(s) ds, (3.7)

by Lemma 3.3, has a unique solution in C ([0, τ ]; L (H )), that also belongs to C ([0, τ ]; Ip),

and such that Π∗(t) = Π(t) ≥ 0. This follows since t 7→ Σ0 +
∫ t

0
F̂ (s) ds is a mono-

tonic, point-wise self-adjoint and non-negative mapping. We also observe ‖Π(t)‖p ≤
‖Σ0‖p +

∫ t
0
‖F̂ (s)‖p ds.

Define Σ(t) = S(t)Π(t)S∗(t). By definition Σ(·) ∈ C ([0, τ ]; Ip) by Proposition
2.2 and it is also point-wise non-negative and self-adjoint since Π∗(t) = Π(t) ≥ 0.
Then, this implies that
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Σ(t) = S(t)Π(t)S∗(t)

= S(t)

(
Σ0 +

∫ t

0

F̂ (s) ds

)
S∗(t)− S(t)

∫ t

0

Π(s)Ĝ(s)Π(s) ds S∗(t)

= S(t)Σ0S
∗(t) +

∫ t

0

S(t)F̂ (s)S∗(t) ds−
∫ t

0

S(t)Π(s)Ĝ(s)Π(s)S∗(t) ds

= S(t)Σ0S
∗(t) +

∫ t

0

S(t)S(−s)F (s)S∗(−s)S∗(t) ds

−
∫ t

0

S(t)S(−s)Σ(s)S∗(−s)S∗(s)G(s)S(s)S(−s)Σ(s)S∗(−s)S∗(t) ds

= S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)F (s)S∗(t− s) ds

−
∫ t

0

S(t− s)Σ(s)G(s)Σ(s)S∗(t− s) ds,

this is t 7→ Σ(t) satisfies the desired Riccati equation on t ∈ [0, τ ] with τ > 0 arbitrary.
Suppose there is another solution t 7→ Σ̃(t) ∈ C ([0, τ ]; Ip) to this equation. Since

the adjoint map A 7→ A∗ is a bounded (conjugate) linear map on L (H ), it follows

that
( ∫ t

0
Y (s) ds

)∗
=
∫ t

0
Y ∗(s) ds for any Bochner integrable L (H )-valued function

Y (·). This implies, since Σ0, G(·) and F (·) are point-wise non-negative (and hence
self-adjoint) that t 7→ Σ̃∗(t) ∈ C ([0, τ ]; Ip) solves the same Riccati equation. A direct

application of Gronwall’s lemma over the difference ‖(Σ̃− Σ̃∗)(·)‖ implies that Σ̃(·) is
point-wise self-adjoint. Then define t 7→ Π̃(t) = S(−t)Σ̃(t)S∗(−t) ∈ C ([0, τ ]; Ip) and
this a solution to the equation (3.7). Since t 7→ Π(t) was the unique solution to (3.7),
hence Π̃(t) = Π(t), and then Σ̃(t) = Σ(t) since t 7→ S(t) and t 7→ S∗(t) are invertible
for each t ∈ R.

Suppose there is another solution t 7→ Σ̄(t) of the Riccati equation belonging to
L2([0, τ ]; I2p). Then, by Theorem 3.1, Σ̄(·) ∈ C ([0, τ ]; Ip) and then Σ̄(t) = Σ(t) for
all t ∈ [0, τ ] by the previous paragraph.

The inequality ‖Π(t)‖p ≤ ‖Σ0‖p +
∫ t

0
‖F̂ (s)‖p ds immediately leads to

‖Σ(t)‖p ≤M2e2ωt

(
‖Σ0‖p +M2e2ωt

∫ t

0

‖F (s)‖p ds

)
,

for t ∈ R+, since ‖Σ(t)‖p ≤M2e2ωt‖Π(t)‖p and ‖F̂ (t)‖p ≤M2e2ωt‖F (t)‖p.
It seems we are one step away from proving existence and uniqueness of the Ip-

norm continuous solution to the integral Riccati equation when S(t) is a C0-semigroup.
But several difficulties arise if we try to apply the same idea in the previous proofs for
this case. Fortunately, we can overcome this problem, by using the aid of local and
approximation results as we will prove subsequently. In Theorem 3.4, we have proven
that

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
F − ΣGΣ

)
(s)S∗(t− s) ds, (3.8)

has a unique solution in C (R+; Ip) when F (·) ∈ L1
loc(R

+; Ip), G(·) ∈ L∞loc(R+; L (H ))
and S(t) is a uniformly continuous semigroup. Also, by Theorem 3.1, if Σ(·) ∈



18 J. A. BURNS AND C. N. RAUTENBERG

C (R+; Ip), then γ(Σ) is well defined when S(t) is a C0-semigroup. Now, we will
prove that if we have a solution to the equation (3.8) when S(t) is a C0-semigroup,
then under certain hypotheses we will be able to approximate this solution by solutions
to equation (3.8) when Sn(t) is a sequence of uniformly continuous semigroups.

Theorem 3.5. Suppose that S(t) is a C0-semigroup of linear operators over H ,
and that {Sn(t)} is a sequence of uniformly continuous semigroups over the same
Hilbert space H that satisfy, for each x ∈H ,

‖S(t)x− Sn(t)x‖ → 0 and ‖S∗(t)x− S∗n(t)x‖ → 0,

as n→∞, uniformly in compact intervals. Suppose also the following.
(i) Σ0 ≥ 0 and the sequence {Σn0}∞n=1 are in Ip, Σn0 ≥ 0 for all n ∈ N and ‖Σ0 −

Σn0‖p → 0 as n→∞.
(ii) BB∗(·) and the sequence {Fn(·)}∞n=1 are in L1

loc(R
+; Ip), BB∗(t) ≥ 0 and

Fn(t) ≥ 0 for all t ∈ R+ and all n ∈ N and satisfy∫ τ

0

‖BB∗(t)− Fn(s)‖p ds→ 0,

for any fixed τ > 0 and as n→∞.
(iii) C∗C(·) and the sequence {Gn(·)}∞n=1 are in L∞(R+; L (H )), C∗C(t) ≥ 0 and

Gn(t) ≥ 0 for all t ∈ R+ and all n ∈ N and satisfy

ess sup
t∈[0,τ ]

‖C∗C(t)−Gn(t)‖ → 0,

for any fixed τ > 0 and as n→∞.
Then, if Σ(·) ∈ C ([0, a],Ip) is a solution of

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
BB∗ − Σ(C∗C)Σ

)
(s)S∗(t− s) ds,

for some a > 0 and if Σn(·) ∈ C (R+,Ip) is the sequence of solutions of

Σn(t) = Sn(t)Σn0S
∗
n(t) +

∫ t

0

Sn(t− s)
(
Fn − ΣnGnΣn

)
(s)S∗n(t− s) ds,

we observe that

sup
t∈[0,a]

‖Σ(t)− Σn(t)‖p → 0,

as n→∞.
Proof. First note that since Sn(t) is a uniformly continuous semigroup for each n ∈

N, the sequence of solutions of the Riccati equation t 7→ Σn(t) belong to C (R+; Ip)
according to Theorem 3.4.

Suppose τ > 0 is fixed. The convergence of the sequences {Σn0}
∞
n=1, {Fn(·)}∞n=1

and {Gn(·)}∞n=1 (in the respective norms) imply that they are bounded, and hence
there are positive numbers σ0, bτ and cτ such that

σ0 = sup
n∈N
‖Σn0‖p ≥ ‖Σ0‖p,

bτ = sup
n∈N
‖Fn(·)‖L1([0,τ ];Ip) ≥ ‖BB∗(·)‖L1([0,τ ];Ip)

cτ = sup
n∈N
‖Gn(·)‖L∞([0,τ ];L (H )) ≥ ‖C∗C(·)‖L∞([0,τ ];L (H )).
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Also, the Uniform Boundedness Principle implies that there is a constant Mτ such
that

sup(‖S(t)‖, ‖Sn(t)‖) ≤Mτ ,

where the sup ranges in all n ∈ N and all t ∈ [0, τ ] (and of course the same bound is
valid for S∗(t) and S∗n(t)).

The sequence {Σn(·)}∞n=1 is bounded, as we observed in Theorem 3.4, as

‖Σn(t)‖p ≤M2
τ

(
‖Σn0‖p +M2

τ

∫ τ

0

‖Fn(s)‖p ds
)

≤M2
τ (σ0 +M2

τ τbτ ),

in t ∈ [0, τ ]. We define ρτ = M2
τ (σ0 +M2

τ τbτ ).

We first prove that Sn(t)Σn0S
∗
n(t)→ S(t)Σ0S

∗(t) in the sup norm for C ([0, τ ]; Ip).
We have the following bound

‖Sn(t)Σn0S
∗
n(t)− S(t)Σ0S

∗(t)‖p ≤ (3.9)

‖Sn(t)(Σn0 − Σ0)S∗n(t)‖p + ‖Sn(t)Σ0(S∗n(t)− S∗(t))‖p + ‖(Sn(t)− S(t))Σ0S
∗(t)‖p.

The first term in the right hand side satisfies

‖Sn(t)(Σn0 − Σ0)S∗n(t)‖p ≤M2
τ ‖Σn0 − Σ0‖p,

and then converges to zero since ‖Σn0 −Σ0‖p → 0. The second term in the right hand
side of inequality in (3.9) satisfies

‖Sn(t)Σ0(S∗n(t)− S∗(t))‖p ≤Mτ sup
t∈[0,τ ]

‖Σ0(S∗n(t)− S∗(t))‖p,

and by Lemma 2.3, goes to zero as n→∞ and uniformly in t ∈ [0, τ ] because Σ0 ∈ Ip

and due to the strong convergence of S∗n(t) to S∗(t). Since t 7→ S(t) is strongly
continuous and Σ0 ∈ Ip, then by Proposition 2.1 we observe t 7→ Σ0S

∗(t) is Ip-norm
continuous which implies that the set {Σ0S

∗(t)/ t ∈ [0, τ ]} is compact in the Ip-norm
topology. Then again by Lemma 2.3, we observe supt∈[0,τ ] ‖(Sn(t)−S(t))Σ0S

∗(t)‖p →
0 as n→∞. Therefore

sup
t∈[0,τ ]

‖Sn(t)Σn0S
∗
n(t)− S(t)Σ0S

∗(t)‖p → 0,

as n→∞.

Next, we prove that the mapping t 7→
∫ t

0
Sn(t− s)Fn(s)S∗n(t− s) ds converges to

t 7→
∫ t

0
S(t− s)BB∗(s)S∗(t− s) ds in the sup Ip-norm. Both mappings are elements

of C ([0, τ ]; Ip) as we have proven in the first part of the proof of Theorem 3.6. Then,
we observe the following bound on the integrands

‖S(t− s)BB∗(s)S∗(t− s)− Sn(t− s)Fn(s)S∗n(t− s)‖p ≤
‖Sn(t− s)(Fn −BB∗)(s)S∗n(t− s)‖p + ‖Sn(t− s)BB∗(s)(S∗n − S∗)(t− s)‖p+

‖(Sn − S)(t− s)BB∗(s)S∗(t− s)‖p. (3.10)
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For the first term in the right hand side, we observe that

sup
t∈[0,τ ]

∫ t

0

‖Sn(t− s)(Fn −BB∗)(s)S∗n(t− s)‖p ds ≤

≤ sup
t∈[0,τ ]

∫ t

0

‖Sn(t− s)‖‖(Fn −BB∗)(s)‖p‖S∗n(t− s)‖ ds

≤M2
τ sup
t∈[0,τ ]

∫ t

0

‖(Fn −BB∗)(s)‖p ds

≤M2
τ ‖(Fn −BB∗)(·)‖L1([0,τ ];Ip).

Hence, it goes to zero by the initial hypotheses. For the second term in the right hand
side of the inequality in (3.10), we proceed as follows. Since BB∗(·) ∈ L1([0, τ ]; Ip),
it can be approximated with simple Ip-valued functions. Suppose that F (·) is simple.
Then, we have the following bound

‖Sn(t− s)BB∗(s)(S∗n − S∗)(t− s)‖p ≤
≤ ‖Sn(t− s)(BB∗ − F )(s)(S∗n − S∗)(t− s)‖p + ‖Sn(t− s)F (s)(S∗n − S∗)(t− s)‖p

≤ 2M2
τ ‖(BB∗ − F )(s)‖p +Mτ‖F (s)(S∗n − S∗)(t− s)‖p.

We know that F is of the form F (t) =
∑N

fkχEk (t), with a finite number of nonzero
fk ∈ Ip. The set KF = {fk/ 1 ≤ k ≤ N} is compact in the topology of Ip.
Therefore

sup
s∈[0,t]

‖F (s)(S∗n − S∗)(t− s)‖p ≤ sup
fk∈KF

sup
s∈[0,t]

‖fk(S∗n − S∗)(t− s)‖p

≤ sup
fk∈KF

sup
t∈[0,τ ]

‖fk(S∗n − S∗)(t)‖p,

and the right hand side goes to zero by Lemma 2.3. Then, in order to clarify things,
let ε > 0 be arbitrary, and choose a simple Ip-valued function Fε such that ‖(BB∗ −
Fε)(·)‖L1([0,τ ];Ip) <

ε
4M2

τ
. Also there is an N(ε) > 0 such that if n ≥ N(ε), then

‖K(S∗n − S∗)(t)‖p < τε
2Mτ

uniformly in t ∈ [0, τ ] and K ∈ KFε . Therefore

sup
t∈[0,τ ]

∫ t

0

‖Sn(t− s)BB∗(s)(S∗n − S∗)(t− s)‖p ds ≤

≤ sup
t∈[0,τ ]

(
2M2

τ

∫ t

0

‖(BB∗ − Fε)(s)‖p ds+Mτ

∫ t

0

‖F (s)(S∗n − S∗)(t− s)‖p ds

)
≤ 2M2

τ ‖(BB∗ − Fε)(·)‖L1([0,τ ];Ip) + τMτ sup
K∈KFε , t∈[0,τ ]

‖K(S∗n − S∗)(t)‖p

< ε.

The same argument shows that for any ε > 0, there is an N(ε) > 0 such that if
n ≥ N(ε), we observe

sup
t∈[0,τ ]

∫ t

0

‖(Sn − S)(t− s)BB∗(s)S∗(t− s)‖p ds < ε.

Since ε > 0 is arbitrary, this proves that the mapping
t 7→

∫ t
0
Sn(t− s)Fn(s)S∗n(t− s) ds converges to t 7→

∫ t
0
S(t− s)BB∗(s)S∗(t− s) ds in

the C ([0, τ ]; Ip) norm.
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Let I = [0, τ ] = [0, a]. We observe (when 0 ≤ s ≤ t ∈ I) the following bound

‖S(t− s)
(
Σ(C∗C)Σ

)
(s)S∗(t− s)− Sn(t− s)

(
ΣnGnΣn

)
(s)S∗n(t− s)‖p ≤

‖Sn(t− s)(ΣnGnΣn − Σ(C∗C)Σ)(s)S∗n(t− s)‖p+
‖Sn(t− s)

(
Σ(C∗C)Σ

)
(s)(S∗n − S∗)(t− s)‖p+

‖(Sn − S)(t− s)
(
Σ(C∗C)Σ

)
(s)S∗(t− s)‖p.

Since Σ(·) ∈ C (I; Ip) and C∗C(·) ∈ L∞([0, τ ]; L (H )), then it is straightforward
to observe that Σ(C∗C)Σ(·) ∈ L∞(I; Ip) and therefore (Σ(C∗C)Σ)(·) ∈ L1(I; Ip).
Hence it can be approximated by simple Ip-valued functions. Therefore, as we proved
before, for each ε > 0, there is an N(ε) such that if n ≥ N(ε), then

sup
t∈[0,τ ]

∫ t

0

‖Sn(t− s)(Σ(C∗C)Σ)(s)(S∗n − S∗)(t− s)‖p ds < ε,

and

sup
t∈[0,τ ]

∫ t

0

‖(Sn − S)(t− s)(Σ(C∗C)Σ)(s)S∗(t− s)‖p ds < ε.

As we did before, suppressing “(t)” for the sake of brevity, we observe the following
bound:

‖Σ(C∗C)Σ− ΣnGnΣn‖p ≤

‖Σ− Σn‖p
(
‖C∗C‖‖Σ‖p + ‖Σn‖p‖C∗C‖

)
+ ‖C∗C −Gn‖‖Σn‖2p.

We know that supt∈[0,τ ] ‖C∗C(t)‖ ≤ cτ , supt∈[0,τ ] ‖Σn(t)‖p ≤ ρτ and we define ρ̂ =
supt∈[0,τ ] ‖Σ(t)‖p and ρ = max(ρτ , ρ̂). Hence∫ t

0

‖Sn(t− s)(ΣnGnΣn − Σ(C∗C)Σ)(s)S∗n(t− s)‖p ds ≤

M2
τ cτρ

∫ t

0

‖(Σ− Σn)(s)‖p ds+ τρ2‖(C∗C −Gn)(·)‖L∞([0,τ ];L (H )).

Finally, define the following functions

h1(n) = sup
t∈[0,τ ]

‖Sn(t)Σn0S
∗
n(t)− S(t)Σ0S

∗(t)‖p,

h2(n) = sup
t∈[0,τ ]

∫ t

0

‖Sn(t− s)(BB∗ − Fn)(s)S∗n(t− s)‖p ds,

h3(n) = sup
t∈I

(∫ t

0

‖Sn(t− s)(Σ(C∗C)Σ)(s)(S∗n − S∗)(t− s)‖p ds+

∫ t

0

‖(Sn − S)(t− s)(Σ(C∗C)Σ)(s)S∗(t− s)‖p ds

)
,

h4(n) = τρ2‖(C∗C −Gn)(·)‖L∞([0,τ ];L (H )).

We have thus far shown that limn→∞ hi(n) = 0, independently of t ∈ I, for i = 1, 2, 3
and limn→∞ h4(n) = 0, by initial hypotheses. Therefore, since Σ(·) and Σn(·) satisfy



22 J. A. BURNS AND C. N. RAUTENBERG

the Riccati equation, the difference is bounded as

‖(Σ− Σn)(t)‖p ≤ h(n) + 2M2
τ cτρ

∫ t

0

‖(Σ− Σn)(s)‖p ds,

in t ∈ I and with h(n) =
∑4
k=1 hk(n). Then a direct application of Grönwall’s Lemma

implies that

sup
t∈I
‖(Σ− Σn)(t)‖p ≤ h(n)e2M2

τ cτρ m(I),

where m(I) is the measure of I = [0, a] = [0, τ ] and because n 7→ h(n) is independent
of t. Finally, since limn→∞ h(n) = 0, the Theorem is proved.

3.3. Solutions for C0-Semigroups. Let S(t) be a C0-semigroup over H ,
F (·) ∈ L1

loc(R
+; Ip) and G(·) ∈ L∞loc(R

+; L (H )). Suppose there is a solution
Σ(·) ∈ C ([0, a]; Ip), of

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
F − ΣGΣ

)
(s)S∗(t− s) ds, (3.11)

and that {Sn(t)}∞n=1 is a sequence of uniformly continuous semigroups such that Sn(t)
and S∗n(t) converge strongly, and uniformly in t ∈ [0, a], to S(t) and S∗(t) as n→∞,
respectively. Then, Theorem 3.5, implies that the sequence of solutions {Σn(·)}∞n=1

in C (R+; Ip) of

Σn(t) = Sn(t)Σ0S
∗
n(t) +

∫ t

0

Sn(t− s)
(
F − ΣnGΣn

)
(s)S∗n(t− s) ds, (3.12)

satisfies supt∈[0,a] ‖Σ(t)−Σn(t)‖p → 0 as n→∞. In the next result we prove existence
of a local solution Σ(·) ∈ C ([0, a]; Ip) to (3.11) and use the sequence of solutions 3.12
to extend the local solution to the entire interval R+.

An interesting feature of the following result is that, under certain conditions,
there is a unique solution to (3.11) in L2([0, τ ]; I2) that also belongs to C ([0, τ ]; I1).
This is an useful result for approximation purposes because L2([0, τ ]; I2) is a Hilbert
space and C ([0, τ ]; I1) is not.

Theorem 3.6. Let H be a separable complex Hilbert space, I = [0, τ ] or I = R+,
S(t) be a C0-semigroup on H , and suppose that
(i) Σ0 ∈ Ip and Σ0 ≥ 0;
(ii) BB∗(·) ∈ L1

loc(I; Ip), with BB∗(t) ≥ 0 for t ∈ I;
(iii) C∗C(·) ∈ L∞loc(I; L (H )), with C∗C(t) ≥ 0 for t ∈ I.
Then, the equation

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
BB∗ − Σ(C∗C)Σ

)
(s)S∗(t− s) ds,

where the integral is a Bochner integral, has a unique solution in the space L2
loc(I; I2p),

and even more the solution belongs to C (I; Ip) and is point-wise self-adjoint and non-
negative.

Proof. The following argument will be a modification of the one of Da Prato
in [9] and [23]. The idea of the proof consists in an application of the Contraction
Mapping Principle to prove existence and uniqueness locally, and then making use of
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the non-negativity of the solution to extend existence and uniqueness to the entire
interval I.

Using the definition of the map γ in Theorem 3.1, we can write the Riccati
equation as Σ = γ(Σ). Since γ : L2

loc(I; I2p) → C (I; Ip), it is enough to search for
fixed points of γ in the latter space, because C (I; Ip) ⊂ L2

loc(I; I2p).
Let τ > 0 be such that [0, τ ] ⊂ I. Define bτ = ‖BB∗(·)‖L1([0,τ ];Ip) and cτ =

‖(C∗C)(·)‖L∞([0,τ ];L (H )) and suppose that supt∈[0,τ ] ‖Σ(t)‖p ≤ ρ. Then,

‖γ(Σ)(t)‖p ≤ ‖S(t)Σ0S
∗(t)‖p +

∫ t

0

‖S(t− s)
(
BB∗ − Σ(C∗C)Σ

)
(s)S∗(t− s)‖p ds

≤M2
τ

(
‖Σ0‖1 + bτ + tcτ sup

t∈[0,τ ]

‖Σ(t)‖2p
)

≤M2
τ

(
‖Σ0‖p + bτ + tcτ ρ

2
)
,

where ‖S(t)‖ = ‖S∗(t)‖ ≤Mτ for all t ∈ [0, τ ]. Note that Mτ ≥ 1 exist since S(t) and
S∗(t) are C0-semigroups. Hence, taking the supremum over [0, τ0] with 0 < τ0 ≤ τ ,

sup
t∈[0,τ0]

‖γ(Σ)(t)‖p ≤M2
τ

(
‖Σ0‖p + bτ + τ0cτ ρ

2
)
. (3.13)

Now, let Λi(·) ∈ C ([0, τ ]; Ip) and supt∈[0,τ ] ‖Λi(t)‖p ≤ ρ for i = 1, 2, then we
obtain the following bounds for the difference (γ(Λ1)− γ(Λ1))(t) when t ∈ [0, τ0] as

‖γ(Λ1)(t)− γ(Λ2)(t)‖p ≤
∫ t

0

‖S(t− s)
(
Λ2(C∗C)Λ2 − Λ1(C∗C)Λ1

)
(s)S∗(t− s)‖p ds

≤M2
τ

∫ t

0

‖
(
(Λ2 − Λ1)(C∗C)Λ2 + Λ1(C∗C)(Λ2 − Λ1)

)
(s)‖p ds

≤M2
τ

∫ t

0

‖
(
(Λ2 − Λ1)(C∗C)Λ2

)
(s)‖p + ‖

(
Λ1(C∗C)(Λ2 − Λ1)

)
(s)‖p ds

≤M2
τ cτ

∫ t

0

‖(Λ2 − Λ1)(s)‖p‖Λ2(s)‖p + ‖Λ1(s)‖p‖(Λ2 − Λ1)(s)‖p ds

≤M2
τ cττ0 sup

s∈[0,τ0]

(
‖Λ1(s)‖p + ‖Λ2(s)‖p

)
sup

t∈[0,τ0]

‖(Λ1 − Λ2)(t)‖p.

Hence

sup
t∈[0,τ0]

‖
(
γ(Λ1)− γ(Λ2)

)
(t)‖p ≤ 2M2

τ cττ0ρ sup
t∈[0,τ0]

‖(Λ1 − Λ2)(t)‖p. (3.14)

Then, define β and ρ and choose 0 < τ0 ≤ τ such that

β = M2
τ (‖Σ0‖p + bτ ); bτ + τ0ρ

2cτ ≤ β;

ρ = 2M2
τ β 2M2

τ cττ0ρ ≤
1

2
;

which is always possible since bτ < β (if ‖Σ0‖p = 0 use Mτ > 1). Therefore, since
‖Σ0‖p ≤ β by definition, we observe from that (3.13) and (3.14), that

sup
t∈[0,τ0]

‖γ(Σ)(t)‖p ≤ ρ and sup
t∈[0,τ0]

‖
(
γ(Λ1)−γ(Λ2)

)
(t)‖p ≤

1

2
sup

t∈[0,τ0]

‖(Λ1−Λ2)(t)‖p.
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Therefore, the mapping γ defines a contraction on the ball

Bs,ρ =
{
F (·) ∈ C ([0, τ0]; Ip) : sup

t∈[0,τ0]

‖F (t)‖p ≤ ρ
}
,

and then the equation Σ = γ(Σ) defines an unique solution on Bs,ρ by the Contraction
Mapping Theorem.

Since S(t) is a C0-semigroup over H , there is a sequence {Sn(t)}∞n=1 of uniformly
continuous semigroups over the same Hilbert space H that satisfy that for each
x ∈H ,

‖S(t)x− Sn(t)x‖ → 0 and ‖S∗(t)x− S∗n(t)x‖ → 0,

as n → ∞, uniformly in t ∈ [0, τ ]: Since S(t) is a C0-semigroup over a Hilbert space
H , then S∗(t) also is a C0-semigroup over H and even more there are M ≥ 1 and
ω > 0 such that ‖S∗(t)‖ = ‖S(t)‖ ≤ Meωt for t ∈ R+. Then, let An be the Yosida
approximation of the infinitesimal generator A of S(t). That is An = nARn(A) =
n2Rn(A) − n ∈ L (H ) with n ∈ (ω,∞) ∩ N where Rn(A) = (n − A)−1. It is a
well-known result that the sequence of uniformly continuous semigroups Sn(t) = etAn

satisfies ‖S(t)x − Sn(t)x‖ → 0 as n → ∞ for any x ∈ H and uniformly on compact
intervals. Since S∗(t) is also a C0-semigroup and with generator A∗; the Yosida
approximation A∗n = nA∗Rn(A∗) = n2Rn(A∗)− n is well defined for n ∈ (ω,∞) ∩N
and ‖S∗(t)x − etA

∗
nx‖ → 0 as n → ∞ for any x ∈ H and uniformly on compact

intervals. We observe that (An)∗ = n2((n − A)−1)∗ − n = n2(n − A∗)−1 − n = A∗n,
which implies that S∗n(t) = (etAn)∗ = et(An)∗ = etA

∗
n and the assertion is proved.

Then, the sequence {Σn(·)}∞n=1 of solutions of

Σn(t) = Sn(t)Σ0S
∗
n(t) +

∫ t

0

Sn(t− r)
(
BB∗ − Σ(C∗C)Σ

)
(r)S∗n(t− r) dr,

belongs to C (R+; Ip) and satisfies Σ∗n(t) = Σn(t) ≥ 0 for t ∈ R+ by Theorem
3.4 (page 15). Without loss of generality, suppose that supn ‖Sn(t)‖ ≤ Mτ for t ∈
[0, τ ](where Mτ ≥ 1 was chosen such that ‖S(t)‖ ≤ Mτ for t ∈ [0, τ ]), therefore by
Theorem 3.5,

sup
t∈[0,τ0]

‖Σ(t)− Σn(t)‖p → 0,

as n→∞, which implies that Σ∗(t) = Σ(t) ≥ 0.
Since Σ∗(t) = Σ(t) ≥ 0 for t ∈ [0, τ0] and solves the integral Riccati equation in

this interval, we observe that for any φ ∈H and t ∈ [0, τ0]

0 ≤ 〈φ,Σ(t)φ〉 = 〈φ, S(t)Σ0S
∗(t)φ〉+∫ t

0

〈φ, S(t− r)BB∗(r)S∗(t− r)φ〉 − 〈φ, S(t− r)(Σ(C∗C)Σ)(r)S∗(t− r)φ〉 ds

≤ 〈φ, S(t)Σ0S
∗(t)φ〉+

∫ t

0

〈φ, S(t− s)BB∗(r)S∗(t− s)φ〉 ds.

That is

0 ≤ 〈φ,Σ(t)φ〉 ≤
〈
φ,
(
S(t)Σ0S

∗(t) +

∫ t

0

S(t− s)BB∗(r)S∗(t− s) ds
)
φ

〉
,
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and this latter inequality implies (see Proposition A.1) that

‖Σ(τ0)‖p ≤ ‖S(τ0)Σ0S
∗(τ0) +

∫ τ0

0

S(τ0 − s)BB∗(s)S∗(τ0 − s) ds‖p

≤M2
τ (‖Σ0‖p + bτ ) = β.

This allows us to repeat the contraction argument on the interval [τ0, 2τ0] ⊂ [0, τ ] and
then by Theorem 3.5, we have that supt∈[0,2τ0] ‖(Σ−Σn)(t)‖p → 0 as n→∞. Hence
again Σ∗(t) = Σ(t) ≥ 0 on t ∈ [τ0, 2τ0] and we can again use the same argument on
[2τ0, 3τ0], [3τ0, 4τ0],. . . etc.

Remark. We know now that

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
BB∗ − Σ(C∗C)Σ

)
(s)S∗(t− s) ds, (3.15)

has a unique solution Σ(·) in C ([0, τ ]; Ip) under Theorem 3.6 hypotheses. Suppose
that BB∗(·) ∈ C ([0, τ ]; Ip) and that C∗C(·) ∈ C ([0, τ ]; L (H )). Let A be the in-
finitesimal generator of the C0-semigroup S(t) over the complex separable Hilbert
space H . Since H is reflexive, S∗(t) is a C0-semigroup with generator A∗ (see [51]).
Let x, y ∈ D(A∗), and then Σ(·) satisfies

〈Σ(t)x, y〉 = 〈Σ0S
∗(t)x, S∗(t)y〉+∫ t

0

〈(
BB∗ − Σ(C∗C)Σ

)
(s)S∗(t− s)x, S∗(t− s)y

〉
ds.

Therefore, t 7→ 〈Σ(t)x, y〉 is differentiable and a simple computation with the Leibniz
integral rule (see [9] for a proof when BB∗ and C∗C are constant mappings) shows
that

d

dt
〈Σ(t)x, y〉 =

〈A∗y,Σ(t)x〉+ 〈Σ(t)y,A∗x〉+ 〈BB∗(t)x, y〉 − 〈Σ(t)(C∗C)(t)Σ(t)x, y〉,

with 〈Σ(0)x, y〉 = 〈Σ0x, y〉. Therefore, any solution in C ([0, τ ]; Ip) of the integral
Riccati equation (3.15) is a weak solution of the differential equation

Σ̇(t) = AΣ(t) + Σ(t)A∗ +BB∗(t)− Σ(t)(C∗C)(t)Σ(t) , (3.16)

with initial condition Σ(0) = Σ0. Conversely, any weak solution to this equation can
be proven to be a mild solution to the integral Riccati equation (3.15) (See [9] for a
proof for constant mappings BB∗ and C∗C. The extension for BB∗(·) ∈ C ([0, τ ]; Ip)
and C∗C(·) ∈ C ([0, τ ]; L (H )) is straightforward). Since the unique solution of
this latter equation in the space C ([0, τ ]; Ip) is also a mild solution, these two are
equivalent. Therefore, under the hypotheses of Theorem 3.6 and when BB∗(·) ∈
C ([0, τ ]; Ip) and C∗C(·) ∈ C ([0, τ ]; L (H )), any weak solution to (3.16) is Ip-valued
continuous solution of the integral Riccati equation (3.15).

4. An Application to Sensor Placement. Let Ω = (0, 1)×(0, 1) and consider
the convection-diffusion process on the time interval (0, 1) with a measuring sensor at
(x0, y0)

∂T

∂t
= ε2∆T +

(
ax
∂T

∂x
+ ay

∂T

∂y

)
+ b(x, y)η(t),

h(t) =

∫
Ω

K(x− x0, y − y0)T (t, x, y) dx dy + ν(t),
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where T (t, x, y) = 0 if (x, y) ∈ ∂Ω, η is a real Wiener process and ν is a real Wiener

process that is uncorrelated with η, ε2 = 0.01 and K(x, y) = e−5(x2+y2). In abstract
form, the system reads

z′ = Az +Bη,

h = Cz + ν,

where A = ε2∆+(ax, ay)·∇ is strongly elliptic of order 2 (see [60] or [51]), with domain
D(A) = H2(Ω)∩H1

0 (Ω) and A generates a C0-semigroup over L2(Ω). The input map,
is defined as B : R→ L2(Ω) and given by Ba = b(x, y)a with adjoint B∗ : L2(Ω)→ R

defined by B∗ϕ =
∫

Ω
b(x, y)ϕ(x, y)dxdy. Similarly, the output map C : L2(Ω)→ R is

given by Cϕ =
∫

Ω
c(x, y)ϕ(x, y)dxdy, where c(x, y) = K(x−x0, y−y0) and (x0, y0) is

the position of the sensor and its adjoint C∗ : R→ L2(Ω) is given by C∗a = ac(x, y).
Then, the optimal location of the sensor is associated to find a pair (x0, y0) that

minimizes

J(x0, y0) =

∫ 1

0

Tr (Σ(x0,y0)(t)) dt,

where Σ(x0,y0) solves the following Riccati equation

Σ̇(t) = AΣ(t) + Σ(t)A∗ +BB∗(t)− Σ(t)(C∗C)(t)Σ(t), (4.1)

with zero initial conditions.
We consider the following Galerkin-type approximation scheme. The orthonormal

set of eigenfunctions of the Laplacian ∆ in the unit square is given by ψm,n(x, y) =
2 sin(πmx) sin(πny). We order them using only one parameter first according to its
associated eigenvalue λm,n = −π2(m2 + n2). In the case of two functions sharing
the same eigenvalue (e.g. ψ1,3 and ψ3,1), we place the one with the highest m first.
Hence, we obtain the sequence {φn}∞n=1 as ψ1,1, ψ2,1, ψ1,2, ψ2,2, · · · .

Define Pn as the orthogonal projector onto span{φ1, φ2, · · · , φn}. It follows that
P ∗n = Pn and P ∗nPn = Pn → I strongly. Since 〈φi, φj〉 = δij , the matrix representation
[An] ∈ Rn×n of the approximation An := PnAPn is given by

[An]ij = ε2 〈φi,∆φj〉L2(Ω) + ax〈φi,
∂

∂x
φj〉L2(Ω) + ay〈φi,

∂

∂y
φj〉L2(Ω),

where [An]ij is the i row and j column element of [An] and can be computed in closed
form. The approximant Cn := CPn of C, is given by

Cnφ =

∫
Ω

c(x, y)(Pnφ)(x, y) dx dy,

and its matrix representation is given by

[Cn] =
( ∫

Ω
c(x)φ1(x) dx

∫
Ω
c(x)φ2(x) dx · · ·

∫
Ω
c(x)φn(x) dx

)
,

where x = (x, y). It is straightforward to observe that C∗nCn = PnC
∗CPn. The

matrix representation of (BB∗)n := PnBB
∗Pn is given by

[(BB∗)n] =


f(1, 1) f(2, 1) · · · f(1, n)
f(2, 1) f(2, 2) · · · f(2, n)

...
...

. . .
...

f(n, 1) f(n, 2) · · · f(n, n)

 ,
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where the matrix elements are determined by

f(i, j) =
(∫

Ω

b(x, y)φi(x, y) dx dy
)(∫

Ω

b(x, y)φj(x, y) dx dy
)
.

It can be proven (see [52]) that {Sn(t)}, the uniformly continuous semigroups gener-
ated by {An}, Fn = PnBB

∗Pn and Gn = PnC
∗CPn satisfy the conditions of Theorem

3.5 for p = 1 and hence supt∈[0,a] ‖Σ(t)−Σn(t)‖1 → 0 for any a > 0 and where Σn(·)
satisfies the approximated Riccati equation as in Theorem 3.5.

The approximation of the Riccati equation 4.1 is computed by an implicit Euler
scheme:

[Σk+1
n ]− [Σkn]

h
= [An][Σk+1

n ] + [Σk+1
n ][An]∗ + [(BB∗)n]− [Σk+1

n ][Cn]∗[Cn][Σk+1
n ],

so that for each k the problem reduces to compute an algebraic Riccati equation (see
[52] for full details).

We consider three different cases of choices of b, ax and ay. In all examples we
consider a time-step h = 0.1 (no significant changes in the position of minimizers is
seen by reducing h further) and in all examples 33 eigenfunctions are used, although
changes from 20 to 33 eigenfunctions provide less than 1% difference in values of
the objective functional . The first case is determined by uniform noise and zero
convective term with parameters b(x, y) = 10 and ax = ay = 0. The minimizer in
this case is found exactly at the point (x0, y0) = (0.5, 0.5) and the value functional
(x0, y0) 7→ J(x0, y0)behavior can be observed in Figures 4.1(a) and 4.1(d).

The second example is a case with non-uniform noise and zero convective term

with data b(x, y) = 10 + 20e−10
(

(x−0.2)2+(y−0.2)2
)

and ax = ay = 0. The minimizer
of the value functional in this case is found at the point (x0, y0) ' (0.38, 0.38). In
Figures 4.1(b) and 4.1(e) the behavior of (x0, y0) 7→ J(x0, y0) can be observed and
the displacement of the minimizer, with respect to the previous example, towards the
point (0.2, 0.2) is clear.

The third example corresponds to a case with uniform noise and non-zero con-
vective term. Here we use b(x, y, z) = 10 and ax = ay = 5. The minimizer in this case
is found at the point (x0, y0) ' (0.57, 0.57). In Figures 4.1(c) and 4.1(f) we observe
the functional (x0, y0) 7→ J(x0, y0). The minimizer moves, with respect to the first
example, in the opposite direction of the flow of the system.

It should be noted that in some cases there exist ways to circumvent the resolution
to large scale Riccati equations in the case of the state estimation problem (see for
example [25, 26, 27]).

5. Conclusion. In this paper, we provided results that guarantee the existence
of Bochner integrable solutions to the Riccati integral equation in infinite dimensional
spaces. In §2, we presented new results concerning the smoothing effect achieved by
multiplying a general strongly continuous mapping by continuous Ip-valued functions.
This smoothing was use to prove the existence of Bochner integrable solutions of
the associated Riccati integral equations. In §3 we established existence and and
developed approximation results for the integral Riccati equation. The idea made use
of the results developed for uniformly continuous semi-groups in Theorem 3.4 and
then proving an a-priori approximation scheme in Theorem 3.5. Finally, combining
both results with a fixed property in Theorem 3.6 yielded existence. We formulated an
optimal sensor placement problem as a distributed parameter optimal control problem
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(a) (b) (c)

(d) (e) (f)

Fig. 4.1. Value of J(x, y) =
∫ 1
0 Tr (Σ(x0,y0)(t)) dt in two different perspectives for several

choices of b, ax and ay. Figures 4.1(a) and 4.1(d) correspond to b = 10 and ax = ay = 0. Figures

4.1(b) and 4.1(e) depict the case when b(x, y) = 10 + 40e−5
(
(x−0.1)2+(y−0.1)2

)
and ax = ay = 0.

Figures 4.1(c) and 4.1(f) correspond to b = 10 and ax = ay = 5.

with the Riccati integral equation as a state constraint. We concluded with with an
numerical example to illustrate the theory.

We note that the same ideas can be applied to problems with mobile sensor
networks. These results will appear in a future paper.

Appendix A. An inequality on Ip.
Proposition A.1. Let A1, A2 ∈ Ip with 1 ≤ p ≤ ∞ satisfy that 0 ≤ A1 ≤ A2.

Then, ‖A1‖p ≤ ‖A2‖p.
Proof. If p =∞, then from 0 ≤ 〈A1φ, φ〉 ≤ 〈A2φ, φ〉 it follows that ‖A1‖ ≤ ‖A2‖

by taking the sup over all φ ∈H such that ‖φ‖ = 1.
It is known (see [37]) if A ∈ Ip for 1 ≤ p < ∞ and {ϕ}ωj=1 is some orthonormal

system in H , then  ω∑
j=1

|〈Aϕj , ϕj〉|p
1/p

≤ ‖A‖p,

with equality if and only if A =
∑ω
j=1〈Aϕj , ϕj〉〈·, ϕj〉ϕj .

Then, since A1 is compact and self-adjoint (for being non-negative), it can be
expanded as A1 =

∑ω
j=1 σj〈·, φj〉φj where {φj}ωj=1 is an orthonormal system of eigen-

vectors of A1, with 1 ≤ ω ≤ ∞ and σj = 〈A1φj , φj〉. Hence, by the above inequality
we have

‖A1‖p =

 ω∑
j=1

|〈A1φj , φj〉|p
1/p

≤

 ω∑
j=1

|〈A2φj , φj〉|p
1/p

≤ ‖A2‖p,
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where we have used that 〈A1φj , φj〉 ≤ 〈A2φj , φj〉 for all j.

Appendix B. Proof of Lemma 3.3.
Proof. Step 1: D(·) and E(·) are constant. Suppose first that D(t) = Σ0 ∈ Ip and

E(t) = E0 ∈ L (H ) for all t ∈ R+ and Σ0 and E0 are non-negative, then we prove that
the unique solution to (3.4) is given by Σ(t) = Σ0(I + tE0Σ0)−1 = (I + tΣ0E0)−1Σ0.
Note that since Σ0, E0 ≥ 0, then the spectra of Σ0E0 and E0Σ0 are non-negative,
i.e., σ(E0Σ0), σ(Σ0E0) ⊂ [0,∞) (see [40]). This implies that −R−1(tE0Σ0) = (I +
tE0Σ0)−1 (and −R−1(tΣ0E0) = (I + tΣ0E0)−1) is well defined where Rλ(A) :=
(λI − A)−1 is the resolvent of A ∈ L (H ) defined for λ ∈ ρ(A), the resolvent set.
It follows directly that the adjoint of (I + tΣ0E0)−1Σ0 is given by Σ0(I + tE0Σ0)−1

and direct calculation shows that (I + tΣ0E0)−1Σ0 ≥ 0 for all t ∈ R+, so that
Σ0(I + tE0Σ0)−1 = (I + tΣ0E0)−1Σ0 and hence, Σ(·) is well-defined.

If λ ∈ ρ(A), then it is known that ‖Rλ(A)‖ ≤ 1/dist(λ, σ(A)) so it follows that
‖(I + tE0Σ0)−1‖ ≤ 1 which implies that ‖Σ(t)‖p ≤ ‖Σ0‖p (i.e., the bound in (3.5)
holds). By the continuous functional calculus we have that t 7→ (I + tE0Σ0)−1 ∈
L (H ) is norm-continuos so that Σ(·) ∈ C (R+; Ip) by application of Proposition
2.1. Furthermore, the identity

(I + sE0Σ0)−1 − (I + tE0Σ0)−1 = −(s− t)(I + tE0Σ0)−1E0Σ0(I + sE0Σ0)−1,

implies that d
dt (I + tE0Σ0)−1 = −(I + tE0Σ0)−1E0Σ0(I + tE0Σ0)−1 where “ d

dt”

is understood in the operator norm-sense, and hence d
dtΣ(t) = −Σ(t)E0Σ(t), i.e.,

Σ0(I + tE0Σ0)−1 solves (3.4). Uniqueness in C (R+; L (H )) follows by assuming
there is another solution Σ̃(·), then taking the difference if both equations to obtain

‖Σ(t)− Σ̃(t)‖ ≤
(

sup
t∈[0,τ ]

‖Σ(t)‖+ sup
t∈[0,τ ]

‖Σ̃(t)‖
)
‖E0‖

∫ t

0

‖Σ(s)− Σ̃(s)‖ ds,

for any τ ≤ t. An application of a Grönwall’s inequality shows uniqueness in the
interval [0, τ ] and since τ > 0 is arbitrary, uniqueness of (3.4) in C (R+; L (H ))
follows.

Step 2: D(·) and E(·) are step functions. Suppose now that E(·) is a point-wise
non-negative, step L (H )-valued function and D(·) is a monotonically increasing,
right-continuous, step Ip-valued function which is also point-wise non-negative. It
follows then that ∪Nn=1In = [0,∞), and In = [tn−1, tn) for n = 1, 2, . . . , N − 1 and

IN = [tN−1,∞), and that D(t) =
∑N
n=1 FnχIn (t) and E(t) =

∑N
n=1GnχIn (t), where

G∗n = Gn ≥ 0, and F ∗n = Fn ≥ 0 with D1 ≤ D2 ≤ · · · ≤ DN . Then, we prove
that, by the application of the argument in the first paragraph, in each In there is a
map Σ : R+ → Ip such that its restrictions to each In are Ip-continuous (but it is
not necessarily continuous on the entire R+), that solves (3.4) and from the bounds
supt∈In ‖Σ(t)‖p ≤ ‖Fn‖p, the bound (3.5) holds. In fact, in the first interval I1 the
application is direct and hence Σ(t) ≥ 0 on t ∈ I1 = [0, t1) and supt∈I1 ‖Σ(t)‖p ≤
‖D1‖p; for t ∈ In with n = 2, 3, . . . , N , Σ(·) satisfies

Σ(t) = Σ(t−n−1)−
∫ t

tn−1

(ΣEΣ∗)(s) ds,

If Σ(t−n−1) ≥ 0 and supt∈In−1
‖Σ(t)‖p ≤ ‖Dn−1‖p, then by step 1, Σ(·) is well defined

on In and supt∈In ‖Σ(t)‖p ≤ ‖Σ(t−n−1)‖p ≤ ‖Dn−1‖p ≤ ‖Dn‖p. Therefore, the proof
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follows by induction. Uniqueness follows by the same argument as in step 1 on each
interval In.

Step 3: General D(·) and E(·). If E(·) ∈ L∞loc(R+; L (H )), D(·) ∈ C (R+; Ip),
both are point-wise non-negative and t 7→ D(t) is monotonically increasing. Then,
there are step functions of the type in the above paragraph Fn and Gn, such that

an(τ) := sup
t∈[0,τ ]

‖D(t)− Fn(t)‖p → 0 and bn(τ) :=

∫ τ

0

‖E(s)−Gn(s)‖ ds→ 0,

for any τ > 0. We consider the sequence {Σn} of pointwise non-negative mappings
solutions to

Σn(t) = Fn(t)−
∫ t

0

Σn(s)Gn(s)Σ∗n(s) ds, (B.1)

so that supt∈[0,τ ] ‖Σn(t)‖p ≤ ‖Fn(τ)‖p ≤ M1(τ) and also
∫ τ

0
‖Gn(s)‖ ds ≤ M2(τ)

where M1(τ),M2(τ) do not depend on n ∈ N. From (B.1), it can be proven that

‖(Σm − Σn)(t)‖p ≤

an(τ) +M1(τ)2bn(τ) +

∫ t

0

M1(τ)2
(
‖Em(s)‖+ ‖Gn(s)‖

)
‖(Σn − Σm)(s)‖p ds,

and it follows by an application of Grönwall’s inequality that for each t, {Σn(t)} is a
Cauchy sequence in Ip. We denote t 7→ Σ(t) to the map of this limits which is Bochner
integrable for being the pointwise limit of Bochner measurable functions. Furthermore
supt∈[0,τ ] ‖(Σm − Σn)(t)‖p → 0 uniformly in m,n which implies that supt∈[0,τ ] ‖(Σ−
Σn)(t)‖p → 0 and hence for each t,

∫ t
0

Σn(s)Gn(s)Σ∗n(s) ds→
∫ t

0
Σ(s)E(s)Σ∗(s) ds in

Ip follows since in addition bn(t)→ 0 as n→∞. It follows that Σ(·) solves (3.4) and
satisfies the bound (3.5). Since Σ(·) ∈ L2

loc(I; Ip) ⊂ L2
loc(I; I2p), then by Theorem

(3.1), Σ(·) = γ(Σ)(·) ∈ C (R+; Ip). Uniqueness follow by the assuming that there is

another solution Σ̃(·) and an application of Grönwall’s inequality.
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[10] A. Bensoussan, Some remarks on linear filtering theory for infinite dimensional systems, Lec-

ture Notes in Control and Information Sciences, 286 (2003), pp. 2739.
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